JP2020189302A - Arc welding rod coated with low hydrogen-based coating agent for crude oil tank steel - Google Patents

Arc welding rod coated with low hydrogen-based coating agent for crude oil tank steel Download PDF

Info

Publication number
JP2020189302A
JP2020189302A JP2019094081A JP2019094081A JP2020189302A JP 2020189302 A JP2020189302 A JP 2020189302A JP 2019094081 A JP2019094081 A JP 2019094081A JP 2019094081 A JP2019094081 A JP 2019094081A JP 2020189302 A JP2020189302 A JP 2020189302A
Authority
JP
Japan
Prior art keywords
total
crude oil
coating agent
oil tank
welding rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019094081A
Other languages
Japanese (ja)
Other versions
JP7308657B2 (en
Inventor
高橋 将
Susumu Takahashi
将 高橋
岩立 健太郎
Kentaro Iwatate
健太郎 岩立
雅大 渡部
Masahiro Watabe
雅大 渡部
伊藤 実
Minoru Ito
実 伊藤
鹿島 和幸
Kazuyuki Kashima
和幸 鹿島
金子 道郎
Michiro Kaneko
道郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2019094081A priority Critical patent/JP7308657B2/en
Publication of JP2020189302A publication Critical patent/JP2020189302A/en
Application granted granted Critical
Publication of JP7308657B2 publication Critical patent/JP7308657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

To provide an arc welding rod coated with a low hydrogen-based coating agent for a crude oil tank steel which enables a weld metal having excellent corrosion resistance and mechanical performance to be obtained, and is good in welding work efficiency, and causes no weld flaw.SOLUTION: The arc welding rod coated with a low hydrogen-based coating agent for a crude oil tank steel is provided in which the coating agent contains by mass% based on total mass of the coating agent: Si of 3.5 to 8.0%, Mn of 0.5 to 2.0% and Ti of 0.3 to 1.5%, Cu of 0.2 to 1.0%, one or two kinds of Mo of 0.05 to 0.50% and W of 0.05 to 0.50%; total of one or two or more kinds of metal carbonates of 45 to 55%; total of titanium oxide of 2 to 8% in terms of TiO2; total of silicon oxide of 3 to 10% in terms of SiO2; total of aluminum oxide of 0.5 to 5.0% in terms of Al2O3; total of one or two or more kinds of metal fluorides of 10 to 20%; total of one or more kinds of organic substances of 0.3 to 1.5%; iron sulfide of 0.05 to 0.09%; and total of sodium oxide in terms of Na2O and kalium oxide in terms of K2O of 1 to 5%.SELECTED DRAWING: None

Description

本発明は、原油タンカーの油槽や地上又は地下原油タンクなどの、原油を輸送又は貯蔵する原油油槽を構成する鋼板を溶接する上で好適な原油油槽鋼の低水素系被覆アーク溶接棒に関する。 The present invention relates to a low hydrogen-based shielded metal arc welding rod of crude oil tank steel suitable for welding steel plates constituting a crude oil tank for transporting or storing crude oil, such as an oil tank of a crude oil tanker or an above-ground or underground crude oil tank.

一般に、原油を輸送する原油タンカーの油槽や原油を貯蔵する地上又は地下原油タンク等、原油を輸送又は貯蔵する鋼製油槽には、強度や溶接性に優れた溶接構造用鋼が用いられている。 Generally, welded structural steel with excellent strength and weldability is used for steel oil tanks that transport or store crude oil, such as oil tanks for crude oil tankers that transport crude oil and above-ground or underground crude oil tanks that store crude oil. ..

上述のような鋼製油槽において、原油中に含まれる水分の他、塩分や腐食性ガス成分等により、その油槽を構成する鋼板が腐食環境に晒される。特に、原油タンカーの油槽内面では、原油中の揮発成分や混入海水、油田塩水中の塩分、防爆のために油槽内に送られるイナートガス(船のエンジンの排気ガス)の他、昼夜の温度変動による結露等によって独特の腐食環境になるので、鋼板の腐食減肉が生じる。このような鋼板の腐食減肉により、所要の船体強度を維持することが困難になった場合には、腐食した部材を切除して新たな部材を溶接接合してこれを補強することが必要となり、多大なコストがかかる。 In the steel oil tank as described above, the steel plate constituting the oil tank is exposed to a corrosive environment due to the water content in the crude oil, as well as salt and corrosive gas components. In particular, on the inner surface of the oil tank of a crude oil tanker, due to volatile components in crude oil, mixed seawater, salt in oil field salt water, inert gas (exhaust gas from the engine of a ship) sent into the oil tank for explosion prevention, and temperature fluctuations during the day and night. Since a unique corrosive environment is created due to dew condensation and the like, the steel plate is corroded and thinned. When it becomes difficult to maintain the required hull strength due to such corrosion thinning of the steel plate, it is necessary to cut off the corroded member and weld-join a new member to reinforce it. , It costs a lot of money.

