JP7383513B2 - Covered arc welding rod for 9% Ni steel welding - Google Patents

Covered arc welding rod for 9% Ni steel welding Download PDF

Info

Publication number
JP7383513B2
JP7383513B2 JP2020022616A JP2020022616A JP7383513B2 JP 7383513 B2 JP7383513 B2 JP 7383513B2 JP 2020022616 A JP2020022616 A JP 2020022616A JP 2020022616 A JP2020022616 A JP 2020022616A JP 7383513 B2 JP7383513 B2 JP 7383513B2
Authority
JP
Japan
Prior art keywords
welding
core wire
mass ratio
total
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020022616A
Other languages
Japanese (ja)
Other versions
JP2021126674A (en
Inventor
飛史 行方
一洋 植平
学 水本
Original Assignee
日鉄溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄溶接工業株式会社 filed Critical 日鉄溶接工業株式会社
Priority to JP2020022616A priority Critical patent/JP7383513B2/en
Publication of JP2021126674A publication Critical patent/JP2021126674A/en
Application granted granted Critical
Publication of JP7383513B2 publication Critical patent/JP7383513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、主にLNG貯蔵タンクの建造に用いられる9%Ni鋼用の溶接に使用される被覆アーク溶接棒に関し、全姿勢溶接での溶接作業性が良好で、強度・靭性、耐割れ性及び耐気孔欠陥性に優れる溶接金属が得られる9%Ni鋼溶接用被覆アーク溶接棒に関する。 The present invention relates to a coated arc welding rod used for welding 9% Ni steel, which is mainly used in the construction of LNG storage tanks. The present invention also relates to a coated arc welding rod for welding 9% Ni steel, which provides a weld metal with excellent porosity defect resistance.

LNG貯蔵タンクは、LNGを貯蔵するため、常にタンク内が-196℃になることから、低温靭性の優れたフェライト系合金鋼の9%Ni鋼が多く使用されている。溶接には、極低温において溶接金属の靭性が良好なNi基合金系の溶接材料が多く用いられている。 Because LNG storage tanks store LNG, the temperature inside the tank is always -196°C, so 9% Ni steel, a ferritic alloy steel with excellent low-temperature toughness, is often used. For welding, welding materials based on Ni-based alloys are often used because the weld metal has good toughness at extremely low temperatures.

近年、LNG貯蔵タンクの大型化に伴い、溶接金属が高強度・高靭性のものを要求され、従来技術による被覆アーク溶接棒では、要求スペックを十分に満足することができないという問題点があった。 In recent years, as LNG storage tanks have become larger, weld metals have been required to have high strength and high toughness, and there was a problem in that coated arc welding rods using conventional technology were unable to fully meet the required specifications. .

例えば、特許文献1には、純Ni心線を用い、被覆剤中のTi、Al、Mg及び金属炭酸塩を規定することにより、溶接金属の機械性能に優れるとともに気孔欠陥の発生が少ない被覆アーク溶接棒が開示されている。しかし、耐気孔欠陥性は良好なものの被覆剤の金属炭酸塩が少ないので、下向溶接作業性は向上しているが、立向上進溶接での溶接作業性が不良になりやすいという問題点があった。 For example, Patent Document 1 discloses that by using a pure Ni core wire and specifying Ti, Al, Mg, and metal carbonate in the coating material, a coated arc with excellent mechanical performance of the weld metal and with fewer pore defects can be achieved. A welding rod is disclosed. However, although the porosity defect resistance is good, the metal carbonate content of the coating material is low, which improves downward welding workability, but there is a problem that welding workability in vertical upward welding tends to be poor. there were.

また、特許文献2には、C、Nb+TaおよびWを添加することにより溶接金属の強度・靭性に優れる被覆アーク溶接棒が開示されている。しかし、C、Nb+TaおよびWを添加することで溶接金属の強度は確保できるものの靭性にばらつきが生じやすく、-196℃における衝撃性能が近年の要求スペックを満足しないという問題点があった。 Moreover, Patent Document 2 discloses a coated arc welding rod that has excellent strength and toughness of weld metal by adding C, Nb+Ta, and W. However, although the strength of the weld metal can be ensured by adding C, Nb+Ta, and W, there are problems in that the toughness tends to vary, and the impact performance at -196° C. does not meet recent required specifications.

特開2016-043395号公報Japanese Patent Application Publication No. 2016-043395 特開2006-272432号公報JP2006-272432A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、全姿勢溶接での溶接作業性、水平すみ肉溶接及び立向上進溶接において溶接作業性が良好で、耐割れ性、耐気孔欠陥性及び機械性能、特に低温での靭性に優れた溶接金属が安定して得られる9%Ni鋼溶接用被覆アーク溶接棒を提供することを目的とする。 The present invention has been devised in view of the above-mentioned problems, and has good welding workability in all-position welding, horizontal fillet welding and vertical advancement welding, and has good cracking resistance. The object of the present invention is to provide a coated arc welding rod for welding 9% Ni steel, which can stably yield a weld metal with excellent porosity defect resistance and mechanical performance, especially toughness at low temperatures.

