JPH04351290A - Coated electrode of 'hastelloy(r)' system for steel for cryogenic service having excellent ductility and fracture resistance characteristic - Google Patents

Coated electrode of 'hastelloy(r)' system for steel for cryogenic service having excellent ductility and fracture resistance characteristic

Info

Publication number
JPH04351290A
JPH04351290A JP12400091A JP12400091A JPH04351290A JP H04351290 A JPH04351290 A JP H04351290A JP 12400091 A JP12400091 A JP 12400091A JP 12400091 A JP12400091 A JP 12400091A JP H04351290 A JPH04351290 A JP H04351290A
Authority
JP
Japan
Prior art keywords
amount
less
weld metal
coating material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12400091A
Other languages
Japanese (ja)
Inventor
Satoyuki Miyake
三宅 聰之
Hiroyuki Koike
弘之 小池
Masahito Ogata
雅人 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12400091A priority Critical patent/JPH04351290A/en
Publication of JPH04351290A publication Critical patent/JPH04351290A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To assure the high tensile strength, high toughness and high-temp. crack resistance of a weld metal by limiting the impurities and gaseous components of a core wire and limiting the ratio of the metal carbonate and metal fluoride of a coating material and the contents of SiO2 and total moisture. CONSTITUTION:The coated electrode of a 'Hastelloy(R)' system for steels for cryogenic service is formed by incorporating 65 to 85% Ni, 15 to 24% Mo and 2.0 to 4.0% W into the core wire of this coated electrode and limiting the components to <=0.16% Si, <=0.008% oxygen, <=0.010% nitrogen, <=0.0007% hydrogen, <=0.010% P, <=0.010% S, and 0.015% P+S. Fe is limited to <=5%, Cr to <=2.0%, Cr to <=1.0% and Mn to <=2.0%. The metal carbonate is incorporated at 50 to 70% and the metal fluoride at 10 to 25% of the total weight of the coating material into the coating material. The metal carbonate and metal fluoride are so compounded as to attain 3.05 to 4.10 ratio thereof. Degassing agents, such as Al, Ti, Si, and Mg are compounded at 5.0 to 10.0% and the SiO2 is limited to <=4.0. The total moisture content is limited to <=0.20%.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、極低温用鋼である5.
5%Ni鋼や9%Ni鋼の溶接に用いられるNi−Mo
基合金のいわゆるハステロイ系被覆アーク溶接棒、特に
溶接金属の極低温における延性破壊抵抗特性の優れたハ
ステロイ系被覆アーク溶接棒に関するものである。
[Industrial Application Field] The present invention relates to cryogenic steel.5.
Ni-Mo used for welding 5% Ni steel and 9% Ni steel
The present invention relates to a coated arc welding rod based on a so-called hastelloy base alloy, and in particular to a coated arc welding rod based on a hastelloy, which has excellent ductile fracture resistance properties of weld metal at extremely low temperatures.

【0002】0002

【従来の技術】極低温用鋼用ハステロイ系被覆アーク溶
接棒はすでに市販され、特開昭59−107789号公
報や特開昭62−197297号公報に開示されている
ごとく、全姿勢で溶接作業性が良好で、高強度・高靱性
且つ耐高温割れ性の優れたオーステナイト組織の溶接金
属となるハステロイ系被覆アーク溶接棒が9%Ni鋼L
NG(液化天然ガス)タンクの溶接に実用化されている
[Prior Art] Hastelloy-based coated arc welding rods for cryogenic steel have already been commercially available, and as disclosed in JP-A-59-107789 and JP-A-62-197297, welding can be performed in all positions. The hastelloy coated arc welding rod is a 9% Ni steel L, which has good properties and is a weld metal with an austenitic structure that has high strength, high toughness, and excellent hot cracking resistance.
It is put into practical use for welding NG (liquefied natural gas) tanks.

【0003】しかし、日本のエネルギー事情や公害問題
等も手伝い、LNGの需要は増加の一途を辿り、それに
伴い最近LNG貯蔵用タンクの大型化が進んでいる。L
NGタンクの大型化によって、必然的に9%Ni鋼の最
大板厚(最下段)は従来にない40〜50mmという極
厚となる。このような極厚の9%Ni鋼LNGタンク最
下段の溶接部には複雑且つ苛酷な力が加わり、特にLN
Gの約2倍の比重を持つ水を満杯にして洩れ等を検査す
る水張りテスト時には該溶接部にかかる力は極めて苛酷
なものになる。従って、LNGタンクの大規模破壊を避
けるには、この水張りテスト時の、溶接欠陥などを基に
した亀裂の発生のみならず延性亀裂の伝播をも防止する
ことが第一となる。第二は、LNG貯蔵時に−163℃
という極低温に曝されるので、極低温においても亀裂の
発生のみならずその後の延性亀裂の伝播を防止し得るこ
とも大規模破壊を防ぐためには重要となる。このような
非常に厳しい環境下においては、前記のごとき比較的優
れた特性を有する従来技術の被覆アーク溶接棒によるオ
ーステナイト組織の溶接金属でも、特に延性亀裂の伝播
に対する抵抗性、即ち延性破壊抵抗特性が必ずしも十分
ではなく、完全に安全な大型LNGタンクの建造が困難
であるという課題が近年明らかになり、完全に安全な大
型LNGタンクの建造を可能とする延性破壊抵抗特性の
優れた溶接金属を確保し得る被覆アーク溶接棒が強く望
まれている。
[0003] However, due to Japan's energy situation and pollution problems, the demand for LNG continues to increase, and LNG storage tanks have recently become larger. L
As the size of the NG tank increases, the maximum plate thickness (lowermost layer) of 9% Ni steel inevitably becomes extremely thick at 40 to 50 mm, which is unprecedented. Complex and severe forces are applied to the welds at the bottom of such extremely thick 9% Ni steel LNG tanks.
During a water filling test in which the weld is filled with water, which has a specific gravity approximately twice that of G, to check for leaks, the force applied to the weld is extremely severe. Therefore, in order to avoid large-scale destruction of the LNG tank, it is first necessary to prevent not only the occurrence of cracks based on welding defects, but also the propagation of ductile cracks during this water filling test. The second is -163℃ during LNG storage.
In order to prevent large-scale fractures, it is important to be able to prevent not only the occurrence of cracks but also the subsequent propagation of ductile cracks even at extremely low temperatures. Under such extremely harsh environments, even the austenitic weld metal produced by the conventional coated arc welding rod, which has relatively excellent properties as described above, has poor resistance to ductile crack propagation, that is, ductile fracture resistance. In recent years, it has become clear that the construction of completely safe large LNG tanks is not always sufficient and that it is difficult to construct completely safe large LNG tanks. A coated arc welding rod that can be secured is strongly desired.

【0004】0004

【発明が解決しようとする課題】本発明の目的は、Ni
−Mo基合金心線を用いて、全姿勢での溶接作業性が良
好であることは勿論のこと、極低温且つ苛酷な環境下で
も亀裂の発生のみならず延性亀裂の伝播とそれに伴う大
規模破壊を防止することが可能な延性破壊抵抗特性の優
れた溶接金属を確保し得る溶接棒を提供することにある
[Problems to be Solved by the Invention] The object of the present invention is to
-Using Mo-based alloy core wire, it goes without saying that welding workability in all positions is good, and even in extremely low temperatures and harsh environments, cracks do not only occur, but also propagate ductile cracks and cause large scale damage. It is an object of the present invention to provide a welding rod that can secure weld metal with excellent ductile fracture resistance characteristics that can prevent fracture.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、心線中
に、65〜85%のNi、15〜24%のMo、2.0
〜4.0%のWを含有し、且つ心線中のSi量を0.1
6%以下、酸素量を0.008%以下、窒素量を0.0
10%以下、水素量を0.0007%以下、P量を0.
010%以下、S量を0.010%以下、P+Sを0.
015%以下にそれぞれ制限すると同時に、心線重量比
で心線または被覆剤の一方または両方のFe量を5%以
下、Cr量を2.0%以下、Cu量を1.0%以下、M
n量を2.0%以下に規制し、被覆剤全重量に対し50
〜70%の金属炭酸塩と10〜25%の金属弗化物を金
属炭酸塩/金属弗化物の比が3.05〜4.10となる
ように配合し、且つ金属単体に換算してAl1.5〜4
.0%、Ti2.5〜5.0%、Si0.1〜1.5%
、Mg0.05〜1.5%の2種または3種以上の合計
が5.0〜10.0%となるように脱ガス剤を配合し、
さらに珪酸塩化合物をSiO2 に換算して4.0%以
下に規制し、被覆剤中の全水分量を0.20%以下に制
限した被覆剤を該心線に被覆してなることを特徴とする
延性破壊抵抗特性の優れた極低温用鋼用ハステロイ系被
覆アーク溶接棒にある。
[Means for Solving the Problem] The gist of the present invention is that 65-85% Ni, 15-24% Mo, 2.0
Contains ~4.0% W and the amount of Si in the core is 0.1
6% or less, oxygen content 0.008% or less, nitrogen content 0.0
10% or less, hydrogen amount 0.0007% or less, P amount 0.
0.010% or less, S amount 0.010% or less, P+S 0.010% or less.
At the same time, the amount of Fe in one or both of the core wire or coating material is limited to 5% or less, the Cr amount is 2.0% or less, the Cu amount is 1.0% or less, and the M
The amount of n is regulated to 2.0% or less, and 50% of the total weight of the coating material is
~70% metal carbonate and 10~25% metal fluoride are blended so that the ratio of metal carbonate/metal fluoride is 3.05~4.10, and Al1. 5-4
.. 0%, Ti2.5-5.0%, Si0.1-1.5%
, a degassing agent is blended so that the total of two or three or more types of Mg0.05 to 1.5% is 5.0 to 10.0%,
Furthermore, the core wire is coated with a coating material in which the silicate compound is regulated to 4.0% or less in terms of SiO2, and the total water content in the coating material is limited to 0.20% or less. Hastelloy coated arc welding rod for cryogenic steel with excellent ductile fracture resistance.