さらに、上述した腐食減肉に加えて、鋼製油槽内面の鋼表面に、大量の固体の硫黄分(以下、固体Sという。)が生成・析出する。このような固体Sは、腐食したデッキ裏の表面の鉄さびが触媒になり、気相中のSO2とH2Sが反応することによって生成されると考えられている。この際、鋼板の腐食による新しい鉄さびの生成と、固体Sの析出とが交互に生じるため、鉄さびと固体Sとの層状腐食生成物が析出する。層状腐食生成物は、固体Sからなる層は脆いので、固体Sと鉄さびとからなる生成物は原油油槽の鋼板表面から容易に剥離、脱落し、原油油槽底にスラッジ(腐食生成物)として堆積する。 Further, in addition to the above-mentioned corrosion thinning, a large amount of solid sulfur content (hereinafter referred to as solid S) is generated and precipitated on the steel surface on the inner surface of the steel oil tank. It is believed that such solid S is produced by the reaction of SO 2 and H 2 S in the gas phase with the iron rust on the surface of the back of the corroded deck as a catalyst. At this time, the formation of new iron rust due to the corrosion of the steel sheet and the precipitation of the solid S occur alternately, so that the layered corrosion product of the iron rust and the solid S is deposited. Since the layer composed of solid S is brittle in the layered corrosion product, the product composed of solid S and iron rust easily peels off and falls off from the surface of the steel plate of the crude oil tank, and is deposited as sludge (corrosion product) on the bottom of the crude oil tank. To do.

このような背景から、原油油槽用の鋼板として優れた耐食性を有し、かつ、固体Sを含むスラッジの生成が少ない耐食鋼板が求められ、例えば、特許文献1〜特許文献3には、原油油槽や原油油槽用鋼の溶接継手が開示されている。一方、原油油槽は一般的に溶接構造であるので、全面的に塗装やライニングを施さない限り、不可避的に溶接部も原油油槽環境に晒される。通常行われる、アーク溶接においては、溶接材料を溶解させて溶接金属を形成させるので、溶接金属の組成や組織は、鋼材とは異なるものとなることが一般的である。腐食環境中においては、化学組成や組織の大きく異なる金属が隣接している場合、相対的に電気化学的に卑な一方の金属が選択的に腐食され、異種金属腐食が生じ易い。このような選択腐食が生じると、局部的に大きな腐食が生じるようになる。 Against this background, a corrosion-resistant steel sheet having excellent corrosion resistance as a steel sheet for a crude oil tank and producing less sludge containing solid S is required. For example, Patent Documents 1 to 3 describe crude oil tanks. And welded joints of steel for crude oil tanks are disclosed. On the other hand, since the crude oil tank generally has a welded structure, the welded portion is inevitably exposed to the crude oil tank environment unless the entire surface is painted or lined. In arc welding, which is usually performed, the welding material is melted to form the welding metal, so that the composition and structure of the welding metal are generally different from those of the steel material. In a corroded environment, when metals having significantly different chemical compositions and structures are adjacent to each other, one of the relatively electrochemically base metals is selectively corroded, and dissimilar metal corrosion is likely to occur. When such selective corrosion occurs, large local corrosion will occur.

耐食性が特に向上されていない普通鋼を用いて、原油環境にさらされる溶接構造物を作製する場合は、溶接方法や溶接材料によらず、表面積が圧倒的に大きな鋼材の方が電気化学的に卑となるため、溶接継手が選択的に腐食される問題はそれほど大きくはない。しかしながら、耐食性に優れた鋼材を用いて溶接構造物を形成しようとすると、溶接方法や溶接材料によっては溶接金属の方が卑となり、溶接金属が選択的に腐食され、溶接継手全体として耐食性が損なわれる可能性が生じるという問題点があった。したがって、原油環境にさらされる溶接構造物の耐食性を良好とするためには、鋼材のみならず、溶接部の特性にも配慮する必要がある。 When making a welded structure exposed to a crude oil environment using ordinary steel whose corrosion resistance has not been particularly improved, a steel material having an overwhelmingly large surface surface is electrochemically used regardless of the welding method or welding material. The problem of selective corrosion of welded joints is not so great because it is base. However, when an attempt is made to form a welded structure using a steel material having excellent corrosion resistance, the weld metal becomes more base depending on the welding method and the welding material, the weld metal is selectively corroded, and the corrosion resistance of the entire welded joint is impaired. There was a problem that there was a possibility of welding. Therefore, in order to improve the corrosion resistance of the welded structure exposed to the crude oil environment, it is necessary to consider not only the steel material but also the characteristics of the welded portion.

上記問題に対して、例えば特許文献4には、原油油槽用鋼材を溶接するガスシールドアーク溶接用フラックス入りワイヤが開示されている。特に原油タンカー等への全姿勢溶接においては多く用いられているが、補修溶接や狭あいな個所への溶接には溶接装置の移動や設置が難しく、溶接作業時の小回りが困難となる。また溶接時の防風対策が必要なことから、小さな補修箇所への溶接に対しても準備が大掛かりになるという問題点があった。このため溶接装置の準備が簡易で、溶接時の小回りが良く、ガスシールドアーク溶接より風に強い低水素系被覆アーク溶接棒の要望が強い。 In response to the above problem, for example, Patent Document 4 discloses a flux-cored wire for gas shielded arc welding for welding a steel material for a crude oil tank. In particular, it is often used in full-position welding to crude oil tankers and the like, but it is difficult to move and install the welding equipment for repair welding and welding to narrow places, and it is difficult to make small turns during welding work. In addition, since it is necessary to take windproof measures at the time of welding, there is a problem that preparation for welding to a small repaired part becomes large. For this reason, there is a strong demand for a low hydrogen-based shielded metal arc welding rod that is easy to prepare for welding equipment, has a good turning radius during welding, and is more wind resistant than gas shielded metal arc welding.