本発明の要旨とするところは次の通りである。9%Ni鋼溶接用被覆アーク溶接棒において、Niを95質量%以上含むNi基合金を心線とし、前記心線と被覆剤の一方または両方の合計で、下記式に示す心線質量比で、Si:0.1~1.0%、Mn:1.5~4.0%、Cr:8~12%、Mo:2.5~8.0%、Nb:0.5~2.5%、Ta:0.05~0.30%、Ti:0.1~0.8%、W:0.5~1.7%を含有し、前記被覆剤は、当該被覆剤全質量に対する質量%で、Si酸化物のSiO換算値の合計:4~12%、金属弗化物の1種または2種以上の合計:12~25%、金属炭酸塩の1種または2種以上の合計:13~21%、Na酸化物及びK酸化物のNa換算値及びK換算値の合計:1~5%を含有し、残部は前記心線中のNi及びFe分、被覆剤の鉄合金のFe分及び不可避不純物からなることを特徴とする。
心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率%/100・・・式
(但し、心線中の含有量%は心線全質量に対する質量%、被覆剤中の含有量%は被覆剤全質量に対する質量%、被覆率は、当該9%Ni鋼溶接用被覆アーク溶接棒全質量に対する前記被覆剤の質量%)
The gist of the present invention is as follows. In a coated arc welding rod for welding 9% Ni steel, the core is a Ni-based alloy containing 95% by mass or more of Ni, and the total of one or both of the core wire and coating material is the core wire mass ratio shown in the following formula. , Si: 0.1-1.0%, Mn: 1.5-4.0%, Cr: 8-12%, Mo: 2.5-8.0%, Nb: 0.5-2.5 %, Ta: 0.05 to 0.30%, Ti: 0.1 to 0.8%, W: 0.5 to 1.7%, and the coating material has a mass relative to the total mass of the coating material. %, total SiO 2 equivalent value of Si oxide: 4 to 12%, total of one or more metal fluorides: 12 to 25%, total of one or more metal carbonates: 13 to 21%, the sum of Na and K equivalent values of Na oxide and K oxide: 1 to 5%, the remainder being Ni and Fe in the core wire and Fe in the iron alloy of the coating material. and unavoidable impurities.
Core wire mass ratio = Content % in the core + Content % in the coating × Coverage % / 100... formula (however, the content % in the core is the mass % of the total mass of the core, the coating The content in the agent is mass % based on the total mass of the coating material, and the coverage rate is the mass % of the coating material based on the total mass of the coated arc welding rod for welding 9% Ni steel)

本発明の9%Ni鋼溶接用被覆アーク溶接棒によれば、全姿勢溶接での溶接作業性、水平すみ肉溶接及び立向上進溶接において溶接作業性が良好で、耐割れ性、耐気孔欠陥性及び機械性能、特に低温での靭性に優れた溶接金属が安定して得られるなど溶接部の品質向上を図ることができる。 According to the coated arc welding rod for welding 9% Ni steel of the present invention, welding workability is good in all position welding, horizontal fillet welding and vertical advancement welding, and cracking resistance and pore defect resistance are achieved. It is possible to improve the quality of the welded joint by stably obtaining weld metal with excellent toughness and mechanical performance, especially at low temperatures.

図1は、本発明の実施例に用いた溶接試験板を示す図である。FIG. 1 is a diagram showing a welding test plate used in an example of the present invention.

本発明者らは、前記課題を解決するために溶接金属の強度・靭性の向上及び耐割れ性・耐気孔欠陥性の向上、全姿勢溶接での溶接作業性を改善すべく9%Ni鋼溶接用被覆アーク溶接棒の成分組成について種々検討を行った。その結果、溶接金属の目標の機械性能、特に低温での靭性を満足するためにはNiを95質量%以上含むNi基合金を心線とし、Cr、Mo、Nb、Ta、Wのバランスの取れた適正量を添加する必要があることを見出した。 In order to solve the above problems, the present inventors welded 9% Ni steel in order to improve the strength and toughness of the weld metal, improve cracking resistance and pore defect resistance, and improve welding workability in all position welding. Various studies were conducted on the composition of coated arc welding rods. As a result, in order to satisfy the target mechanical performance of the weld metal, especially toughness at low temperatures, the core wire must be made of a Ni-based alloy containing 95% by mass or more of Ni, and a balance of Cr, Mo, Nb, Ta, and W must be maintained. It was found that it was necessary to add an appropriate amount.

また、耐割れ性及び耐気孔欠陥性を向上させるためには、Si、Mnのバランスの取れた適正量を添加する必要があることを見出した。全姿勢溶接での溶接作業性を向上させるためには、Si酸化物、金属弗化物、金属炭酸塩を適正量添加すると効果的であることを見出した。 It has also been found that in order to improve crack resistance and pore defect resistance, it is necessary to add Si and Mn in appropriate amounts with a good balance. In order to improve welding workability in all-position welding, we have found that it is effective to add appropriate amounts of Si oxide, metal fluoride, and metal carbonate.

本発明は、Niを95質量%以上含むNi基合金心線及び被覆剤の各成分それぞれの単独の効果及び共存による相乗効果によりなし得たものであるが、以下にそれぞれの各成分の添加理由および分量の限定理由を述べる。なお以下に述べる各成分量の%とは心線質量比のことをいい、心線と被覆剤の一方または両方の含有量の質量%に対し次式で計算される。但し、同式中の心線含有量は心線全質量に対する割合を意味し、被覆剤中の配合比とは被覆剤全質量に対する割合を意味する。さらに被覆率とは溶接棒全質量に対して被覆剤の占める割合を意味する。
心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率%/100・・・式
The present invention was achieved through the individual effects and synergistic effects of the coexistence of each component of the Ni-based alloy core wire containing 95% by mass or more of Ni and the coating material.The reasons for adding each component are as follows. and state the reason for limiting the quantity. Note that the % of the amount of each component described below refers to the mass ratio of the core wire, and is calculated by the following formula for the mass % of the content of one or both of the core wire and the coating material. However, the content of the cord in the same formula means the proportion to the total mass of the cord, and the compounding ratio in the coating means the proportion to the total mass of the coating. Further, the coverage ratio means the ratio of the coating agent to the total mass of the welding rod.
Core wire mass ratio = Content % in the core + Content % in the coating material x Coverage %/100...Formula