【0006】なお、本明細書で用いる%は重量%を指し
、被覆剤全重量とは、被覆剤を被覆する際に用いる水ガ
ラスに含まれるSiO2 やK2 O等の固質分は含ま
ない。以下に本発明を作用と共に詳細に説明する。
[0006] In this specification, % refers to % by weight, and the total weight of the coating material does not include solid components such as SiO2 and K2 O contained in the water glass used for coating the coating material. The present invention will be explained in detail below along with its operation.

【0007】[0007]

【作用】本発明者等は、極低温且つ苛酷な環境下で亀裂
が発生した後も、延性亀裂の伝播を防止し得る延性破壊
抵抗特性の優れた溶接金属を確保できる極低温用鋼用被
覆アーク溶接棒の開発を目的として鋭意研究を重ねた。 その結果、Ni−Mo−Wのいわゆるハステロイ系心線
のSi,P,Sの不純物及び酸素,窒素,水素のガス成
分を極微量に制限し、Fe,Cr,Cu,Mnの補助添
加物を規制し、被覆剤の金属炭酸塩と金属弗化物を特定
すると同時に金属炭酸塩/金属弗化物の比を限定し、さ
らにAl,Ti,Si,Mgの2種または3種以上で脱
ガスを行い、且つSiO2 と全水分量を制限すること
の全てを満たして、初めて溶接作業性を損なうことなく
、ブローホール,割れ等溶接欠陥の発生もなく、溶接金
属の延性破壊抵抗特性を顕著に向上せしめることができ
るとの新たな知見を得た。
[Function] The present inventors have discovered a coating for cryogenic steel that can ensure weld metal with excellent ductile fracture resistance properties that can prevent the propagation of ductile cracks even after cracks have occurred at extremely low temperatures and in harsh environments. We conducted extensive research with the aim of developing arc welding rods. As a result, the Si, P, and S impurities and the oxygen, nitrogen, and hydrogen gas components of the so-called Hastelloy core wire of Ni-Mo-W are limited to trace amounts, and the auxiliary additives of Fe, Cr, Cu, and Mn are Specify the metal carbonate and metal fluoride in the coating material, limit the metal carbonate/metal fluoride ratio, and degas with two or more of Al, Ti, Si, and Mg. , and limiting SiO2 and total water content, it is possible to significantly improve the ductile fracture resistance of weld metal without impairing welding workability, without causing welding defects such as blowholes and cracks, etc. I gained new knowledge that it is possible.

【0008】次に、本発明の心線の各成分について説明
する。Niは極低温においても安定なオーステナイト組
織の溶接金属とし、極低温での優れた引張性質,延性,
靱性等を確保するために必要である。MoはNiとの共
存のもとで、溶接金属が高温から極低温に至る広い温度
域での高い引張強度,高靱性及び優れた耐高温割れ性を
確保するために必要である。
Next, each component of the core wire of the present invention will be explained. Ni is a weld metal with an austenitic structure that is stable even at extremely low temperatures, and has excellent tensile properties, ductility, and
Necessary to ensure toughness, etc. Mo is necessary in coexistence with Ni to ensure that the weld metal has high tensile strength, high toughness, and excellent hot cracking resistance over a wide temperature range from high temperatures to extremely low temperatures.

【0009】WはNi,Moとの共存のもとで、溶接金
属が高温から極低温に至る広い温度域での高い引張強度
を確保するために必要である。心線中のSiは溶接金属
中のSi量を高くするために特に極低温における溶接金
属の延性,衝撃靱性及び延性破壊抵抗特性を劣化させる
原因となり、また溶接金属の高温割れの発生を助長する
ので低く制御しなければならない。心線中のSi量を低
く制御することは、被覆剤中へAl,Ti,Si,Mg
の2種または3種以上の脱ガス剤を添加すること、被覆
剤中の金属炭酸塩/金属弗化物を特定範囲に規定するこ
と、及び被覆剤中のSiO2 分を低くすること等と相
まって、溶接作業性及び耐溶接欠陥性を損なわずに極低
温においても優れた延性,衝撃靱性及び延性破壊抵抗特
性を有する溶接金属を確保するための主な構成要件の一
つである。
[0009] W is necessary in coexistence with Ni and Mo to ensure high tensile strength of the weld metal over a wide temperature range from high temperatures to extremely low temperatures. Si in the core wire increases the amount of Si in the weld metal, which causes deterioration of the ductility, impact toughness, and ductile fracture resistance properties of the weld metal especially at extremely low temperatures, and also promotes the occurrence of hot cracking in the weld metal. Therefore, it must be controlled low. Controlling the amount of Si in the core wire to a low level means that Al, Ti, Si, Mg
In combination with adding two or more types of degassing agents, specifying the metal carbonate/metal fluoride in the coating material within a specific range, and lowering the SiO2 content in the coating material, This is one of the main structural requirements for ensuring a weld metal that has excellent ductility, impact toughness, and ductile fracture resistance even at extremely low temperatures without impairing welding workability and weld defect resistance.

【0010】酸素,窒素,水素のガス成分は極低温にお
ける溶接金属の延性,衝撃靱性及び延性破壊抵抗特性を
劣化させる原因となり、また溶接金属の高温割れ発生を
助長するので低く制御する必要がある。特に心線中の酸
素量が多いと溶接金属中の酸素量が増加する傾向を助長
し、溶接金属の特性劣化が顕著となる。P,Sのいわゆ
る不純物元素は極低温における溶接金属の延性,衝撃靱
性及び延性破壊抵抗特性を劣化させる原因となり、また
溶接金属の高温割れ発生を助長するので低く制御する必
要がある。
[0010] Gaseous components such as oxygen, nitrogen, and hydrogen cause deterioration of the ductility, impact toughness, and ductile fracture resistance characteristics of weld metal at extremely low temperatures, and also promote the occurrence of hot cracking in weld metal, so they must be controlled to a low level. . In particular, when the amount of oxygen in the core wire is large, the tendency for the amount of oxygen in the weld metal to increase is promoted, and the deterioration of the properties of the weld metal becomes significant. The so-called impurity elements P and S cause deterioration of the ductility, impact toughness, and ductile fracture resistance characteristics of the weld metal at extremely low temperatures, and also promote the occurrence of hot cracking in the weld metal, so they must be controlled to a low level.

【0011】ここで、心線中のSiと酸素,窒素,水素
のガス成分及びP,Sの不純物元素を制御する理由につ
いて説明する。これらの成分は前述のごとく溶接金属の
特に極低温における延性破壊抵抗特性を劣化させるので
、溶接金属中の含有量をできるだけ低く抑えなければな
らない。溶接金属の成分及び清浄度は被覆剤によってあ
る程度制御可能であり、適正な成分及び清浄度を達成す
べく後述のごとく被覆剤組成を特定しているのは勿論で
ある。しかし、心線中のSiと酸素,窒素,水素のガス
成分及びP,Sの不純物元素のほとんどの量は溶接金属
中に移行してしまうため、溶接金属の特に極低温におけ
る延性破壊抵抗特性を向上するのに十分な程に溶接金属
中のこれら成分の含有量を低く維持するためには、特に
心線中のこれらの成分、すなわちSiと酸素,窒素,水
素のガス成分及びP,Sの不純物元素の含有量をできる
だけ低く制御しなければならない。
[0011] Here, the reason for controlling the gas components of Si, oxygen, nitrogen, and hydrogen, and the impurity elements of P and S in the core wire will be explained. As mentioned above, these components deteriorate the ductile fracture resistance properties of the weld metal, especially at extremely low temperatures, so their content in the weld metal must be kept as low as possible. The composition and cleanliness of the weld metal can be controlled to some extent by the coating material, and it goes without saying that the composition of the coating material is specified as described below in order to achieve appropriate composition and cleanliness. However, most of the gas components of Si, oxygen, nitrogen, hydrogen, and impurity elements P and S in the core wire migrate into the weld metal, which affects the ductile fracture resistance of the weld metal, especially at extremely low temperatures. In order to keep the content of these components in the weld metal low enough to improve the The content of impurity elements must be controlled as low as possible.

【0012】Fe,Cr,Cu,Mnは線材製造時に熱
間鍛造性や圧延性や伸線性を向上するため、或は溶接金
属の引張強度や耐食性を向上するため、さらには溶接金
属をより一層安定なオーステナイト組織とする等の目的
で補助的に添加される成分であるが、これら補助添加成
分は極低温における溶接金属の延性,衝撃靱性及び延性
破壊抵抗特性を劣化させ、また溶接金属の高温割れを助
長する傾向があるので規制しなければならない。
[0012] Fe, Cr, Cu, and Mn are used to improve hot forgeability, rollability, and wire drawability during the production of wire rods, to improve the tensile strength and corrosion resistance of weld metal, and to further improve weld metal. These auxiliary additives are added for the purpose of creating a stable austenitic structure, etc., but these auxiliary additives deteriorate the ductility, impact toughness, and ductile fracture resistance of the weld metal at extremely low temperatures. It must be regulated because it tends to encourage cracking.

【0013】ここで、Fe,Cr,Cu及びMnの補助
添加物は、溶接金属の引張強度や耐食性を向上させるた
め、また溶接金属をより一層安定なオーステナイト組織
とする等の目的で、被覆剤から添加することも可能であ
るが、この場合溶接金属の極低温における延性破壊抵抗
特性を損なわないようにするために、その添加量は低く
抑えるべきである。
[0013] Here, auxiliary additives such as Fe, Cr, Cu, and Mn are added to the coating material for the purpose of improving the tensile strength and corrosion resistance of the weld metal, and making the weld metal an even more stable austenitic structure. However, in this case, the amount added should be kept low so as not to impair the ductile fracture resistance properties of the weld metal at extremely low temperatures.