一方、例えば、特許文献5には、耐食性に優れた被覆アーク溶接棒が開示されている。しかし、耐硫酸性、耐塩酸性に優れる性質のため、原油油槽鋼に用いた場合、溶接部と母材の間で耐食性に差異が生じ、耐食性に劣る方が選択的に腐食されるという問題点があった。 On the other hand, for example, Patent Document 5 discloses a shielded metal arc welding rod having excellent corrosion resistance. However, due to its excellent sulfuric acid resistance and hydrochloric acid resistance, when it is used for crude oil tank steel, there is a difference in corrosion resistance between the welded part and the base metal, and the one with inferior corrosion resistance is selectively corroded. was there.

特開2010−43342号公報JP-A-2010-43342 特開2005−23421号公報Japanese Unexamined Patent Publication No. 2005-23421 特開2005−21981号公報Japanese Unexamined Patent Publication No. 2005-21981 特開2013−226577号公報Japanese Unexamined Patent Publication No. 2013-226757 特開2004−90044号公報Japanese Unexamined Patent Publication No. 2004-90044

本発明は、上述した問題点に鑑みて案出されたものであり、溶接構造により形成される原油タンカーの油槽や地上又は地下原油タンクなどの、原油を輸送又は貯蔵する原油油槽の原油腐食環境下で、溶接部が原油油槽とほぼ同等の優れた耐食性を示すとともに、溶接作業性が良好で、溶接欠陥が無く、機械的性能に優れた溶接金属が得られる原油油槽鋼の低水素系被覆アーク溶接棒を提供することを目的とする。 The present invention has been devised in view of the above-mentioned problems, and is a crude oil corrosive environment of a crude oil tank for transporting or storing crude oil, such as an oil tank of a crude oil tanker formed by a welded structure or an above-ground or underground crude oil tank. Below, the welded part shows excellent corrosion resistance almost equal to that of the crude oil tank, and the weld metal with good welding workability, no welding defects, and excellent mechanical performance can be obtained. Low hydrogen coating of crude oil tank steel. It is an object of the present invention to provide an arc welding rod.

本発明の要旨は、鋼心線に被覆剤が被覆されている原油油槽鋼の低水素系被覆アーク溶接棒において、前記被覆剤は、被覆剤全質量に対する質量%で、Si:3.5〜8.0%、Mn:0.5〜2.0%、Ti:0.3〜1.5%、Cu:0.2〜1.0%、Mo:0.05〜0.50%及びW:0.05〜0.50%の1種又は2種、金属炭酸塩の1種又は2種以上の合計:45〜55%、Ti酸化物のTiO2換算値の合計:2〜8%、Si酸化物のSiO2換算値の合計:3〜10%、Al酸化物のAl23換算値の合計:0.5〜5.0%、金属弗化物の1種又は2種以上の合計:10〜20%、有機物の1種又は2種以上の合計:0.3〜1.5%、硫化鉄:0.05〜0.09%、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:1〜5%を含有し、残部は塗装剤、鉄粉中のFe分、鉄合金のFe分及び不可避不純物からなることを特徴とする。 The gist of the present invention is that in a low hydrogen-based coated arc welding rod of crude oil tank steel in which a steel core wire is coated with a coating agent, the coating agent is a mass% based on the total mass of the coating agent, and Si: 3.5 to 8.0%, Mn: 0.5 to 2.0%, Ti: 0.3 to 1.5%, Cu: 0.2 to 1.0%, Mo: 0.05 to 0.50% and W : 0.05 to 0.50% of 1 or 2 types, total of 1 or 2 or more types of metal carbonates: 45 to 55%, total of TiO 2 conversion values of Ti oxides: 2 to 8%, Total SiO 2 conversion value of Si oxide: 3 to 10%, total Al 2 O 3 conversion value of Al oxide: 0.5 to 5.0%, total of one or more types of metal fluoride : 10 to 20%, total of one or more organic substances: 0.3 to 1.5%, iron sulfide: 0.05 to 0.09%, Na 2 O conversion value of Na compound and K compound and total K 2 O converted value: contains 1-5%, the remainder being painted agents, Fe content in the iron powder, characterized by comprising the Fe content and unavoidable impurities iron alloy.

また、被覆剤全質量に対する質量%で、Ni:0.05〜1.0%を更に含有することも特徴とする。 It is also characterized by further containing Ni: 0.05 to 1.0% in mass% with respect to the total mass of the coating agent.