[心線質量比でSi:0.1~1.0%]
Siは、溶接金属中の耐気孔欠陥性を向上させる効果がある。心線質量比でSiが0.1%未満では、その効果が十分に得られず、気孔欠陥が発生しやすい。一方、心線質量比でSiが1.0%を超えると、割れが発生しやすくなる。従って、心線質量比でSiは0.1~1.0%とする。なお、Siは、心線、金属Si、Fe-Si、Fe-Si-Mn等から添加できる。
[Si: 0.1 to 1.0% in core wire mass ratio]
Si has the effect of improving the pore defect resistance in the weld metal. If Si is less than 0.1% in terms of core mass ratio, the effect cannot be sufficiently obtained and pore defects are likely to occur. On the other hand, if Si exceeds 1.0% in terms of core wire mass ratio, cracks are likely to occur. Therefore, Si is set to 0.1 to 1.0% in terms of core wire mass ratio. Note that Si can be added from a core wire, metal Si, Fe-Si, Fe-Si-Mn, or the like.

[心線質量比でMn:1.5~4.0%]
Mnは、溶接金属の耐割れ性を向上させる効果がある。心線質量比でMnが1.5%未満であると、割れが発生しやすくなる。一方、心線質量比でMnが4.0%を超えると、溶接金属の靱性が低下する。従って、心線質量比でMnは1.5~4.0%とする。なお、Mnは、心線、金属Mn、Fe-Mn、Fe-Si-Mn等から添加できる。
[Mn: 1.5-4.0% in core wire mass ratio]
Mn has the effect of improving the cracking resistance of weld metal. If Mn is less than 1.5% in terms of core wire mass ratio, cracks are likely to occur. On the other hand, when Mn exceeds 4.0% in terms of core wire mass ratio, the toughness of the weld metal decreases. Therefore, Mn is set to 1.5 to 4.0% in terms of core wire mass ratio. Note that Mn can be added from a core wire, metal Mn, Fe--Mn, Fe--Si--Mn, etc.

[心線質量比でCr:8~12%]
Crは、溶接金属の強度を向上させる効果がある。心線質量比でCrが8%未満では、溶接金属の強度が低下する。一方、心線質量比でCrが12%を超えると、溶接金属の靱性が低下する。従って、心線質量比でCrは8~12%とする。なお、Crは、心線、金属Cr、Fe-Cr等の合金粉末から添加できる。
[Cr: 8-12% in core wire mass ratio]
Cr has the effect of improving the strength of weld metal. When the Cr content is less than 8% in terms of core mass ratio, the strength of the weld metal decreases. On the other hand, when Cr exceeds 12% in terms of core wire mass ratio, the toughness of the weld metal decreases. Therefore, the Cr content in the core mass ratio is set to 8 to 12%. Note that Cr can be added from a core wire, metal Cr, Fe--Cr alloy powder, and the like.

[心線質量比でMo:2.5~8.0%]
Moは、溶接金属の強度を向上させる効果がある。心線質量比でMoが2.5%未満では、溶接金属の強度が低下する。一方、心線質量比でMoが8.0%を超えると、溶接金属の靱性が低下する。従って、心線質量比でMoは2.5~8.0%とする。なお、Moは、心線、金属Mo、Fe-Mo等から添加できる。
[Mo: 2.5 to 8.0% in core wire mass ratio]
Mo has the effect of improving the strength of weld metal. When Mo is less than 2.5% in terms of core mass ratio, the strength of the weld metal decreases. On the other hand, when Mo exceeds 8.0% in terms of core wire mass ratio, the toughness of the weld metal decreases. Therefore, Mo is set to 2.5 to 8.0% in terms of core wire mass ratio. Note that Mo can be added from a core wire, metal Mo, Fe--Mo, and the like.

[心線質量比でNb:0.5~2.5%]
Nbは溶接金属の強度を向上させる効果がある。心線質量比でNbが0.5%未満では、溶接金属の強度が低下する。一方、心線質量比でNbが2.5%を超えると、溶接金属の靱性が低下する。従って、心線質量比でNbは0.5~2.5%とする。なお、Nbは、心線、Fe-Nb等の合金粉から添加できる。
[Nb: 0.5 to 2.5% in core wire mass ratio]
Nb has the effect of improving the strength of weld metal. When Nb is less than 0.5% in terms of core mass ratio, the strength of the weld metal decreases. On the other hand, if Nb exceeds 2.5% in terms of core wire mass ratio, the toughness of the weld metal decreases. Therefore, Nb is set to 0.5 to 2.5% in terms of core wire mass ratio. Note that Nb can be added from a core wire or an alloy powder such as Fe--Nb.

[心線質量比でTa:0.05~0.30%]
Taは、溶接金属の強度を向上させる効果がある。心線質量比でTaが0.05%未満では、溶接金属の強度が低下する。一方、心線質量比でTaが0.30%を超えると、溶接金属の靱性が低下する。従って、心線質量比でTaは0.05~0.30%とする。なお、Taは、心線、金属Ta、Nb-Ta等から添加できる。
[Ta: 0.05 to 0.30% in core wire mass ratio]
Ta has the effect of improving the strength of weld metal. When Ta is less than 0.05% in terms of core wire mass ratio, the strength of the weld metal decreases. On the other hand, when Ta exceeds 0.30% in terms of core wire mass ratio, the toughness of the weld metal decreases. Therefore, Ta is set to 0.05 to 0.30% in terms of core wire mass ratio. Note that Ta can be added from a core wire, metal Ta, Nb--Ta, and the like.