【0014】さらに、本発明の被覆剤の各成分について
説明する。金属炭酸塩は溶接時にCOやCO2 ガスを
分解生成し、大気から溶融プールをシールドし、窒素,
酸素,水素の混入による溶接金属の特性劣化やブローホ
ール発生の防止に有効である。また溶融状態のスラグに
適当な粘性・流動性を与え、全姿勢で平滑且つ健全な溶
接ビードを得ることができる。また、金属炭酸塩は溶接
時の雰囲気を高塩基性に保ち、溶接金属中のSiやP,
Sの不純物成分を低減せしめ、溶接金属の耐高温割れ性
及び極低温での延性,衝撃靱性,延性破壊抵抗特性を向
上させる。
Further, each component of the coating material of the present invention will be explained. Metal carbonates decompose and produce CO and CO2 gas during welding, shielding the molten pool from the atmosphere, and releasing nitrogen,
It is effective in preventing the deterioration of weld metal properties and the generation of blowholes due to the contamination of oxygen and hydrogen. Furthermore, it is possible to impart appropriate viscosity and fluidity to the molten slag, and to obtain a smooth and sound weld bead in all positions. In addition, metal carbonates keep the atmosphere during welding highly basic, and reduce Si and P in the weld metal.
It reduces the impurity component of S and improves the hot cracking resistance of the weld metal, as well as the ductility, impact toughness, and ductile fracture resistance characteristics at extremely low temperatures.

【0015】金属弗化物は溶融状態のスラグに適当な粘
性・流動性を与え、全姿勢で平滑且つ健全な溶接ビード
を得るのに効果がある。また溶接時の雰囲気を高塩基性
に保ち、溶接金属中のSiやP,Sの不純物成分を低減
せしめ、溶接金属の耐高温割れ性及び極低温での延性,
衝撃靱性,延性破壊抵抗特性を向上させるのに有効であ
る。
The metal fluoride imparts appropriate viscosity and fluidity to the molten slag, and is effective in obtaining a smooth and sound weld bead in all positions. In addition, by keeping the atmosphere highly basic during welding and reducing the impurity components of Si, P, and S in the weld metal, it improves the hot cracking resistance of the weld metal and the ductility at extremely low temperatures.
It is effective in improving impact toughness and ductile fracture resistance.

【0016】ここで、金属炭酸塩/金属弗化物の比を特
定の範囲に規定することは、心線中のSi量を低く制御
すること、被覆剤中へのAl,Ti,Si,Mgの2種
または3種以上の脱ガス剤を添加すること、及び被覆剤
中のSiO2分を低く規制することと相まって、溶接作
業性及び耐溶接欠陥性を損なわずに極低温においても優
れた延性,衝撃靱性及び延性破壊抵抗特性を有する溶接
金属を確保するための主な構成要件の一つである。
[0016] Here, regulating the metal carbonate/metal fluoride ratio within a specific range means controlling the amount of Si in the core wire to a low level, and controlling the amount of Al, Ti, Si, and Mg in the coating material. By adding two or more types of degassing agents and by controlling the SiO2 content in the coating material, it is possible to achieve excellent ductility even at extremely low temperatures without impairing welding workability and weld defect resistance. Impact toughness and ductile fracture resistance properties are one of the main constituents to ensure weld metals have properties.

【0017】Al,Ti,Si及びMgの脱ガス剤は溶
接時のガス成分との反応により、溶接金属中の窒素,酸
素,水素量を低減し、溶接金属のブローホール発生を防
止すると同時に溶接金属の極低温での延性,衝撃靱性,
延性破壊抵抗特性を向上させるのに必要である。特に、
これら脱ガス剤を2種または3種以上添加することが脱
ガス反応を活発にし、溶接金属の特性向上を顕著にする
。被覆剤中へAl,Ti,Si,Mgの2種または3種
以上の脱ガス剤を特定量添加することは、心線中のSi
量を低く制限すること、被覆剤中の金属炭酸塩/金属弗
化物を特定範囲に規定すること、及び被覆剤中のSiO
2 分を低く規制することと相まって、溶接作業性及び
耐溶接欠陥性を損なわずに極低温においても優れた延性
,衝撃靱性及び延性破壊抵抗特性を有する溶接金属を確
保するための主な構成要件の一つである。
[0017] Degassing agents such as Al, Ti, Si, and Mg reduce the amount of nitrogen, oxygen, and hydrogen in the weld metal by reacting with gas components during welding, thereby preventing the occurrence of blowholes in the weld metal and at the same time improving the welding process. Ductility and impact toughness of metals at extremely low temperatures,
Necessary to improve ductile fracture resistance properties. especially,
Adding two or more of these degassing agents activates the degassing reaction and significantly improves the properties of the weld metal. Adding a specific amount of two or more types of degassing agents Al, Ti, Si, and Mg to the coating material can reduce Si in the core wire.
Limiting the amount of SiO
The main structural requirements for ensuring a weld metal that has excellent ductility, impact toughness, and ductile fracture resistance even at extremely low temperatures without impairing welding workability and weld defect resistance, coupled with a low regulation of 2 minutes. one of.

【0018】主としてSiO2 からなる珪酸塩化合物
は溶接時に分解等の反応により、溶接時の雰囲気を酸性
よりにし溶接金属中の酸素量を高くする傾向があると同
時に還元されたSiが溶接金属中に入り、溶接金属の酸
素及びSi量を高くするため、特に極低温における溶接
金属の延性,衝撃靱性及び延性破壊抵抗特性を劣化させ
る原因となり、また溶接金属の高温割れ発生傾向を助長
するので低く制限しなければならない。被覆剤中のSi
O2 分を低く制限することは、心線中のSi量を低く
制限すること、被覆剤中へAl,Ti,Si,Mgの2
種または3種以上の脱ガス剤を添加すること、及び被覆
剤中の金属炭酸塩/金属弗化物の比を特定範囲に規定す
ること等と相まって、溶接作業性及び耐溶接欠陥性を損
なわずに極低温においても優れた延性,衝撃靱性及び延
性破壊抵抗特性を有する溶接金属を確保するための主な
構成要件の一つである。
[0018] Due to reactions such as decomposition during welding, silicate compounds mainly consisting of SiO2 tend to make the atmosphere during welding acidic and increase the amount of oxygen in the weld metal. In order to increase the amount of oxygen and Si in the weld metal, it causes deterioration of the ductility, impact toughness and ductile fracture resistance properties of the weld metal, especially at extremely low temperatures, and also promotes the tendency of hot cracking in the weld metal, so it is limited to a low level. Must. Si in coating material
Restricting the O2 content to a low level means restricting the amount of Si in the core wire to a low level, and increasing the amount of Al, Ti, Si, and Mg into the coating material.
By adding a degassing agent or three or more types of degassing agents, and by regulating the metal carbonate/metal fluoride ratio in the coating material within a specific range, welding workability and weld defect resistance are not impaired. This is one of the main structural requirements to ensure a weld metal with excellent ductility, impact toughness and ductile fracture resistance properties even at extremely low temperatures.

【0019】被覆剤中の水分は溶接時の分解等の反応に
より、溶接金属中の水素及び酸素量を高くし、高温から
極低温に至る溶接金属の延性,極低温における溶接金属
の衝撃靱性及び延性破壊抵抗特性を劣化させる原因とな
り、またブローホール,高温割れ等の溶接欠陥の原因と
もなるので低く制限する必要がある。以下に本発明にお
ける成分限定理由について述べる。
Moisture in the coating material increases the amount of hydrogen and oxygen in the weld metal due to reactions such as decomposition during welding, which affects the ductility of the weld metal from high temperatures to extremely low temperatures, the impact toughness of the weld metal at extremely low temperatures, and It is necessary to limit it to a low level because it causes deterioration of ductile fracture resistance characteristics and also causes welding defects such as blowholes and hot cracks. The reasons for limiting the ingredients in the present invention will be described below.

【0020】心線中のNiは、極低温においても安定な
オーステナイト組織の溶接金属とし、極低温での優れた
引張性質,延性,靱性等を確保するための基本成分であ
り、65%以上必要である。85%を超えると9%Ni
鋼等の極低温用鋼用として必要な引張強度が不十分とな
る。従って心線中のNi量は65〜85%とする。心線
中のMoは、Niとの共存のもとで、溶接金属が高温か
ら極低温に至る広い温度域での高い引張強度,高靱性及
び優れた耐高温割れ性を確保するために15%以上必要
である。24%を超えると溶接金属の極低温での衝撃靱
性や延性が著しく劣化する。従って心線中のMo量は1
5〜24%とする。
[0020]Ni in the core wire is a basic component for creating a weld metal with an austenitic structure that is stable even at extremely low temperatures and ensuring excellent tensile properties, ductility, toughness, etc. at extremely low temperatures, and is required to be at least 65%. It is. 9% Ni if over 85%
The tensile strength required for cryogenic steel such as steel is insufficient. Therefore, the amount of Ni in the core wire is set to 65 to 85%. The Mo content in the core wire is 15% to ensure that the weld metal, in coexistence with Ni, has high tensile strength, high toughness, and excellent hot cracking resistance in a wide temperature range from high temperatures to extremely low temperatures. The above is necessary. If it exceeds 24%, the impact toughness and ductility of the weld metal at extremely low temperatures will deteriorate significantly. Therefore, the amount of Mo in the core is 1
5 to 24%.

【0021】心線中のWは、Ni,Moとの共存のもと
で、溶接金属が高温から極低温に至る広い温度域での高
い引張強度を確保するため2.0%以上必要である。 4.0%を超えると溶接金属の極低温での衝撃靱性や延
性が著しく劣化する。従って心線中のW量は2.0〜4
.0%とする。心線中のSi量は、0.16%を超える
と、特に極低温における溶接金属の延性,衝撃靱性及び
延性破壊抵抗特性を著しく劣化させる。従って心線中の
Si量は0.16%以下に制限する。
[0021] W in the core wire is required to be 2.0% or more in order to ensure high tensile strength of the weld metal in a wide temperature range from high temperatures to extremely low temperatures in coexistence with Ni and Mo. . If it exceeds 4.0%, the impact toughness and ductility of the weld metal at extremely low temperatures will deteriorate significantly. Therefore, the amount of W in the core is 2.0 to 4
.. Set to 0%. When the amount of Si in the core wire exceeds 0.16%, the ductility, impact toughness, and ductile fracture resistance characteristics of the weld metal, especially at extremely low temperatures, are significantly deteriorated. Therefore, the amount of Si in the core wire is limited to 0.16% or less.