さらに、被覆剤全質量に対する質量%で、Sn:0.01〜0.30%、Sb:0.01〜0.30%の1種又は2種を更に含有することも特徴とする原油油槽鋼の低水素系被覆アーク溶接棒にある。 Further, a crude oil tank steel characterized by further containing one or two types of Sn: 0.01 to 0.30% and Sb: 0.01 to 0.30% in mass% with respect to the total mass of the coating agent. It is located in the low hydrogen shielded metal arc welding rod.

本発明の原油油槽用鋼の低水素系被覆アーク溶接棒によれば、溶接構造によって形成される原油タンカーの油槽や地上又は地下原油タンク等、原油を輸送又は貯蔵する鋼製油槽の原油腐食環境下及び該環境と腐食環境が類似の環境で使用される場合においても、優れた耐食性及び機械的性能を備えた溶接金属が得られ、さらに、溶接欠陥が無く、アーク吹き付け、アーク集中性及びアーク安定性が良好で、スパッタ発生量が少なく、棒焼けが発生せず、ビード形状、スラグ剥離性などの良好な溶接作業性が得られる。このため、溶接作業能率の向上及び溶接部の品質向上に大いに貢献できる。 According to the low hydrogen-based shielded metal arc welding rod of the crude oil tank steel of the present invention, the crude oil corrosion environment of the steel oil tank for transporting or storing crude oil such as the oil tank of the crude oil tanker formed by the welded structure and the above-ground or underground crude oil tank. Welded metals with excellent corrosion resistance and mechanical performance are obtained, even when used under and in similar environments to the environment, with no welding defects, arc spraying, arc concentration and arc. Good stability, a small amount of spatter, no stick burning, and good welding workability such as bead shape and slag peelability can be obtained. Therefore, it can greatly contribute to the improvement of welding work efficiency and the quality of the welded portion.

本発明者らは、上記課題を解決するために、種々の低水素系被覆アーク溶接棒を作製し、詳細を検討した。 In order to solve the above problems, the present inventors have prepared various low hydrogen-based shielded metal arc welding rods and examined the details.

機械的性能及び耐食性に優れた溶接金属が得られ、アーク安定性に優れ、アーク集中性、アーク吹き付けが良好でスパッタ発生量が少なく、棒焼けが無く、ビード形状、スラグ剥離性などの良好な溶接作業性を有することは必須条件である。 Welded metal with excellent mechanical performance and corrosion resistance can be obtained, excellent arc stability, good arc concentration, good arc spraying, low spatter generation, no stick burning, good bead shape, slag peeling property, etc. Having welding workability is an essential condition.

まず、原油腐食環境での溶接金属の耐食性について、低水素系被覆アーク溶接棒の化学成分の影響を調査した。この結果、低水素系被覆アーク溶接棒の被覆剤成分として、Mo及びW、Cu、硫化鉄を適量添加することにより、当該環境での耐食性を向上させることを知見した。さらに、Ni、Sn、Sbを適量添加することで耐食性をより向上できることを知見した。 First, the influence of the chemical composition of the low hydrogen-based shielded metal arc welding rod was investigated on the corrosion resistance of the weld metal in a crude oil corrosive environment. As a result, it was found that the corrosion resistance in the environment is improved by adding an appropriate amount of Mo, W, Cu, and iron sulfide as a coating agent component of the low hydrogen-based coated arc welding rod. Furthermore, it was found that the corrosion resistance can be further improved by adding appropriate amounts of Ni, Sn, and Sb.

また、溶接作業性について、アーク集中性、アーク吹き付け、アーク安定性及びスパッタ発生量の低減はSi、Ti、Ti酸化物、Si酸化物、有機物、Na化合物及びK化合物を適量添加することで、耐棒焼け性は金属炭酸塩を適量添加することで、スラグ剥離性はSi酸化物を適量添加することで、ビード形状はTi酸化物,Al酸化物、金属弗化物を適量添加することで良好にできるとともに、金属炭酸塩の含有量の調整で溶接欠陥を防止できることも知見した。 Regarding welding workability, arc concentration, arc spraying, arc stability and reduction of spatter generation amount can be achieved by adding appropriate amounts of Si, Ti, Ti oxides, Si oxides, organic substances, Na compounds and K compounds. The stick burning resistance is good by adding an appropriate amount of metal carbonate, the slag peeling property is good by adding an appropriate amount of Si oxide, and the bead shape is good by adding an appropriate amount of Ti oxide, Al oxide, and metal fluoride. It was also found that welding defects can be prevented by adjusting the content of metal carbonate.

また、溶接金属の機械的性能は、Mn、Tiを適量添加することで改善できることを知見した。 It was also found that the mechanical performance of the weld metal can be improved by adding appropriate amounts of Mn and Ti.

以下、本発明を適用した原油油槽鋼の低水素系被覆アーク溶接棒の被覆剤中の成分組成と、その成分組成の限定理由について詳細に説明する。なお、各成分組成の含有量は、質量%で表すこととし、その質量%を表すときには単に%と記載することとする。 Hereinafter, the component composition in the coating agent of the low hydrogen-based shielded metal arc welding rod of the crude oil tank steel to which the present invention is applied and the reason for limiting the component composition will be described in detail. The content of each component composition shall be expressed in mass%, and when the mass% is expressed, it shall be simply described as%.