[心線質量比でTi:0.1~0.8%]
Tiは、合金に含まれる過剰な酸素を除去し、溶接金属の強度及び靱性を安定させる効果がある。心線質量比でTiが0.1%未満では、その効果は十分に得られず、溶接金属に気孔欠陥が発生しやすくなる。一方、心線質量比でTiが0.8%を超えると、溶接金属中に金属酸化物として多量に分布して強度及び靱性が低下する。従って、心線質量比でTiは0.1~0.8%とする。なお、Tiは、心線、金属Ti、Fe-Ti等から添加できる。
[Ti: 0.1 to 0.8% in core wire mass ratio]
Ti has the effect of removing excess oxygen contained in the alloy and stabilizing the strength and toughness of the weld metal. If Ti is less than 0.1% in terms of core wire mass ratio, the effect cannot be sufficiently obtained, and pore defects are likely to occur in the weld metal. On the other hand, if Ti exceeds 0.8% in terms of core mass ratio, a large amount of Ti will be distributed as metal oxides in the weld metal, resulting in a decrease in strength and toughness. Therefore, Ti is set to 0.1 to 0.8% in terms of core wire mass ratio. Note that Ti can be added from a core wire, metal Ti, Fe-Ti, or the like.

[心線質量比でW:0.5~1.7%]
Wは、溶接金属の靱性を低下させずに強度を改善する効果がある。心線質量比でWが0.5%未満であると、溶接金属の強度が得られない。一方、心線質量比でWが1.7%を超えると、溶接金属の強度が高くなりすぎて靭性が低下する。従って、心線質量比でWは0.5~1.7%とする。なお、Wは、心線、金属W、WC等から添加できる。
[Wire mass ratio: W: 0.5 to 1.7%]
W has the effect of improving the strength of the weld metal without reducing its toughness. If W is less than 0.5% in terms of core wire mass ratio, the strength of the weld metal cannot be obtained. On the other hand, when W exceeds 1.7% in terms of core wire mass ratio, the strength of the weld metal becomes too high and the toughness decreases. Therefore, W in terms of core wire mass ratio is set to 0.5 to 1.7%. Note that W can be added from a core wire, metal W, WC, etc.

被覆剤中に含有する成分組成は、被覆剤全質量に対する質量%で、以下の通りに含有する。 The component composition contained in the coating material is as follows in mass % based on the total mass of the coating material.

[Si酸化物のSiO換算値の合計:4~12%]
Si酸化物は、スラグ剥離性を向上させる効果がある。Si酸化物のSiO換算値の合計が4%未満では、アークが不安定になりスラグ剥離性が不良となる。一方、Si酸化物のSiO換算値の合計が12%を超えると、溶融スラグの融点が過剰に下がるため、立向姿勢溶接でメタル垂れが発生してビード形状が不良となる。従って、Si酸化物は4~12%とする。なお、Si酸化物は、珪砂、長石、水ガラス中の珪酸ソーダ及び珪酸カリウム等から添加できる。
[Total SiO 2 equivalent value of Si oxide: 4 to 12%]
Si oxide has the effect of improving slag removability. If the total SiO 2 equivalent value of the Si oxide is less than 4%, the arc becomes unstable and the slag removability becomes poor. On the other hand, if the total SiO 2 equivalent value of the Si oxide exceeds 12%, the melting point of the molten slag will drop excessively, resulting in metal sag during vertical position welding and poor bead shape. Therefore, the content of Si oxide is 4 to 12%. Note that Si oxide can be added from silica sand, feldspar, sodium silicate, potassium silicate, etc. in water glass.

[金属弗化物の1種または2種以上の合計:12~25%]
金属弗化物は、アークの吹付け及びスラグの粘性、流動性を適正にし、溶接作業性を向上させる効果がある。金属弗化物の1種または2種以上の合計が12%未満では、その効果が得られずスラグ剥離性及びビード形状が不良となる。一方、金属弗化物の1種または2種以上の合計が25%以上を超えると、アークが不安定になりスパッタ発生量が多く、ビード形状も不良となる。さらに立向上進溶接でメタル垂れが発生しやすくなる。従って、金属弗化物の1種または2種以上の合計は12~25%とする。なお、金属弗化物は、蛍石、弗化バリウム、弗化マグネシウム、弗化アルミニウム等から添加できる。
[Total of one or more metal fluorides: 12 to 25%]
Metal fluorides have the effect of optimizing arc spraying, slag viscosity and fluidity, and improving welding workability. If the total amount of one or more metal fluorides is less than 12%, the effect will not be obtained and the slag removability and bead shape will be poor. On the other hand, if the total content of one or more metal fluorides exceeds 25% or more, the arc becomes unstable, a large amount of spatter is generated, and the bead shape becomes poor. Furthermore, metal sag is more likely to occur during vertical advancement welding. Therefore, the total amount of one or more metal fluorides is 12 to 25%. Note that the metal fluoride can be added from fluorite, barium fluoride, magnesium fluoride, aluminum fluoride, and the like.