【0022】心線中の酸素は、0.008%を超えると
、溶接金属中の酸素量を増加させ、高温から極低温にお
ける溶接金属の延性,極低温における衝撃靱性及び延性
破壊抵抗特性を著しく劣化させ、また溶接金属の高温割
れ発生傾向が大きくなる。従って心線中の酸素量は0.
008%以下に制限する。心線中の窒素は、0.010
%を超えると、極低温における溶接金属の延性,衝撃靱
性及び延性破壊抵抗特性を著しく劣化させ、また溶接時
にブローホール発生の原因となる。従って心線中の窒素
量は0.010%以下に制限する。
[0022] When oxygen in the core wire exceeds 0.008%, it increases the amount of oxygen in the weld metal and significantly impairs the ductility of the weld metal from high temperatures to extremely low temperatures, impact toughness at extremely low temperatures, and ductile fracture resistance. This causes deterioration and increases the tendency for hot cracking to occur in the weld metal. Therefore, the amount of oxygen in the core is 0.
Limit to 0.008% or less. Nitrogen in the core wire is 0.010
If it exceeds %, the ductility, impact toughness and ductile fracture resistance properties of the weld metal at extremely low temperatures will be significantly deteriorated, and it will also cause blowholes to occur during welding. Therefore, the amount of nitrogen in the core wire is limited to 0.010% or less.

【0023】心線中の水素は、0.0007%を超える
と、極低温における溶接金属の延性,衝撃靱性及び延性
破壊抵抗特性を著しく劣化させ、また溶接時にブローホ
ール発生の原因となる。従って心線中の水素量は0.0
007%以下に制限する。心線中のPは、0.010%
を超えると、高温から極低温における溶接金属の延性,
極低温における溶接金属の延性破壊抵抗特性を著しく劣
化させ、また溶接金属の耐高温割れ性を劣化させる。従
って心線中のP量は0.010%以下に制限する。
[0023] When hydrogen in the core wire exceeds 0.0007%, it significantly deteriorates the ductility, impact toughness and ductile fracture resistance characteristics of the weld metal at cryogenic temperatures, and also causes blowholes to occur during welding. Therefore, the amount of hydrogen in the core is 0.0
Limit to 0.007% or less. P in the core is 0.010%
When the ductility of the weld metal from high temperature to cryogenic temperature exceeds
It significantly deteriorates the ductile fracture resistance of weld metal at extremely low temperatures and also deteriorates the hot cracking resistance of weld metal. Therefore, the amount of P in the core is limited to 0.010% or less.

【0024】心線中のSは、0.010%を超えると、
高温から極低温における溶接金属の延性,極低温におけ
る溶接金属の延性破壊抵抗特性を著しく劣化させ、また
溶接金属の耐高温割れ性を劣化させる。従って心線中の
S量は0.010%以下に制限する。また、心線中のP
とSの合計量が0.015%を超えると、高温から極低
温における溶接金属の延性,極低温における溶接金属の
延性破壊抵抗特性を著しく劣化させ、また溶接金属の耐
高温割れ性を劣化させる。従って心線中のS+Pの量は
0.015%以下に制限する。
[0024] When the S content in the core wire exceeds 0.010%,
It significantly deteriorates the ductility of the weld metal from high temperatures to extremely low temperatures, the ductile fracture resistance characteristics of the weld metal at extremely low temperatures, and also deteriorates the hot cracking resistance of the weld metal. Therefore, the amount of S in the core wire is limited to 0.010% or less. In addition, P in the core wire
If the total amount of S and S exceeds 0.015%, the ductility of the weld metal from high temperatures to extremely low temperatures, the ductile fracture resistance characteristics of the weld metal at extremely low temperatures, and the hot cracking resistance of the weld metal will deteriorate. . Therefore, the amount of S+P in the core wire is limited to 0.015% or less.

【0025】Feは線材製造時の熱間鍛造性や圧延・伸
線性を向上し、或は溶接金属のなじみ性を向上する目的
で補助的に添加することができるが、心線または被覆剤
の一方または両方のFe量が心線重量比で5%を超える
と極低温における溶接金属の衝撃靱性及び延性破壊抵抗
特性が著しく劣化する。従って心線または被覆剤の一方
または両方のFe量を心線重量比で5%以下に規制する
[0025] Fe can be added as an auxiliary for the purpose of improving hot forgeability, rolling/drawability during wire production, or improving the conformability of weld metal, but it is If the amount of Fe in one or both of them exceeds 5% by weight of the core, the impact toughness and ductile fracture resistance of the weld metal at extremely low temperatures will be significantly degraded. Therefore, the amount of Fe in one or both of the core wire and the coating material is regulated to 5% or less in terms of core wire weight ratio.

【0026】Crは溶接金属の引張強度や耐食性を向上
する目的で補助的に添加することができるが、心線また
は被覆剤の一方または両方のCr量が心線重量比で2.
0%を超えると極低温における溶接金属の衝撃靱性及び
延性破壊抵抗特性が著しく劣化する。従って心線または
被覆剤の一方または両方のCr量を心線重量比で2.0
%以下に規制する。
[0026] Cr can be added as an auxiliary for the purpose of improving the tensile strength and corrosion resistance of the weld metal, but if the amount of Cr in one or both of the core wire and the coating material is 2.5% by weight ratio of the core wire.
If it exceeds 0%, the impact toughness and ductile fracture resistance characteristics of the weld metal at extremely low temperatures will be significantly deteriorated. Therefore, the amount of Cr in one or both of the core wire and coating material is 2.0 in terms of core wire weight ratio.
% or less.

【0027】Cuは線材製造時の熱間鍛造性や圧延・伸
線性の向上、溶接金属の引張強度や耐食性の向上、或は
溶接金属のオーステナイト組織の安定化を目的として補
助的に添加することかできるが、心線または被覆剤の一
方または両方のCu量が心線重量比で1.0%を超える
と極低温における溶接金属の衝撃靱性及び延性破壊抵抗
特性が著しく劣化する。従って心線または被覆剤の一方
または両方のCu量を心線重量比で1.0%以下に規制
する。
[0027]Cu is added as an auxiliary for the purpose of improving hot forgeability, rolling/drawability during wire rod production, improving the tensile strength and corrosion resistance of the weld metal, or stabilizing the austenite structure of the weld metal. However, if the amount of Cu in one or both of the core wire and the coating material exceeds 1.0% by weight of the core wire, the impact toughness and ductile fracture resistance characteristics of the weld metal at cryogenic temperatures are significantly deteriorated. Therefore, the amount of Cu in one or both of the core wire and the coating material is regulated to 1.0% or less in terms of core wire weight ratio.

【0028】Mnは溶接金属のオーステナイト組織の安
定化、溶接時の脱酸や脱硫を目的として補助的に添加す
ることができるが、心線または被覆剤の一方または両方
のMn量が心線重量比で2.0%を超えると極低温にお
ける溶接金属の衝撃靱性及び延性破壊抵抗特性が著しく
劣化する。従って心線または被覆剤の一方または両方の
Mn量を心線量比で2.0%以下に規制する。
Mn can be added as an auxiliary for the purpose of stabilizing the austenite structure of the weld metal and deoxidizing and desulfurizing during welding, but the amount of Mn in either or both of the core wire and the coating material depends on the core wire weight. When the ratio exceeds 2.0%, the impact toughness and ductile fracture resistance characteristics of the weld metal at cryogenic temperatures are significantly deteriorated. Therefore, the amount of Mn in one or both of the core wire and the coating material is regulated to 2.0% or less in terms of core dose ratio.

【0029】但し、被覆剤全重量に対する合金成分の量
比(被覆剤重量比)を心線重量比に換算するには次式を
用いる。心線重量比(%)=被覆剤重量比(%)×被覆
率(%)/(100−被覆率(%))また、これら補助
添加物の他にも、Al,Ti,Mg等を精錬時の脱ガス
や熱間鍛造性の改善を目的としてそれぞれAl0.1%
以下,Ti0.2%以下,Mg0.02%以下の範囲で
心線中に含有せしめても、本発明の効果は損なわれない
However, the following equation is used to convert the ratio of the alloy components to the total weight of the coating material (coating material weight ratio) to the core weight ratio. Cord weight ratio (%) = Coating material weight ratio (%) x Coverage rate (%) / (100 - Coverage rate (%)) In addition to these auxiliary additives, Al, Ti, Mg, etc. are refined. 0.1% Al each for the purpose of improving degassing and hot forging properties.
Hereinafter, even if Ti is contained in the core wire in a range of 0.2% or less and Mg 0.02% or less, the effects of the present invention will not be impaired.

【0030】被覆剤中の金属炭酸塩は、溶接時にCOや
CO2 ガスを分解生成し、大気から溶融プールをシー
ルドし、窒素,酸素,水素の混入による溶接金属の特性
劣化やブローホール発生を防止し、また溶融状態のスラ
グに適当な粘性・流動性を与え、全姿勢で平滑且つ健全
な溶接ビードを形成せしめ、且つ溶接時の雰囲気を高塩
基性に保ち溶接金属中のSiやP,Sの不純物成分を低
減して溶接金属の耐高温割れ性及び極低温での延性,衝
撃靱性,延性破壊抵抗特性を向上させるために、被覆剤
全重量に対して50%以上必要である。しかし、70%
を超えると、スラグ剥離性の劣化、スパッタの増加、ビ
ード形状の劣化等溶接作業性が劣化する。従って金属炭
酸塩は被覆剤全重量に対して50〜70%とする。
The metal carbonate in the coating material decomposes CO and CO2 gas during welding, shields the molten pool from the atmosphere, and prevents deterioration of properties of the weld metal and generation of blowholes due to contamination with nitrogen, oxygen, and hydrogen. It also gives appropriate viscosity and fluidity to the molten slag, forms a smooth and healthy weld bead in all positions, and keeps the atmosphere during welding highly basic to eliminate Si, P, and S in the weld metal. In order to improve the hot cracking resistance of the weld metal and the ductility, impact toughness, and ductile fracture resistance characteristics of the weld metal at extremely low temperatures by reducing the impurity components, it is necessary to use 50% or more of the total weight of the coating material. However, 70%
If it exceeds this, welding workability deteriorates, such as deterioration of slag removability, increase in spatter, and deterioration of bead shape. Therefore, the amount of metal carbonate should be 50 to 70% based on the total weight of the coating material.