[Si:3.5〜8.0%]
Siは、金属Si、Fe−Si、Fe−Si−Mn等から添加され、溶接金属の脱酸を目的として使用されるが、溶接作業性確保の面からも必要である。Siが3.5%未満では、脱酸不足で溶接金属中にブローホールが発生し易くなるとともに、アークが不安定となる。一方、Siが8.0%を超えると、溶接金属組織の粒界に低融点酸化物を析出させるので、溶接金属の靱性が低下する。したがって、Siは3.5〜8.0%とする。
[Si: 3.5-8.0%]
Si is added from metals Si, Fe-Si, Fe-Si-Mn and the like, and is used for the purpose of deoxidizing the weld metal, but it is also necessary from the viewpoint of ensuring welding workability. If Si is less than 3.5%, blow holes are likely to occur in the weld metal due to insufficient deoxidation, and the arc becomes unstable. On the other hand, when Si exceeds 8.0%, a low melting point oxide is precipitated at the grain boundaries of the weld metal structure, so that the toughness of the weld metal is lowered. Therefore, Si is set to 3.5 to 8.0%.

[Mn:0.5〜2.0%]
Mnは、金属Mn、Fe−Mn、Fe−Si−Mn等から添加され、Siと同様に脱酸剤として添加する他、溶接金属の強度向上に有効である。Mnが0.5%未満では、その効果が十分に得られず、溶接金属の強度が低下する。一方、Mnが2.0%を超えると、溶接金属の強度が過剰に高くなり、靭性が低くなる。したがって、Mnは0.5〜2.0%とする。
[Mn: 0.5 to 2.0%]
Mn is added from metals Mn, Fe-Mn, Fe-Si-Mn, etc., and is added as a deoxidizer in the same manner as Si, and is effective in improving the strength of weld metals. If Mn is less than 0.5%, the effect cannot be sufficiently obtained and the strength of the weld metal is lowered. On the other hand, when Mn exceeds 2.0%, the strength of the weld metal becomes excessively high and the toughness becomes low. Therefore, Mn is set to 0.5 to 2.0%.

[Ti:0.3〜1.5%]
Tiは、金属Ti、Fe−Ti等から添加され、脱酸剤として有効であるとともに、アークの電位傾度を低下させてアークを安定化させる効果を有する。また、溶接金属のミクロ組織を微細化して靭性を向上させる効果がある。Tiが0.3%未満では、アークが不安定となり、スパッタ発生量が増加する。また、アーク長が伸びて大気中の酸素を取り込み易くなるので、溶接金属中に酸素量が多くなるとともに、溶接金属のミクロ組織が微細化されず、溶接金属の靭性が低下する。一方、Tiが1.5%を超えると、溶接金属中のTi酸化物が増加し、溶接金属の靱性が低下する。したがって、Tiは0.3〜1.5%とする。
[Ti: 0.3-1.5%]
Ti is added from metals Ti, Fe-Ti, etc., is effective as an antacid, and has the effect of lowering the potential gradient of the arc and stabilizing the arc. It also has the effect of refining the microstructure of the weld metal to improve toughness. If Ti is less than 0.3%, the arc becomes unstable and the amount of spatter generated increases. Further, since the arc length is extended and oxygen in the atmosphere is easily taken in, the amount of oxygen in the weld metal is increased, the microstructure of the weld metal is not refined, and the toughness of the weld metal is lowered. On the other hand, when Ti exceeds 1.5%, the Ti oxide in the weld metal increases and the toughness of the weld metal decreases. Therefore, Ti is set to 0.3 to 1.5%.

[Cu:0.2〜1.0%]
Cuは、金属Cu及びCu−Al等から添加され、溶接金属の耐食性の向上及び固体Sの析出を抑制させる効果を有し、0.05%以上のMo及び0.05%以上の硫化鉄と共に含有させる。Cuが0.2%未満では、溶接金属の耐食性の向上及び固体S析出の抑制効果が十分に得られない。一方、Cuが1.0%を超えると、溶接金属の耐食性向上及び固体S析出の抑制効果は飽和するとともに、溶接金属の靱性が低下する。したがって、Cuは0.2〜1.0%とする。
[Cu: 0.2 to 1.0%]
Cu is added from metals such as Cu and Cu—Al, and has the effect of improving the corrosion resistance of the weld metal and suppressing the precipitation of solid S, together with 0.05% or more of Mo and 0.05% or more of iron sulfide. Incorporate. If Cu is less than 0.2%, the effect of improving the corrosion resistance of the weld metal and suppressing the precipitation of solid S cannot be sufficiently obtained. On the other hand, when Cu exceeds 1.0%, the effect of improving the corrosion resistance of the weld metal and suppressing the precipitation of solid S is saturated, and the toughness of the weld metal is lowered. Therefore, Cu is 0.2 to 1.0%.