[金属炭酸塩の1種または2種以上の合計:13~21%]
金属炭酸塩は、金属弗化物同様にアークの吹付け及びスラグの粘性、流動性を適正にし、溶接作業性を向上させる効果がある。金属炭酸塩の1種または2種以上の合計が13%未満では、その効果が得られず、アークが不安定となりビード形状が不良となる。一方、金属炭酸塩の1種または2種以上の合計が21%を超えると、アークが不安定でスパッタ発生量が多くなり、スラグ剥離性及びビード形状が不良となる。さらに立向上進溶接でメタル垂れが発生しやすくなる。従って、金属炭酸塩の1種または2種以上の合計は13~21%とする。なお、金属炭酸塩は、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸マンガン、炭酸リチウム等から添加できる。
[Total of one or more metal carbonates: 13-21%]
Metal carbonates, like metal fluorides, have the effect of optimizing arc spraying, slag viscosity and fluidity, and improving welding workability. If the total amount of one or more metal carbonates is less than 13%, the effect cannot be obtained, and the arc becomes unstable and the bead shape becomes poor. On the other hand, if the total content of one or more metal carbonates exceeds 21%, the arc becomes unstable and the amount of spatter generated increases, resulting in poor slag removability and bead shape. Furthermore, metal sag is more likely to occur during vertical advancement welding. Therefore, the total amount of one or more metal carbonates is 13 to 21%. Note that the metal carbonate can be added from calcium carbonate, magnesium carbonate, barium carbonate, manganese carbonate, lithium carbonate, and the like.

[Na酸化物及びK酸化物のNa換算値及びK換算値の合計:1~5%]
Na酸化物及びK酸化物は、アークを安定にする効果がある。Na酸化物及びK酸化物のNa換算値及びK換算値の合計が1%未満では、アークが不安定になりビード形状が不良となる。一方、Na酸化物及びK酸化物のNa換算値及びK換算値の合計が5%を超えると、アークが不安定でスパッタ発生量が多くなる。従って、Na酸化物及びK酸化物のNa換算値及びK換算値の合計は1~5%とする。なお、Na酸化物及びK酸化物は、水ガラス中の珪酸ソーダ及び珪酸カリウム、長石等から添加できる。
[Total of Na and K equivalent values of Na oxide and K oxide: 1 to 5%]
Na oxide and K oxide have the effect of stabilizing the arc. If the sum of the Na and K equivalent values of the Na oxide and K oxide is less than 1%, the arc becomes unstable and the bead shape becomes poor. On the other hand, when the sum of the Na and K equivalent values of the Na oxide and K oxide exceeds 5%, the arc becomes unstable and the amount of spatter generated increases. Therefore, the total of the Na and K equivalent values of Na oxide and K oxide is 1 to 5%. Note that Na oxide and K oxide can be added from sodium silicate and potassium silicate, feldspar, etc. in water glass.

以上、本発明の9%Ni鋼溶接用被覆アーク溶接棒の構成要件の限定理由を述べたが、残部は心線中のNi及びFe分、被覆剤の鉄合金のFe分及び不可避不純物である。また、不可避不純物であるC、P及びSは靭性及び耐割れ性からできるだけ低いことが好ましく、Cは0.05以下が好ましい。 The reasons for limiting the constituent requirements of the coated arc welding rod for welding 9% Ni steel of the present invention have been described above, and the remainder is the Ni and Fe content in the core wire, the Fe content in the iron alloy of the coating material, and unavoidable impurities. . Further, the unavoidable impurities C, P, and S are preferably as low as possible from the viewpoint of toughness and cracking resistance, and C is preferably 0.05 or less.

被覆アーク溶接棒の製造方法は、Niを95%以上含むNi基合金心線と配合・混合した被覆剤を準備してから被覆剤に固着剤(珪素カリ及び珪酸ソーダの水溶液)を添加しながら湿式混合を行い、心線周囲に被覆剤を塗装し、さらに塗装後150~450℃で約1~3時間の乾燥・焼成を行うことにより製造することができる。 The method for producing coated arc welding rods involves preparing a coating compounded and mixed with a Ni-based alloy core wire containing 95% or more of Ni, and then adding a fixing agent (an aqueous solution of potassium silicon and sodium silicate) to the coating. It can be produced by performing wet mixing, coating the core wire with a coating agent, and then drying and baking at 150 to 450° C. for about 1 to 3 hours after coating.

本発明の効果を実施例により具体的に説明する。 The effects of the present invention will be specifically explained using examples.

表1に示す直径4.0mm、長さ350mmのNiを95質量%以上含むNi基合金の心線に、表2に示す被覆剤を被覆率45~50%で塗装後、乾燥した9%Ni鋼溶接用被覆アーク溶接棒を試作した。 After coating a core wire of a Ni-based alloy containing 95% by mass or more of Ni with a diameter of 4.0 mm and a length of 350 mm shown in Table 1 with the coating agent shown in Table 2 at a coverage rate of 45 to 50%, a dried 9% Ni A prototype coated arc welding rod for steel welding was produced.

Figure 0007383513000001
Figure 0007383513000001

Figure 0007383513000002
Figure 0007383513000002

これら試作溶接棒を使用し、溶接作業性、溶接欠陥、溶着金属の機械的性能及び耐割れ性について調査した。 Using these prototype welding rods, welding workability, weld defects, mechanical performance of deposited metal, and crack resistance were investigated.

溶接作業性の評価は、板厚9mm、幅100mm、長さ450mmのJIS G 3106に規定されるSM490B鋼板をT字に組んだ試験体を用い、表3に示す溶接条件で、水平すみ肉溶接及び立向上進溶接を行いアーク安定性、スラグ剥離性、ビード形状、スパッタ発生量及びメタル垂れの有無を目視確認で調査した。 Welding workability was evaluated using a test specimen made of SM490B steel plates specified in JIS G 3106 with a plate thickness of 9 mm, width of 100 mm, and length of 450 mm assembled in a T shape, and horizontal fillet welding was performed under the welding conditions shown in Table 3. Then, vertical advancement welding was performed, and the arc stability, slag removability, bead shape, amount of spatter generation, and presence or absence of metal sag were visually inspected.