【0031】なお、ここで言う金属炭酸塩とは、例えば
炭酸石灰,炭酸バリウム,炭酸マグネシウム,炭酸リチ
ウム,炭酸ストロンチウム,炭酸マンガン或はこれらの
複合添加物を指す。被覆剤中の金属弗化物は、溶融状態
のスラグに適当な粘性・流動性を与え、全姿勢で平滑且
つ健全な溶接ビードを形成せしめ、また溶接時の雰囲気
を高塩基性に保ち溶接金属中のSiやP,Sの不純物成
分を低減して溶接金属の耐高温割れ性及び極低温での延
性,衝撃靱性,延性破壊抵抗特性を向上させるために、
10%以上必要である。しかし、25%を超えると、ス
ラグ剥離性の劣化、スパッタの増加、ビード形状の劣化
等溶接作業性が劣化する。従って金属弗化物は被覆剤全
重量に対して10〜25%とする。
[0031] The metal carbonate mentioned here refers to, for example, lime carbonate, barium carbonate, magnesium carbonate, lithium carbonate, strontium carbonate, manganese carbonate, or composite additives thereof. The metal fluoride in the coating material gives appropriate viscosity and fluidity to the molten slag, forming a smooth and sound weld bead in all positions, and also keeps the atmosphere during welding highly basic so that the weld metal does not melt. In order to reduce the impurity components of Si, P, and S in order to improve the hot cracking resistance of the weld metal and the ductility, impact toughness, and ductile fracture resistance characteristics at extremely low temperatures,
10% or more is required. However, if it exceeds 25%, welding workability deteriorates, such as deterioration in slag removability, increase in spatter, and deterioration in bead shape. Therefore, the amount of metal fluoride is 10 to 25% based on the total weight of the coating material.

【0032】なお、ここで言う金属弗化物とは、例えば
蛍石,氷晶石,弗化アルミニウム,弗化マグネシウム,
弗化バリウム,弗化リチウム,弗化ソーダ,弗化カリ或
はこれらの複合添加物を指す。金属炭酸塩/金属弗化物
の比は、心線中のSi量を低く制限すること、被覆剤中
へAl,Ti,Si,Mgの2種または3種以上の脱ガ
ス剤を添加すること、及び被覆剤中のSiO2 分を低
く規制することと相まって、全姿勢での溶接作業性及び
耐溶接欠陥性を損なわずに極低温においても優れた延性
,衝撃靱性及び延性破壊抵抗特性を有する溶接金属を確
保するために3.05〜4.10の範囲でなければなら
ない。この比が3.05未満では、特に全姿勢での溶接
作業性及び耐溶接欠陥性が劣化し、4.10を超えると
特に極低温における溶接金属の延性,衝撃靱性及び延性
破壊抵抗特性が劣化する。
[0032] The metal fluorides mentioned here include, for example, fluorite, cryolite, aluminum fluoride, magnesium fluoride,
Refers to barium fluoride, lithium fluoride, sodium fluoride, potassium fluoride, or composite additives thereof. The metal carbonate/metal fluoride ratio is determined by limiting the amount of Si in the core wire to a low level, by adding two or more degassing agents of Al, Ti, Si, and Mg to the coating material; Coupled with controlling the SiO2 content in the coating material to a low level, the weld metal has excellent ductility, impact toughness, and ductile fracture resistance even at extremely low temperatures without impairing welding workability in all positions and weld defect resistance. It must be in the range of 3.05 to 4.10 to ensure that. If this ratio is less than 3.05, welding workability in all positions and weld defect resistance will deteriorate, and if it exceeds 4.10, the ductility, impact toughness, and ductile fracture resistance characteristics of the weld metal will deteriorate, especially at extremely low temperatures. do.

【0033】被覆剤中のAl,Ti,Si及びMgの脱
ガス剤は溶接時のガス成分との反応により、溶接金属中
の窒素,酸素,水素量を低減し、溶接金属のブローホー
ル発生を防止すると同時に極低温における溶接金属の延
性,衝撃靱性,延性破壊抵抗特性を向上させるのに必要
である。特に、これら脱ガス剤を2種または3種以上添
加することが脱ガス反応を活発にし溶接金属の特性向上
を顕著にする。心線中のSi量を低く制限すること、被
覆剤中の金属炭酸塩/金属弗化物の比を特定範囲に規定
すること、及び被覆剤中のSiO2 分を低く規制する
こととの相乗効果により、溶接作業性及び耐溶接欠陥性
を損なわずに極低温においても優れた延性,衝撃靱性及
び延性破壊抵抗特性を有する溶接金属を確保するため、
被覆剤中へAl,Ti,Si,Mgの2種または3種以
上を添加する。
[0033] The Al, Ti, Si, and Mg degassing agents in the coating material reduce the amount of nitrogen, oxygen, and hydrogen in the weld metal by reacting with gas components during welding, and prevent the generation of blowholes in the weld metal. It is necessary to prevent this and at the same time improve the ductility, impact toughness, and ductile fracture resistance properties of the weld metal at cryogenic temperatures. In particular, adding two or more of these degassing agents activates the degassing reaction and significantly improves the properties of the weld metal. Due to the synergistic effect of limiting the amount of Si in the core wire to a low level, regulating the ratio of metal carbonate/metal fluoride in the coating material to a specific range, and regulating the SiO2 content in the coating material to a low level, In order to ensure a weld metal that has excellent ductility, impact toughness, and ductile fracture resistance even at extremely low temperatures without impairing welding workability and weld defect resistance,
Two or more of Al, Ti, Si, and Mg are added to the coating material.

【0034】Alは金属単体に換算して1.5%未満で
は効果がなく、4.0%を超えると逆に極低温における
溶接金属の延性,衝撃靱性,延性破壊抵抗特性を劣化さ
せる。Tiは金属単体に換算して2.5%未満では効果
がなく、5.0%を超えると逆に極低温における溶接金
属の延性,衝撃靱性,延性破壊抵抗特性を劣化させる。 Siは金属単体に換算して0.1%未満では効果がなく
、1.5%を超えると逆に極低温における溶接金属の延
性,衝撃靱性,延性破壊抵抗特性を劣化させる。Mgは
金属単体に換算して0.05%未満では効果がなく、1
.5%を超えると逆に極低温における溶接金属の延性,
衝撃靱性,延性破壊抵抗特性を劣化させる。従って、被
覆剤全重量に対してそれぞれ金属単体に換算して、Al
1.5〜4.0%,Ti2.5〜5.0%,Si0.1
〜1.5%,Mg0.05〜1.5%とする。 また、これら脱ガス元素の2種または3種以上の金属単
体換算合計が5.0%未満では効果がなく、10.0%
を超えると逆に極低温における溶接金属の延性,衝撃靱
性,延性破壊抵抗特性を劣化させる。従って、これら脱
ガス元素の2種または3種以上の金属単体換算合計を5
.0〜10.0%とする。
[0034] Al has no effect if it is less than 1.5% in terms of a single metal, and if it exceeds 4.0%, it conversely deteriorates the ductility, impact toughness, and ductile fracture resistance characteristics of the weld metal at extremely low temperatures. Ti has no effect if it is less than 2.5% in terms of the elemental metal, and if it exceeds 5.0%, it conversely deteriorates the ductility, impact toughness, and ductile fracture resistance characteristics of the weld metal at extremely low temperatures. Si has no effect if it is less than 0.1% in terms of a single metal, and if it exceeds 1.5%, it will conversely deteriorate the ductility, impact toughness, and ductile fracture resistance characteristics of the weld metal at extremely low temperatures. Mg has no effect if it is less than 0.05% in terms of elemental metal, and 1
.. Conversely, if it exceeds 5%, the ductility of the weld metal at extremely low temperatures decreases.
Deteriorates impact toughness and ductile fracture resistance properties. Therefore, in terms of the total weight of the coating material, Al
1.5-4.0%, Ti2.5-5.0%, Si0.1
~1.5%, Mg0.05~1.5%. In addition, if the total of two or more of these degassing elements is less than 5.0% in terms of single metal, there is no effect, and 10.0%
On the other hand, exceeding this value will deteriorate the ductility, impact toughness, and ductile fracture resistance properties of the weld metal at extremely low temperatures. Therefore, the total of two or more of these degassing elements in terms of single metal is 5
.. 0 to 10.0%.

【0035】被覆剤中の珪酸塩化合物はSiO2 に換
算して4.0%を超えると、溶接時の反応により、溶接
時の雰囲気を酸性寄りにし、溶接金属中の酸素及びSi
量を増加させ、特に極低温における溶接金属の延性,衝
撃靱性及び延性破壊抵抗特性を劣化させ、また溶接金属
の高温割れ発生傾向を助長する。従って、被覆剤全重量
に対して被覆剤中の珪酸塩化合物をSiO2 に換算し
て4.0%以下に規制する。被覆剤中の珪酸塩化合物を
SiO2 に換算して4.0%以下に規制することと、
心線中のSi量を低く制限すること、被覆剤中へAl,
Ti,Si,Mgの2種または3種以上の脱ガス剤を添
加すること、及び被覆剤中の金属炭酸塩/金属弗化物の
比を特定範囲に規定することとの相乗効果により、溶接
作業性,耐溶接欠陥性及び耐高温割れ性を損なわずに極
低温においても優れた延性,衝撃靱性及び延性破壊抵抗
特性を有する溶接金属を確保することができる。
If the silicate compound in the coating material exceeds 4.0% in terms of SiO2, a reaction occurs during welding, making the welding atmosphere more acidic and reducing oxygen and Si in the weld metal.
This increases the amount of carbon dioxide and deteriorates the ductility, impact toughness and ductile fracture resistance properties of the weld metal, especially at cryogenic temperatures, and also increases the tendency of hot cracking in the weld metal. Therefore, the silicate compound in the coating material is restricted to 4.0% or less in terms of SiO2 based on the total weight of the coating material. Regulating the silicate compound in the coating material to 4.0% or less in terms of SiO2;
Limiting the amount of Si in the core wire to a low level, Al in the coating material,
The synergistic effect of adding two or more types of degassing agents such as Ti, Si, and Mg and regulating the ratio of metal carbonate/metal fluoride in the coating material to a specific range makes welding work easier. It is possible to secure a weld metal that has excellent ductility, impact toughness, and ductile fracture resistance even at extremely low temperatures without impairing properties, weld defect resistance, and hot cracking resistance.