[Mo:0.05〜0.50%及びW:0.05〜0.50%の1種又は2種]
Moは金属Mo、Fe−Mo等から、Wは金属W、WC等から添加され、溶接金属の耐食性向上及び固体Sの析出を抑制させる効果を有し、0.2%以上のCu及び0.05%以上の硫化鉄とともに含有させる。Moが0.05%未満及びWが0.05%未満の1種又は2種では、溶接金属の耐食性の向上及び固体S析出の抑制の効果が十分に得られない。一方、Moが0.50%超及びWが0.50%超の1種又は2種では、溶接金属の耐食性向上及び固体S析出の抑制効果は飽和するとともに、溶接金属の靭性が低下する。したがって、Moは0.05〜0.50%及びWは0.05〜0.50%の1種又は2種とする。
[Mo: 0.05 to 0.50% and W: 0.05 to 0.50%, one or two types]
Mo is added from metals Mo, Fe-Mo, etc., and W is added from metals W, WC, etc., and has the effect of improving the corrosion resistance of the weld metal and suppressing the precipitation of solid S, and 0.2% or more of Cu and 0. It is contained together with 05% or more of iron sulfide. With one or two types having Mo of less than 0.05% and W of less than 0.05%, the effects of improving the corrosion resistance of the weld metal and suppressing the precipitation of solid S cannot be sufficiently obtained. On the other hand, when Mo is more than 0.50% and W is more than 0.50%, the effect of improving the corrosion resistance of the weld metal and suppressing the precipitation of solid S is saturated, and the toughness of the weld metal is lowered. Therefore, Mo is 0.05 to 0.50% and W is 0.05 to 0.50%, which is one or two kinds.

[金属炭酸塩の1種又は2種以上の合計:45〜55%]
金属炭酸塩は、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、炭酸マンガン、炭酸リチウム等から添加され、アーク中で分解してCO2ガスを発生する際の吸熱効果によって棒焼けを防止するとともに、溶着金属を大気から遮蔽して保護する効果を有する。金属炭酸塩の1種又は2種以上の合計が45%未満であると、シールド効果が不足して溶接金属中にブローホールが発生し易くなるとともに、棒焼けが発生し易くなる。一方、金属炭酸塩の1種又は2種以上の合計が55%を超えると、アークが不安定で凸ビードとなるとともに、スラグ剥離性も不良となる。したがって、金属炭酸塩の1種又は2種以上の合計は45〜55%とする。
[Total of one or more metal carbonates: 45-55%]
Metallic carbonate is added from calcium carbonate, magnesium carbonate, barium carbonate, manganese carbonate, lithium carbonate, etc., and prevents stick burning due to the heat absorption effect when it decomposes in an arc to generate CO 2 gas, and is a welded metal. Has the effect of shielding and protecting from the atmosphere. If the total of one or more of the metal carbonates is less than 45%, the shielding effect is insufficient and blow holes are likely to occur in the weld metal, and rod burning is likely to occur. On the other hand, if the total of one or more of the metal carbonates exceeds 55%, the arc becomes unstable and becomes a convex bead, and the slag peelability becomes poor. Therefore, the total of one or more metal carbonates is 45-55%.

[Ti酸化物のTiO2換算値の合計:2〜8%]
Ti酸化物は、ルチール、酸化チタン、チタン酸ソーダ、チタンスラグ等から添加され、スラグ生成剤及びアーク安定剤として作用し、アーク安定性及びビード形状を改善する効果を有する。Ti酸化物のTiO2換算値の合計が2%未満であると、アークが不安定になるとともに、スパッタ発生量が増加する。また、スラグ流動性が悪くなってビード形状が不良となる。一方、Ti酸化物のTiO2換算値の合計が8%を超えると、溶接時に溶融スラグの粘性が高くなってスラグ流動性が悪くなり、ビード形状が凸状となる。また、溶込みが浅くなって溶接部に融合不良が生じ易くなる。したがって、Ti酸化物のTiO2換算値の合計は2〜8%とする。
[Total TiO 2 conversion value of Ti oxide: 2-8%]
Ti oxide is added from rutile, titanium oxide, sodium titanate, titanium slag, etc., acts as a slag generator and an arc stabilizer, and has an effect of improving arc stability and bead shape. If the total of the TiO 2 conversion values of the Ti oxide is less than 2%, the arc becomes unstable and the amount of spatter generated increases. In addition, the slag fluidity becomes poor and the bead shape becomes poor. On the other hand, when the total of the TiO 2 conversion values of the Ti oxide exceeds 8%, the viscosity of the molten slag becomes high during welding, the slag fluidity deteriorates, and the bead shape becomes convex. In addition, the penetration becomes shallow and fusion defects are likely to occur in the welded portion. Therefore, the total TiO 2 conversion value of Ti oxide is 2 to 8%.

[Si酸化物のSiO2換算値の合計:3〜10%]
Si酸化物は、珪砂、長石、水ガラス等から添加され、スラグ生成剤及びアーク安定剤として作用し、アーク安定性及びスラグ剥離性を改善する効果を有する。Si酸化物のSiO2換算値の合計が3%未満であると、アークが弱く不安定になるとともに、生成したスラグのガラス質が少なくなってスラグ剥離性が不良になる。一方、Si酸化物のSiO2換算値の合計が10%を超えると、スラグの粘性が高くなってビード形状が不良となる。したがって、Si酸化物のSiO2換算値の合計は3〜10%とする。
[Total SiO 2 conversion value of Si oxide: 3 to 10%]
The Si oxide is added from silica sand, feldspar, water glass and the like, acts as a slag generator and an arc stabilizer, and has an effect of improving arc stability and slag exfoliation property. If the total value of the Si oxides converted to SiO 2 is less than 3%, the arc becomes weak and unstable, and the vitreous quality of the generated slag is reduced, resulting in poor slag peelability. On the other hand, when the total SiO 2 conversion value of the Si oxide exceeds 10%, the viscosity of the slag becomes high and the bead shape becomes poor. Therefore, the total value of Si oxide in terms of SiO 2 is set to 3 to 10%.