Figure 0007383513000003
Figure 0007383513000003

溶接金属の機械的性能の評価は、板厚19mmのJIS G 3127 SL9N590に規定される鋼板を用い、AWS A5.11 ENiCrMo-6に準じて溶着金属試験を行い、X線透過試験をした後、引張試験及び衝撃試験を行った。 The mechanical performance of weld metal was evaluated using a steel plate specified in JIS G 3127 SL9N590 with a plate thickness of 19 mm, and after conducting a weld metal test according to AWS A5.11 ENiCrMo-6 and an X-ray transmission test, A tensile test and an impact test were conducted.

X線透過試験は、スラグ巻き込み、ブローホール、溶け込み不良が認められた場合、その欠陥の種類を表記し、継手溶接長500mmにおいて上記欠陥が認められない場合は無欠陥とした。 In the X-ray transmission test, if slag entrainment, blowholes, or poor penetration were observed, the type of defect was indicated, and if the above defects were not observed at a joint welding length of 500 mm, it was determined that there was no defect.

引張試験の評価は、引張強さが690MPa以上を良好とした。また、衝撃試験の評価は、試験温度-196℃で繰り返し3回シャルピー衝撃試験を行い、吸収エネルギーの平均値が70J以上を良好とした。 In the tensile test evaluation, tensile strength of 690 MPa or more was considered good. For evaluation of the impact test, the Charpy impact test was repeated three times at a test temperature of -196°C, and an average value of absorbed energy of 70 J or more was considered good.

耐割れ性の調査は、図1に示すように、板厚26mm、40°の開口角を有するJIS G 3127 SL9N590に規定される鋼板10に深さ18mmの溝2を形成し、ストロングバックにより拘束を行い、表3に示す溶接条件にて鋼板10を横向姿勢で500mm溶接して溝2に試験ビード1を形成し、ビード表面から約1mmずつ3回研削して浸透探傷試験を行い、割れの有無を判定した。それらの結果を表4にまとめて示す。 In the investigation of crack resistance, as shown in Fig. 1, grooves 2 with a depth of 18 mm were formed in a steel plate 10 specified in JIS G 3127 SL9N590, which had a thickness of 26 mm and an opening angle of 40°, and were restrained by strong back. A test bead 1 was formed in the groove 2 by welding the steel plate 10 for 500 mm in a horizontal position under the welding conditions shown in Table 3, and a penetrant test was conducted by grinding the bead surface three times at approximately 1 mm intervals to detect cracks. The presence or absence was determined. The results are summarized in Table 4.

Figure 0007383513000004
Figure 0007383513000004

表2及び表4中、溶接棒No.1~No.12が本発明例、溶接棒No.13~No.25は比較例である。 In Tables 2 and 4, welding rod No. 1~No. 12 is an example of the present invention, welding rod No. 13~No. 25 is a comparative example.

本発明例である溶接棒No.1~No.12は、心線質量比においてSi、Mn、Cr、Mo、Nb、Ta、Ti及びWが適正で、被覆剤は、Si酸化物のSiO換算値の合計、金属弗化物の1種または2種以上の合計、金属炭酸塩の1種または2種以上の合計、Na酸化物及びK酸化物のNa換算値及びK換算値の合計が適正であるので、アークが安定し、スパッタ発生量が少なく、スラグ剥離性に優れ、ビード形状が良好で、水平すみ肉溶接及び立向上進溶接において良好な溶接作業性が得られた。また、溶接欠陥が無く、溶着金属の引張強さ及び吸収エネルギーも良好で極めて満足な結果であった。 Welding rod No. which is an example of the present invention. 1~No. In No. 12, Si, Mn, Cr, Mo, Nb, Ta, Ti, and W are appropriate in the core wire mass ratio, and the coating material is the sum of the SiO 2 equivalent value of Si oxide, one or two metal fluorides. Since the sum of the above species, the sum of one or more metal carbonates, and the Na-equivalent value and K-equivalent value of Na oxide and K oxide are appropriate, the arc is stable and the amount of spatter generation is reduced. The slag removal property was excellent, the bead shape was good, and good welding workability was obtained in horizontal fillet welding and vertical advancement welding. Furthermore, there were no welding defects, and the tensile strength and absorbed energy of the welded metal were good, giving very satisfactory results.

比較例中溶接棒No.13は、心線質量比でSiが少ないので、ブローホールが発生した。また、心線質量比でTaが多いので、溶着金属の吸収エネルギーが低かった。 Welding rod No. in the comparative example. In No. 13, blowholes occurred because Si was small in terms of core mass ratio. In addition, since Ta was large in the core mass ratio, the absorbed energy of the weld metal was low.

溶接棒No.14は、心線質量比でSiが多いので、割れが発生した。また、心線質量比でTiが多いので、溶着金属の引張強さ及び吸収エネルギーが低かった。 Welding rod no. In No. 14, cracks occurred because the fiber mass ratio was high in Si. Furthermore, since the amount of Ti was large in terms of core mass ratio, the tensile strength and absorbed energy of the weld metal were low.

溶接棒No.15は、心線質量比でMnが少ないので、割れが発生した。また、心線質量比のWが少ないので、溶着金属の引張強さが低かった。 Welding rod no. No. 15 had a small amount of Mn in the fiber mass ratio, so cracking occurred. Furthermore, since the core wire mass ratio W was small, the tensile strength of the welded metal was low.