【0036】なお、ここで言う珪酸塩化合物とは、例え
ば珪砂,珪灰石,カリ長石,マイカ,タルク,珪酸カリ
,珪酸ソーダ或はこれらの複合添加物を指す。被覆剤中
の全水分量が0.20%を超えると、溶接時の分解等の
反応により溶接金属中の水素及び酸素量を高くし、高温
から極低温に至る溶接金属の延性,極低温における溶接
金属の衝撃靱性及び延性破壊抵抗特性を劣化させ、また
ブローホール,高温割れ等の溶接欠陥の原因となる。 従って、被覆剤中の全水分量は被覆剤全重量に対して0
.20%以下に制限する。
The silicate compound referred to herein refers to, for example, silica sand, wollastonite, potassium feldspar, mica, talc, potassium silicate, sodium silicate, or composite additives thereof. If the total water content in the coating material exceeds 0.20%, reactions such as decomposition during welding will increase the amount of hydrogen and oxygen in the weld metal, reducing the ductility of the weld metal from high temperatures to extremely low temperatures. It deteriorates the impact toughness and ductile fracture resistance properties of weld metal, and causes weld defects such as blowholes and hot cracks. Therefore, the total water content in the coating is 0 relative to the total weight of the coating.
.. Limit to 20% or less.

【0037】被覆剤中には上記成分の他に、例えばNi
,Mo,W等を、溶接時の酸化消耗を補うとか、或は必
要な合金成分を得る等のために適宜配合することができ
る。但し、Ni,Mo,W,Cr,Cu,Mn等をフェ
ロアロイの形で配合添加する場合は、それらのFe分を
心線重量比に換算した値と心線中のFe量との合計が5
%以下でなければならない。
In addition to the above components, the coating material contains, for example, Ni
, Mo, W, etc. can be appropriately blended to compensate for oxidative consumption during welding or to obtain necessary alloy components. However, when Ni, Mo, W, Cr, Cu, Mn, etc. are mixed and added in the form of ferroalloy, the sum of the value obtained by converting their Fe content to the weight ratio of the core wire and the amount of Fe in the core wire is 5.
Must be less than %.

【0038】さらに、被覆剤中にその他の添加成分とし
て、チタン酸化物,アルミニウム酸化物,マグネシウム
酸化物,カリウム酸化物,ナトリウム酸化物或はそれら
の複合添加物をそれぞれ3%以下の範囲で適宜配合添加
しても、本発明の効果は損なわれない。以上のごとく本
発明に従い、Si,P,Sの不純物及び酸素,窒素,水
素のガス成分を極微量に制限し、Fe,Cr,Cu,M
nの補助添加物を規制したNi−Mo−Wのいわゆるハ
ステロイ系心線に、金属炭酸塩と金属弗化物を特定する
と同時に金属炭酸塩/金属弗化物の比を限定し、さらに
Al,Ti,Si,Mgの2種または3種以上の脱ガス
元素を特定量添加し、且つSiO2 と全水分量を微量
に制御した被覆剤を被覆することにより、初めて溶接作
業性を損なうことなく、ブローホール,割れ等溶接欠陥
の発生もなく、極低温且つ苛酷な環境下で亀裂も発生し
難く、亀裂が発生した後も延性亀裂の伝播を防止し得る
延性破壊抵抗特性の優れた溶接金属が得られる。
[0038] Furthermore, titanium oxide, aluminum oxide, magnesium oxide, potassium oxide, sodium oxide, or a composite additive thereof may be suitably added to the coating material within a range of 3% or less. Even if they are added, the effects of the present invention are not impaired. As described above, according to the present invention, the impurities of Si, P, and S and the gas components of oxygen, nitrogen, and hydrogen are limited to trace amounts, and
In the so-called hastelloy core wire of Ni-Mo-W with regulated auxiliary additives, metal carbonate and metal fluoride are specified, the metal carbonate/metal fluoride ratio is limited, and Al, Ti, By adding a specific amount of two or more degassing elements, Si and Mg, and controlling the amount of SiO2 and total moisture to a very small amount, blowholes can be removed for the first time without impairing welding workability. , a weld metal with excellent ductile fracture resistance properties that does not cause welding defects such as cracks, does not easily generate cracks under extremely low temperatures and harsh environments, and can prevent the propagation of ductile cracks even after cracks have occurred can be obtained. .

【0039】本発明の溶接棒の製造方法の一例について
言及すると、Ni−Mo−W基心線と被覆剤粉末を準備
し、被覆剤粉末と水ガラス(珪酸カリ水溶液,珪酸ソー
ダ水溶液等)を混和して心線に被覆した後、ほぼ400
℃で約1時間程度乾燥する。なお被覆外径はD/d(D
;被覆外径,d;心線径)が1.3〜1.8、被覆率と
しては20〜40%が望ましい。
Referring to an example of the method for manufacturing the welding rod of the present invention, a Ni-Mo-W base line and coating powder are prepared, and the coating powder and water glass (potassium silicate aqueous solution, sodium silicate aqueous solution, etc.) are mixed. After mixing and coating the core wire, approximately 400
Dry at ℃ for about 1 hour. The outer diameter of the coating is D/d (D
; coated outer diameter, d; core wire diameter) is preferably 1.3 to 1.8, and the coverage is preferably 20 to 40%.

【0040】以下に実施例により本発明の効果を具体的
に説明する。
[0040] The effects of the present invention will be specifically explained below with reference to Examples.

【0041】[0041]

【実施例】表1および表2に、供試心線の化学成分を示
す。心線の寸法は、直径を4.0mm、長さを350m
mとした。なお、表中の記号DはSi量が0.16%を
超え、記号Eは酸素量が0.008%を超えると同時に
P+Sの量が0.015%を超え、記号FはNi量が6
5%未満でMo量が24%を超え、Cr,Cu,Mn量
がそれぞれ2.0%,1.0%,2.0%を超え、本発
明外の心線である。
[Example] Tables 1 and 2 show the chemical components of the sample cores. The dimensions of the core wire are 4.0 mm in diameter and 350 m in length.
It was set as m. In addition, symbol D in the table indicates that the amount of Si exceeds 0.16%, symbol E indicates that the amount of oxygen exceeds 0.008% and at the same time the amount of P+S exceeds 0.015%, and symbol F indicates that the amount of Ni exceeds 6%.
When the amount of Mo is less than 5%, the amount of Mo exceeds 24%, and the amounts of Cr, Cu, and Mn exceed 2.0%, 1.0%, and 2.0%, respectively, and are core wires outside the present invention.

【0042】表3〜6に、これら心線と被覆剤との組合
せによる溶接棒の組成を示す。被覆外径を6.4mm(
D/d=1.6)、被覆率を約30%とした。水ガラス
は固質量8%の珪酸カリ+珪酸ソーダの水溶液を用いた
。 表7、表8に、JIS  Z  3225「9%ニッケ
ル鋼用被覆アーク溶接棒」規定の方法に準じて電流14
0A(AC)で溶接したこれら溶接棒の溶着金属の化学
成分を示す。
Tables 3 to 6 show the compositions of welding rods made from these combinations of core wires and coating materials. The outer diameter of the coating was set to 6.4 mm (
D/d=1.6), and the coverage was about 30%. As the water glass, an aqueous solution of potassium silicate and sodium silicate with a solid mass of 8% was used. Tables 7 and 8 show that the current of 14
The chemical composition of the weld metal of these welding rods welded at 0A (AC) is shown.

【0043】表9〜11に、JIS  Z  3225
規定の方法に準じて電流140A(AC)で溶接したこ
れら溶接棒の溶着金属の機械的性質と、これら溶接棒の
溶接作業性試験結果,X線性能試験結果,高温割れ試験
結果及び延性破壊抵抗特性試験結果を示す。なお、溶接
作業性試験及びX線性能試験は板厚12.7mmt ,
幅400mm,長さ500mm(=溶接長)の60°Y
型開先を採った9%Ni鋼を用い、立向姿勢は電流11
0〜130A(交流),溶接速度40〜120mm/m
in 、横向姿勢は電流120〜140A(交流),溶
接速度140〜300mm/min 、上向姿勢は電流
110〜130A(交流),溶接速度40〜150mm
/min の各姿勢各溶接条件で行った。
[0043] Tables 9 to 11 show JIS Z 3225
The mechanical properties of the weld metal of these welding rods welded at a current of 140 A (AC) according to the specified method, the welding workability test results, X-ray performance test results, hot cracking test results, and ductile fracture resistance of these welding rods. Characteristic test results are shown. In addition, the welding workability test and the X-ray performance test were performed using a plate thickness of 12.7 mm,
60°Y with width 400mm and length 500mm (= welding length)
Using 9% Ni steel with a mold groove, the vertical position has a current of 11
0~130A (AC), welding speed 40~120mm/m
in, horizontal position: current 120-140A (AC), welding speed 140-300mm/min, upward position: current 110-130A (AC), welding speed 40-150mm
/min in each position and under each welding condition.

【0044】高温割れ試験はJIS  Z  3155
「C型ジグ拘束突合せ溶接割れ試験方法」により、板厚
25.4mmt の9%Ni鋼を用い、50°Y型開先
,ルートフェイスt/2(=12.7mm),ルートギ
ャップ2mm,電流140A(交流),溶接速度250
mm/min の試験条件で行った。延性破壊抵抗特性
試験は、板厚40mmt ,幅750mm,長さ750
mm(=溶接長)の、表側50°深さ25mm,裏側7
0°深さ12mm,ルートフェイス3mm,ルートギャ
ップ2mmのX開先を採った9%Ni鋼を用い、電流1
20〜130A(交流),溶接速度40〜70mm/m
in の溶接条件で立向姿勢の継手溶接を行った後、溶
接金属中央に48mmのサイドノッチを施した40mm
t (=板厚)×160mm(=溶接方向)×750m
m(幅)の試験片を加工・採取し、該試験片に対して−
196℃の液体窒素中で、BS5762−79のCTO
D試験に準じた3点曲げを行い、ASTM  E813
のANNEX(Al.SPECIAL REQUIRE
MENTS FOR TESTING BEND SA
MPLES)に基づく除荷コンプライアンス法によりC
TOD値及び延性破壊抵抗値を求めた。但しここでは、
最高荷重時の開口変位量をCTOD値とし、CTOD値
の最大値を延性破壊抵抗値とした。
[0044] Hot cracking test is JIS Z 3155
Using the "C type jig restraint butt weld cracking test method", 9% Ni steel with a plate thickness of 25.4 mm was used, a 50° Y type groove, root face t/2 (=12.7 mm), root gap 2 mm, and electric current. 140A (AC), welding speed 250
The test was carried out under the test conditions of mm/min. The ductile fracture resistance characteristic test was conducted using a plate with a thickness of 40 mm, a width of 750 mm, and a length of 750 mm.
mm (= welding length), front side 50° depth 25mm, back side 7
Using 9% Ni steel with an X groove of 0° depth 12 mm, root face 3 mm, and root gap 2 mm, a current of 1
20-130A (AC), welding speed 40-70mm/m
After welding the joint in a vertical position under the welding conditions of 40 mm with a 48 mm side notch in the center of the weld metal.
t (=plate thickness) x 160mm (=welding direction) x 750m
A test piece of m (width) was processed and collected, and -
CTO of BS5762-79 in liquid nitrogen at 196°C
Perform 3-point bending according to the D test and ASTM E813
ANNEX (Al.SPECIAL REQUIRE
MENTS FOR TESTING BEND SA
C due to the Unloading Compliance Act based on MPLES)
The TOD value and ductile fracture resistance value were determined. However, here,
The opening displacement amount at the maximum load was defined as the CTOD value, and the maximum value of the CTOD value was defined as the ductile fracture resistance value.

【0045】以上から本発明の溶接棒記号1,2,3,
6,7,8,9,10,13,14,17,18,21
及び22が溶着金属の機械的性質,全姿勢における溶接
作業性,X線性能,耐割れ性及び極低温における継手溶
接金属の延性破壊抵抗特性が優れていることが明らかで
ある。これに対し、比較例について見ると、溶接棒記号
4は被覆剤中の金属炭酸塩/金属弗化物の比が4.10
を超え、全姿勢での溶接作業性が劣ると共にその結果と
してX線性能が劣り、さらに溶接金属の極低温における
延性破壊抵抗特性もとりわけ優れたものではない。
From the above, welding rod symbols 1, 2, 3,
6, 7, 8, 9, 10, 13, 14, 17, 18, 21
It is clear that No. 22 and No. 22 have excellent mechanical properties of the deposited metal, welding workability in all positions, X-ray performance, cracking resistance, and ductile fracture resistance characteristics of the joint weld metal at extremely low temperatures. On the other hand, looking at the comparative examples, welding rod number 4 has a ratio of metal carbonate/metal fluoride in the coating material of 4.10.
, the welding workability in all positions is poor, and as a result, the X-ray performance is poor, and furthermore, the ductile fracture resistance of the weld metal at extremely low temperatures is not particularly excellent.

【0046】溶接棒記号5は被覆剤中の金属炭酸塩/金
属弗化物の比が3.05未満であり、全姿勢での溶接作
業性が劣ると共にその結果としてX線性能が劣り、さら
に溶接金属の極低温における延性破壊抵抗特性もとりわ
け優れたものではない。溶接棒記号11は被覆剤中のA
l,Ti,Si,Mgの脱ガス剤の合計が5.0%未満
であり、X線性能が劣ると同時に溶着金属中の酸素量が
多く、引張性質,耐高温割れ性,極低温における延性破
壊抵抗特性が劣化している。
Welding rod No. 5 has a metal carbonate/metal fluoride ratio in the coating material of less than 3.05, resulting in poor welding workability in all positions, resulting in poor X-ray performance, and further welding The metal's cryogenic ductile fracture resistance properties are also not particularly good. Welding rod symbol 11 is A in the coating material.
The total amount of degassing agents of Ti, Si, and Mg is less than 5.0%, which results in poor X-ray performance and a high amount of oxygen in the weld metal, resulting in poor tensile properties, hot cracking resistance, and ductility at cryogenic temperatures. Breakage resistance characteristics have deteriorated.

【0047】溶接棒記号12は被覆剤中のAl,Ti,
Si,Mgの脱ガス剤の合計が10.0%を超え、溶着
金属中のSi,Al,Tiの量が多く、引張性質,耐高
温割れ性,極低温における衝撃靱性及び延性破壊抵抗特
性が劣化している。溶接棒記号15は被覆剤中のSiO
2 量が4.0%を超え、溶着金属中のSi及び酸素量
が多く、引張性質,耐高温割れ性,極低温における衝撃
靱性及び延性破壊抵抗特性が劣化している。
[0047] Welding rod symbol 12 indicates Al, Ti,
The total amount of Si and Mg degassing agents exceeds 10.0%, the amount of Si, Al, and Ti in the weld metal is large, and the tensile properties, hot cracking resistance, impact toughness at cryogenic temperatures, and ductile fracture resistance properties are improved. It has deteriorated. Welding rod symbol 15 is SiO in the coating material
2 amount exceeds 4.0%, the amount of Si and oxygen in the weld metal is large, and the tensile properties, hot cracking resistance, impact toughness at extremely low temperatures, and ductile fracture resistance characteristics are deteriorated.

【0048】溶接棒記号16は被覆剤中の全水分量が0
.20%を超え、溶着金属中の水素及び酸素量が多く、
引張性質,耐高温割れ性,極低温における延性破壊抵抗
特性が劣化している。溶接棒記号19は被覆剤中の金属
炭酸塩/金属弗化物の比が3.05未満であり、全姿勢
での溶接作業性が劣ると共にその結果としてX線性能が
劣り、さらに溶接金属の極低温における延性破壊抵抗特
性も劣化している。
[0048] Welding rod symbol 16 has a total moisture content of 0 in the coating material.
.. exceeding 20%, the amount of hydrogen and oxygen in the weld metal is large,
Tensile properties, hot cracking resistance, and ductile fracture resistance at extremely low temperatures are deteriorated. Welding rod code 19 has a metal carbonate/metal fluoride ratio in the coating material of less than 3.05, resulting in poor welding workability in all positions, resulting in poor X-ray performance, and The ductile fracture resistance properties at low temperatures are also degraded.

【0049】溶接棒記号20は被覆剤中のSiO2 量
が4.0%を超え、溶着金属中のSi及び酸素量が多く
、引張性質,耐高温割れ性,極低温における衝撃靱性及
び延性破壊抵抗特性が劣化している。溶接棒記号23は
被覆剤中のAl,Ti,Si,Mgの脱ガス剤の合計が
10.0%を超え、溶着金属中のSi,Al,Tiの量
が多く、引張性質,耐高温割れ性,極低温における衝撃
靱性及び延性破壊抵抗特性が劣化している。
Welding rod code 20 has a SiO2 content in the coating material exceeding 4.0%, a large amount of Si and oxygen in the weld metal, and has good tensile properties, hot cracking resistance, impact toughness at extremely low temperatures, and ductile fracture resistance. Characteristics have deteriorated. Welding rod code 23 has a total of Al, Ti, Si, and Mg degassing agents in the coating material exceeding 10.0%, a large amount of Si, Al, and Ti in the weld metal, and has good tensile properties and high temperature cracking resistance. impact toughness and ductile fracture resistance properties at cryogenic temperatures.

【0050】溶接棒記号24はSi量が0.16%を超
えた本発明外の心線を用いたため、溶着金属中のSi量
が多くなり、引張性質,耐高温割れ性,極低温における
衝撃靱性及び延性破壊抵抗特性が劣化している。溶接棒
記号25は酸素量が0.008%を超え、且つPとSの
合計量が0.015%を超えた本発明外の心線を用いた
ため、溶着金属中の酸素及びP,Sの量が多くなり、引
張性質,耐高温割れ性,極低温における衝撃靱性及び延
性破壊抵抗特性が劣化している。
[0050] Welding rod symbol 24 uses a core wire other than the present invention with a Si content exceeding 0.16%, so the Si content in the weld metal increases, resulting in poor tensile properties, hot cracking resistance, and impact at cryogenic temperatures. Toughness and ductile fracture resistance properties are degraded. Welding rod code 25 used a core wire outside the present invention with an oxygen content exceeding 0.008% and a total P and S content exceeding 0.015%, so oxygen and P and S in the weld metal were used. The tensile properties, hot cracking resistance, impact toughness at cryogenic temperatures, and ductile fracture resistance properties are deteriorated.

【0051】溶接棒記号26はNi量が65%未満、M
o量が24%を超え、さらにCr,Cu,Mnの量がそ
れぞれ2.0%,1.0%,2.0%を超えた本発明外
の心線を用いたため、溶着金属組成のバランスが崩れ、
引張性質,耐高温割れ性,極低温における衝撃靱性及び
延性破壊抵抗特性が劣化している。
Welding rod symbol 26 has a Ni content of less than 65%, M
Since a core wire other than the present invention was used in which the o content exceeded 24% and the amounts of Cr, Cu, and Mn exceeded 2.0%, 1.0%, and 2.0%, respectively, the balance of the weld metal composition was collapsed,
Tensile properties, hot cracking resistance, impact toughness at cryogenic temperatures, and ductile fracture resistance properties are deteriorated.