溶接棒No.16は、心線質量比でMnが多いので、溶着金属の吸収エネルギーが低かった。 Welding rod no. Since No. 16 had a large amount of Mn in the core mass ratio, the absorbed energy of the weld metal was low.

溶接棒No.17は、心線質量比でCrが少ないので、溶着金属の引張強さが低かった。また、Na酸化物及びK酸化物のNa換算値及びK換算値の合計が多いので、アークが不安定でスパッタ発生量が多かった。 Welding rod no. In No. 17, the tensile strength of the weld metal was low because the Cr content was low in the core wire mass ratio. Furthermore, since the sum of Na and K equivalent values of Na oxide and K oxide was large, the arc was unstable and a large amount of spatter was generated.

溶接棒No.18は、心線質量比でCrが多いので、溶着金属の吸収エネルギーが低かった。また、Na酸化物及びK酸化物のNa換算値及びK換算値の合計が少ないので、アークが不安定でビード形状が不良であった。 Welding rod no. No. 18 had a large amount of Cr in the core wire mass ratio, so the absorbed energy of the weld metal was low. Furthermore, since the sum of Na and K equivalent values of Na oxide and K oxide was small, the arc was unstable and the bead shape was poor.

溶接棒No.19は、心線質量比でMoが少ないので、溶着金属の引張強さが低かった。また、金属炭酸塩の1種または2種以上の合計が多いので、アークが不安定でスパッタ発生量が多かった。さらに、金属炭酸塩の1種または2種以上の合計が多いので、スラグ剥離及びビード形状が不良となり、立向上進溶接においてメタル垂れが発生した。 Welding rod no. In No. 19, the tensile strength of the weld metal was low because the Mo content was small in terms of the core wire mass ratio. Furthermore, since the total amount of one or more metal carbonates was large, the arc was unstable and a large amount of spatter was generated. Furthermore, since the total amount of one or more metal carbonates was large, slag peeling and bead shape were poor, and metal sag occurred during vertical advancement welding.

溶接棒No.20は、心線質量比でMoが多いので、溶着金属の吸収エネルギーが低かった。また、金属炭酸塩の1種または2種以上の合計が少ないので、アークが不安定でビード形状が不良であった。 Welding rod no. In No. 20, the absorbed energy of the weld metal was low because the core mass ratio was high in Mo. Furthermore, since the total amount of one or more metal carbonates was small, the arc was unstable and the bead shape was poor.

溶接棒No.21は、心線質量比でNbが少ないので、溶着金属の引張強さが低かった。また、金属弗化物の1種または2種以上の合計が多いので、アークが不安定でスパッタ発生量が多く、ビード形状が不良となり、立向上進溶接でメタル垂れが発生した。 Welding rod no. In No. 21, the tensile strength of the welded metal was low because the Nb content was low in terms of core wire mass ratio. Further, since the total amount of one or more metal fluorides was large, the arc was unstable, a large amount of spatter was generated, the bead shape was poor, and metal sag occurred during vertical advancement welding.

溶接棒No.22は、心線質量比でNbが多いので、溶着金属の吸収エネルギーが低かった。また、金属弗化物の1種または2種以上の合計が少ないので、スラグ剥離及びビード形状が不良であった。 Welding rod no. No. 22 had a large amount of Nb in the core wire mass ratio, so the absorbed energy of the weld metal was low. Furthermore, since the total amount of one or more metal fluorides was small, slag peeling and bead shape were poor.

溶接棒No.23は、心線質量比でTaが少ないので、溶着金属の引張強さが低かった。また、Si酸化物のSiO換算値の合計が多いので、立向上進溶接においてメタル垂れが発生してビード形状が不良であった。 Welding rod no. In No. 23, the tensile strength of the weld metal was low because Ta was low in the core mass ratio. Further, since the total amount of Si oxides converted to SiO 2 was large, metal sag occurred during vertical advancement welding, resulting in poor bead shape.

溶接棒No.24は、心線質量比でWが多いので、溶着金属の引張強さが高く吸収エネルギーが低かった。また、Si酸化物のSiO換算値の合計が少ないので、アークが不安定でスラグ剥離性が不良であった。 Welding rod no. In No. 24, the tensile strength of the welded metal was high and the absorbed energy was low because the wire mass ratio had a large amount of W. Furthermore, since the total SiO 2 equivalent value of Si oxide was small, the arc was unstable and the slag removability was poor.

溶接棒No.25は、心線質量比でTiが少ないので、ブローホールが発生し、溶着金属の引張強さ及び吸収エネルギーが低かった。 Welding rod no. No. 25 had a low Ti content in terms of core wire mass ratio, so blowholes occurred and the tensile strength and absorbed energy of the weld metal were low.

1 試験ビード
2 溝
1 test bead 2 groove

Claims (1)

Niを95質量%以上含むNi基合金を心線とした、9%Ni鋼溶接用被覆アーク溶接棒において、前記心線と被覆剤の一方または両方の合計で、下記式に示す心線質量比で、
Si:0.1~1.0%、
Mn:1.5~4.0%、
Cr:8~12%、
Mo:2.5~8.0%、
Nb:0.5~2.5%、
Ta:0.05~0.30%、
Ti:0.1~0.8%、
W:0.5~1.7%を含有し、
前記被覆剤は、当該被覆剤全質量に対する質量%で、
Si酸化物のSiO換算値の合計:4~12%、
金属弗化物の1種または2種以上の合計:12~25%、
金属炭酸塩の1種または2種以上の合計:13~21%、
Na酸化物及びK酸化物のNa換算値及びK換算値の合計:1~5%を含有し、
残部は前記心線中のNi及びFe分、前記被覆剤の鉄合金のFe分及び不可避不純物からなることを特徴とする9%Ni鋼溶接用被覆アーク溶接棒。

心線質量比=心線中の含有量%+被覆剤中の含有量%×被覆率%/100・・・式
(但し、心線中の含有量%は心線全質量に対する質量%、被覆剤中の含有量%は被覆剤全質量に対する質量%、被覆率は、当該9%Ni鋼溶接用被覆アーク溶接棒全質量に対する前記被覆剤の質量%)
In a coated arc welding rod for welding 9% Ni steel with a core made of a Ni-based alloy containing 95% by mass or more of Ni, the total of the core wire and one or both of the coating material has a core wire mass ratio shown in the following formula: in,
Si: 0.1-1.0%,
Mn: 1.5-4.0%,
Cr: 8-12%,
Mo: 2.5-8.0%,
Nb: 0.5-2.5%,
Ta: 0.05-0.30%,
Ti: 0.1 to 0.8%,
Contains W: 0.5 to 1.7%,
The coating material is mass% based on the total mass of the coating material,
Total SiO2 equivalent value of Si oxide: 4 to 12%,
Total of one or more metal fluorides: 12 to 25%,
Total of one or more metal carbonates: 13-21%,
Contains a total of Na equivalent value and K equivalent value of Na oxide and K oxide: 1 to 5%,
A coated arc welding rod for welding 9% Ni steel, characterized in that the remainder consists of Ni and Fe in the core wire, Fe in the iron alloy of the coating, and unavoidable impurities.

Core wire mass ratio = Content % in the core + Content % in the coating × Coverage % / 100... formula (However, the content % in the core is the mass % of the total mass of the core, the coating The content in the agent is mass % based on the total mass of the coating material, and the coverage rate is the mass % of the coating material based on the total mass of the coated arc welding rod for welding 9% Ni steel)
JP2020022616A 2020-02-13 2020-02-13 Covered arc welding rod for 9% Ni steel welding Active JP7383513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020022616A JP7383513B2 (en) 2020-02-13 2020-02-13 Covered arc welding rod for 9% Ni steel welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020022616A JP7383513B2 (en) 2020-02-13 2020-02-13 Covered arc welding rod for 9% Ni steel welding

Publications (2)

Publication Number Publication Date
JP2021126674A JP2021126674A (en) 2021-09-02
JP7383513B2 true JP7383513B2 (en) 2023-11-20

Family

ID=77487521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022616A Active JP7383513B2 (en) 2020-02-13 2020-02-13 Covered arc welding rod for 9% Ni steel welding

Country Status (1)

Country Link
JP (1) JP7383513B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272432A (en) 2005-03-30 2006-10-12 Nippon Steel & Sumikin Welding Co Ltd Coated arc welding electrode for 9% ni steel
JP2016043395A (en) 2014-08-25 2016-04-04 株式会社神戸製鋼所 Ni BASE ALLOY COVERED ELECTRODE
JP2020168651A (en) 2019-04-04 2020-10-15 日鉄溶接工業株式会社 COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159295A (en) * 1981-03-28 1982-10-01 Nippon Steel Corp Covered electrode for steel of very low temperature
JPS589794A (en) * 1981-07-10 1983-01-20 Nippon Steel Corp Covered electrode for ultra-low temperature steel
US4426428A (en) * 1981-11-20 1984-01-17 Eutectic Corporation Nickel-base welding electrode
JP2544611B2 (en) * 1987-02-16 1996-10-16 新日本製鐵株式会社 Coated arc welding rod for cryogenic steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272432A (en) 2005-03-30 2006-10-12 Nippon Steel & Sumikin Welding Co Ltd Coated arc welding electrode for 9% ni steel
JP2016043395A (en) 2014-08-25 2016-04-04 株式会社神戸製鋼所 Ni BASE ALLOY COVERED ELECTRODE
JP2020168651A (en) 2019-04-04 2020-10-15 日鉄溶接工業株式会社 COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING

Also Published As

Publication number Publication date
JP2021126674A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP5890280B2 (en) Low hydrogen coated arc welding rod
JP2006272432A (en) Coated arc welding electrode for 9% ni steel
JP6296550B2 (en) Ni-base alloy-coated arc welding rod
JP5557790B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP6382114B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high strength steel
JP2017064740A (en) Low-hydrogen type coated arc welding rod
JP7408295B2 (en) Covered arc welding rod for 9% Ni steel welding
JP6669613B2 (en) Flux-cored wire for gas shielded arc welding
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP5662086B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP7383513B2 (en) Covered arc welding rod for 9% Ni steel welding
JP2020189302A (en) Arc welding rod coated with low hydrogen-based coating agent for crude oil tank steel
JP5863570B2 (en) Flux-cored wire for gas shielded arc welding
JP2020131221A (en) Baked flux for submerged arc welding for high-strength steel
JP7221812B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel
JP2023150724A (en) COATED ARC WELDING ROD FOR WELDING 9% Ni STEEL
JP7346328B2 (en) Low hydrogen coated arc welding rod for horizontal fillet welding
JP2020142277A (en) FLUX-CORED WIRE FOR Ar-CO2 MIXED GAS SHIELD ARC-WELDING OF ATMOSPHERIC CORROSION RESISTANT STEEL
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
JP2014176878A (en) Horizontal fillet gas shield arc welding method
CA3143013C (en) Flux-cored wire for use with ar-co2 mixed gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231108

R150 Certificate of patent or registration of utility model

Ref document number: 7383513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150