【0052】[0052]

【表1】[Table 1]

【0053】[0053]

【表2】[Table 2]

【0054】[0054]

【表3】[Table 3]

【0055】[0055]

【表4】[Table 4]

【0056】[0056]

【表5】[Table 5]

【0057】[0057]

【表6】[Table 6]

【0058】[0058]

【表7】[Table 7]

【0059】[0059]

【表8】[Table 8]

【0060】[0060]

【表9】[Table 9]

【0061】[0061]

【表10】[Table 10]

【0062】[0062]

【表11】[Table 11]

【0063】[0063]

【発明の効果】以上説明したように、本発明における極
低温用鋼用ハステロイ系被覆アーク溶接棒は、全姿勢で
溶接作業性及びX線性能が良好で溶接金属の耐割れ性も
良好であり、さらには極低温における溶接金属の延性破
壊抵抗特性が優れているため、ブローホール,割れ等溶
接欠陥もなく、極低温且つ苛酷な環境下で亀裂も発生し
難く、亀裂が発生した後も延性亀裂の伝播を防止し得る
延性破壊抵抗特性の優れた溶接金属が容易に得られるこ
とを可能とした。このことは、大規模破壊事故のあり得
ない完全に安全な大型LNGタンクの建造を可能にする
ことを意味し、産業上効果が大きく利用価値も高いもの
である。
[Effects of the Invention] As explained above, the hastelloy-based coated arc welding rod for cryogenic steel of the present invention has good welding workability and X-ray performance in all positions, and also has good cracking resistance of the weld metal. Furthermore, because the weld metal has excellent ductile fracture resistance properties at extremely low temperatures, there are no welding defects such as blowholes and cracks, and cracks are difficult to occur under extremely low temperatures and harsh environments, and even after cracks occur, the weld metal remains ductile. This makes it possible to easily obtain a weld metal with excellent ductile fracture resistance that can prevent crack propagation. This means that it is possible to construct a completely safe large LNG tank in which a large-scale destruction accident is impossible, and it has great industrial effects and high utility value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  心線中に、65〜85%のNi、15
〜24%のMo、2.0〜4.0%のWを含有し、且つ
心線中のSi量を0.16%以下、酸素量を0.008
%以下、窒素量を0.010%以下、水素量を0.00
07%以下、P量を0.010%以下、S量を0.01
0%以下、P+Sを0.015%以下にそれぞれ制限す
ると同時に、心線重量比で心線または被覆剤の一方また
は両方のFe量を5%以下、Cr量を2.0%以下、C
u量を1.0%以下、Mn量を2.0%以下に規制し、
被覆剤全重量に対し50〜70%の金属炭酸塩と10〜
25%の金属弗化物を金属炭酸塩/金属弗化物の比が3
.05〜4.10となるように配合し、且つ金属単体に
換算してAl1.5〜4.0%、Ti2.5〜5.0%
、Si0.1〜1.5%、Mg0.05〜1.5%の2
種または3種以上の合計が5.0〜10.0%となるよ
うに脱ガス剤を配合し、さらに珪酸塩化合物をSiO2
 に換算して4.0%以下に規制し、被覆剤中の全水分
量を0.20%以下に制限した被覆剤を該心線に被覆し
てなることを特徴とする延性破壊抵抗特性の優れた極低
温用鋼用ハステロイ系被覆アーク溶接棒。
Claim 1: The core contains 65-85% Ni, 15
Contains ~24% Mo, 2.0~4.0% W, and the amount of Si in the core wire is 0.16% or less and the amount of oxygen is 0.008%.
% or less, nitrogen amount 0.010% or less, hydrogen amount 0.00% or less
07% or less, P amount 0.010% or less, S amount 0.01
0% or less, P+S is limited to 0.015% or less, and at the same time, the amount of Fe in one or both of the core wire or coating material is limited to 5% or less, the amount of Cr is 2.0% or less, and the amount of Cr is limited to 2.0% or less.
Regulating the u content to 1.0% or less and the Mn content to 2.0% or less,
50-70% metal carbonate and 10-70% based on the total weight of the coating material.
25% metal fluoride with a metal carbonate/metal fluoride ratio of 3
.. 05 to 4.10, and in terms of elemental metal, Al1.5 to 4.0% and Ti2.5 to 5.0%.
, Si0.1-1.5%, Mg0.05-1.5%2
A degassing agent is blended so that the total amount of one species or three or more species is 5.0 to 10.0%, and a silicate compound is added to SiO2.
ductile fracture resistance characterized by coating the core wire with a coating material that limits the total water content in the coating material to 0.20% or less, in terms of 4.0% or less. Excellent Hastelloy coated arc welding rod for cryogenic steel.
JP12400091A 1991-05-28 1991-05-28 Coated electrode of 'hastelloy(r)' system for steel for cryogenic service having excellent ductility and fracture resistance characteristic Withdrawn JPH04351290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12400091A JPH04351290A (en) 1991-05-28 1991-05-28 Coated electrode of 'hastelloy(r)' system for steel for cryogenic service having excellent ductility and fracture resistance characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12400091A JPH04351290A (en) 1991-05-28 1991-05-28 Coated electrode of 'hastelloy(r)' system for steel for cryogenic service having excellent ductility and fracture resistance characteristic

Publications (1)

Publication Number Publication Date
JPH04351290A true JPH04351290A (en) 1992-12-07

Family

ID=14874562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12400091A Withdrawn JPH04351290A (en) 1991-05-28 1991-05-28 Coated electrode of 'hastelloy(r)' system for steel for cryogenic service having excellent ductility and fracture resistance characteristic

Country Status (1)

Country Link
JP (1) JPH04351290A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624414A (en) * 2013-11-15 2014-03-12 武汉铁锚焊接材料股份有限公司 Welding rod for welding low-temperature steel and preparation method of welding rod
JP6418365B1 (en) * 2018-03-27 2018-11-07 新日鐵住金株式会社 Ni-base alloy wire for submerged arc welding, and method for manufacturing welded joint
JP6447793B1 (en) * 2018-03-27 2019-01-09 新日鐵住金株式会社 Ni-based alloy core wire for coated arc welding rod, coated arc welding rod, and manufacturing method of coated arc welding rod
CN109454357A (en) * 2018-11-28 2019-03-12 东莞理工学院 A kind of nickel-base welding rod and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103624414A (en) * 2013-11-15 2014-03-12 武汉铁锚焊接材料股份有限公司 Welding rod for welding low-temperature steel and preparation method of welding rod
JP6418365B1 (en) * 2018-03-27 2018-11-07 新日鐵住金株式会社 Ni-base alloy wire for submerged arc welding, and method for manufacturing welded joint
JP6447793B1 (en) * 2018-03-27 2019-01-09 新日鐵住金株式会社 Ni-based alloy core wire for coated arc welding rod, coated arc welding rod, and manufacturing method of coated arc welding rod
WO2019186701A1 (en) * 2018-03-27 2019-10-03 日本製鉄株式会社 Ni-BASED ALLOY WIRE FOR SUBMERGED ARC WELDING, AND METHOD OF PRODUCING WELDED JOINT
KR20190113753A (en) * 2018-03-27 2019-10-08 닛폰세이테츠 가부시키가이샤 Manufacturing method of Ni-based alloy wire and welded joint for submerged arc welding
CN110446582A (en) * 2018-03-27 2019-11-12 日本制铁株式会社 The manufacturing method of Ni based alloy silk and welding point used for submerged arc welding
CN110446582B (en) * 2018-03-27 2020-07-28 日本制铁株式会社 Ni-based alloy wire for submerged arc welding and method for manufacturing welded joint
US10981254B2 (en) 2018-03-27 2021-04-20 Nippon Steel Corporation Ni-based alloy core wire for covered electrode, covered electrode, and method of manufacturing covered electrode
US11161195B2 (en) 2018-03-27 2021-11-02 Nippon Steel Corporation Ni-based alloy wire for submerged arc welding and method of manufacturing welding joint
EP3778108A4 (en) * 2018-03-27 2021-11-24 Nippon Steel Corporation Ni-BASED ALLOY CORE FOR COATED ARC WELDING ROD, COATED ARC WELDING ROD, AND METHOD FOR MANUFACTURING COATED ARC WELDING ROD
CN109454357A (en) * 2018-11-28 2019-03-12 东莞理工学院 A kind of nickel-base welding rod and preparation method thereof
CN109454357B (en) * 2018-11-28 2022-05-27 东莞理工学院 Nickel-based welding rod and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4646764B2 (en) Flux-cored wire for gas shielded arc welding
JP5207994B2 (en) Metal flux cored wire for Ar-CO2 mixed gas shielded arc welding
JP5138242B2 (en) Flux-cored wire for duplex stainless steel welding
JP2010110817A (en) Low-hydrogen coated electrode
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2006272432A (en) Coated arc welding electrode for 9% ni steel
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2008221231A (en) Flux cored wire for gas-shielded arc welding
JP2007160314A (en) Flux cored wire for welding high-strength stainless steel
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP2016124023A (en) HIGH-TENSION STEEL Ar-CO2 MIXTURE GAS SHIELD ARC-WELDING FLUX-CORED WIRE
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP7408295B2 (en) Covered arc welding rod for 9% Ni steel welding
JPH04351290A (en) Coated electrode of &#39;hastelloy(r)&#39; system for steel for cryogenic service having excellent ductility and fracture resistance characteristic
KR100502571B1 (en) Flux cored wire for co2 gas shielded arc welding
EP0798070B2 (en) Flux cored wire electrode for arc welding
JP2019181524A (en) Covered electrode for low hydrogen type fillet welding
JPH08257791A (en) Low hydrogen covered electrode
JPH09253886A (en) Flux cored wire for gas shielded metal arc welding for 690mpa class high tensile steel
JP2544611B2 (en) Coated arc welding rod for cryogenic steel
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JP2010234429A (en) Coated electrode for duplex stainless steel welding for pulverizing solidified crystalline particle
JP7383513B2 (en) Covered arc welding rod for 9% Ni steel welding
KR100513632B1 (en) Titania based flux cored wire
JP2020189302A (en) Arc welding rod coated with low hydrogen-based coating agent for crude oil tank steel

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806