[Al酸化物のAl23換算値の合計:0.5〜5.0%]
Al酸化物は、アルミナ等から添加され、スラグ生成剤として作用し、溶融スラグの粘性を高める効果を有する。Al酸化物のAl23換算値の合計が0.5%未満であると、スラグの粘性が不足し、ビード形状が不良となる。一方、Al酸化物のAl23換算値の合計が5.0%を超えると、溶接時に溶融スラグの粘性が高くなってスラグ流動性が悪くなるので、ビードの形状が凸状となるとともに、溶込みが浅くなって溶接部に融合不良が生じ易くなる。したがって、Al酸化物のAl23換算値の合計は0.5〜5.0%とする。
[Total Al 2 O 3 conversion value of Al oxide: 0.5 to 5.0%]
Al oxide is added from alumina or the like, acts as a slag generating agent, and has an effect of increasing the viscosity of molten slag. If the total Al 2 O 3 conversion value of the Al oxide is less than 0.5%, the viscosity of the slag becomes insufficient and the bead shape becomes poor. On the other hand, if the total Al 2 O 3 conversion value of Al oxide exceeds 5.0%, the viscosity of the molten slag becomes high during welding and the slag fluidity deteriorates, so that the shape of the bead becomes convex. , The penetration becomes shallow and fusion failure is likely to occur in the welded part. Therefore, the total Al 2 O 3 conversion value of Al oxide is 0.5 to 5.0%.

[金属弗化物の1種又は2種以上の合計:10〜20%]
金属弗化物は、蛍石、弗化バリウム、弗化マグネシウム、弗化アルミニウム等から添加され、溶融スラグの粘性を下げてスラグ流動性を良好にしてビード形状を改善する効果を有する。金属弗化物の1種又は2種以上の合計が10%未満であると、適正な溶融スラグの粘性が得られずビード形状が不良となる。一方、金属弗化物の1種又は2種以上の合計が20%を超えると、スラグ剥離性が不良になる。したがって、金属弗化物の1種又は2種以上の合計は10〜20%とする。
[Total of one or more metal fluorides: 10-20%]
The metal fluoride is added from fluorite, barium fluoride, magnesium fluoride, aluminum fluoride and the like, and has the effect of lowering the viscosity of the molten slag, improving the slag fluidity and improving the bead shape. If the total of one or more of the metal fluorides is less than 10%, the proper viscosity of the molten slag cannot be obtained and the bead shape becomes poor. On the other hand, if the total of one or more of the metal fluorides exceeds 20%, the slag peelability becomes poor. Therefore, the total of one or more types of metal fluoride is 10 to 20%.

[有機物の1種又は2種以上の合計:0.3〜1.5%]
有機物は、アルギン酸ソーダ、小麦粉等から添加され、溶接棒製造時の被覆剤の密着性を改善し、被覆剤表面を均一で滑らかに仕上げることができるので、溶接時のアークの集中性を高める効果を有する。有機物の1種又は2種以上の合計が0.3%未満であると、溶接棒製造時に被覆剤表面に割れや被覆剤の脱落が生じ易くなるので、アークの集中性が悪くなる。一方、有機物の1種又は2種以上の合計が1.5%を超えると、棒焼けが発生し易くなる。したがって、被覆剤中の有機物の1種又は2種以上の合計は0.3〜1.5%とする。
[Total of one or more organic substances: 0.3-1.5%]
Organic substances are added from sodium alginate, wheat flour, etc. to improve the adhesion of the coating agent during welding rod manufacturing, and the surface of the coating agent can be finished uniformly and smoothly, so that the effect of increasing the concentration of arcs during welding is enhanced. Has. If the total of one or more organic substances is less than 0.3%, the surface of the coating material is likely to be cracked or the coating material is easily removed during the production of the welding rod, so that the arc concentration is deteriorated. On the other hand, if the total of one or more organic substances exceeds 1.5%, stick burning is likely to occur. Therefore, the total of one or more organic substances in the coating is 0.3 to 1.5%.

[硫化鉄:0.05〜0.09%]
硫化鉄は、含有されるSが溶接金属内に歩留まることで溶接金属の耐食性を向上させる効果を有し、0.2%以上のCu及び0.05%以上のMoとともに含有させる。硫化鉄が0.05%未満では、溶接金属の耐食性向上の効果が十分に得られない。一方、硫化鉄が0.09%を超えると、溶接金属の耐食性向上の効果は飽和するとともに、スラグの流動性が悪くなってビード形状が不良となる。したがって、硫化鉄は0.05〜0.09%とする。
[Iron sulfide: 0.05 to 0.09%]
Iron sulfide has an effect of improving the corrosion resistance of the weld metal by retaining the contained S in the weld metal, and is contained together with 0.2% or more of Cu and 0.05% or more of Mo. If the iron sulfide content is less than 0.05%, the effect of improving the corrosion resistance of the weld metal cannot be sufficiently obtained. On the other hand, when iron sulfide exceeds 0.09%, the effect of improving the corrosion resistance of the weld metal is saturated, the fluidity of the slag is deteriorated, and the bead shape becomes poor. Therefore, iron sulfide is set to 0.05 to 0.09%.

[Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:1〜5%]
Na化合物及びK化合物は、水ガラス中の珪酸ソーダ、珪酸カリウム、長石等から添加され、アーク安定剤として作用してアークを安定化する効果を有する。Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が1%未満であると、アークが不安定になり、スパッタ発生量が増加する。また、溶接棒製造時に被覆剤表面に割れや被覆剤の脱落が生じやすくなるので、アークの集中性が低下する。一方、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が5%を超えると、アーク吹き付けが過剰に強くなり、ビード形状が不良になる。したがって、被覆剤中のNa化合物及びK化合物のNa2O換算値及びK2O換算値の合計は1〜5%とする。
[Total of Na 2 O conversion value and K 2 O conversion value of Na compound and K compound: 1 to 5%]
The Na compound and the K compound are added from sodium silicate, potassium silicate, feldspar and the like in water glass, and have an effect of stabilizing an arc by acting as an arc stabilizer. If the total of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound is less than 1%, the arc becomes unstable and the amount of spatter generated increases. Further, when the welding rod is manufactured, the surface of the coating material is liable to crack or the coating material is easily dropped off, so that the concentration of the arc is lowered. On the other hand, when the total of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound exceeds 5%, the arc spraying becomes excessively strong and the bead shape becomes poor. Therefore, the total of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound in the coating agent is 1 to 5%.

[Ni:0.05〜1.0%]
Niは、金属NiやFe−Niから添加され、前記Mo、W、Cu及び硫化鉄との共存において溶接金属の耐食性の向上及び固体Sの析出を抑制する効果を有する。Niが0.05%未満では、溶接金属の耐食性の向上効果が十分に得られない。一方、Niが1.0%を超えると、溶接金属中に高温割れが発生し易くなる。したがって、Niは0.05〜1.0%とする。
[Ni: 0.05 to 1.0%]
Ni is added from the metals Ni and Fe-Ni, and has the effect of improving the corrosion resistance of the weld metal and suppressing the precipitation of the solid S in the coexistence with the Mo, W, Cu and iron sulfide. If Ni is less than 0.05%, the effect of improving the corrosion resistance of the weld metal cannot be sufficiently obtained. On the other hand, if Ni exceeds 1.0%, high-temperature cracks are likely to occur in the weld metal. Therefore, Ni is set to 0.05 to 1.0%.

[Sn:0.01〜0.30%及びSb:0.01〜0.30%の1種又は2種]
Snは金属Snから、Sbは金属Sb、Fe−Sb、アンチモン化マンガン及びFe−Si−Sbから添加され、前記Mo、Cu及び硫化鉄との共存において溶接金属の耐食性の向上及び固体Sの析出を抑制する効果を有する。Snが0.01%未満及びSbが0.01%未満の1種又は2種では、溶接金属の耐食性の向上効果が十分に得られない。一方、Snが0.30超又はSbが0.30%超の1種又は2種では、溶接金属中に高温割れが発生し易くなる。したがって、Snは0.01〜0.30%及びSbは0.01〜0.30%の1種又は2種とする。なお、Snの上限を0.10%、Sbの上限を0.10%とすることが好ましい。
[Sn: 0.01 to 0.30% and Sb: 0.01 to 0.30%, 1 or 2]
Sn is added from the metal Sn, and Sb is added from the metals Sb, Fe-Sb, antimonyated manganese and Fe-Si-Sb. In the coexistence with the Mo, Cu and iron sulfide, the corrosion resistance of the weld metal is improved and the solid S is precipitated. Has the effect of suppressing. With one or two types having Sn of less than 0.01% and Sb of less than 0.01%, the effect of improving the corrosion resistance of the weld metal cannot be sufficiently obtained. On the other hand, when Sn is more than 0.30 or Sb is more than 0.30% of one or two, high temperature cracking is likely to occur in the weld metal. Therefore, Sn is 0.01 to 0.30% and Sb is 0.01 to 0.30%, which is one or two types. It is preferable that the upper limit of Sn is 0.10% and the upper limit of Sb is 0.10%.

なお、本発明を適用した原油油槽鋼の低水素系被覆アーク溶接棒の残部は、塗装剤として、ヘクトライト、マイカ等の1種以上及び鉄粉中のFe分、鉄合金のFe分及び不可避不純物である。 The rest of the low hydrogen-based shielded metal arc welding rod of crude oil tank steel to which the present invention is applied is unavoidable as a coating agent of one or more of hectolite, mica, etc., Fe content in iron powder, Fe content of iron alloy, and so on. It is an impurity.

また、使用する鋼心線は、JIS G3523 SWY11を用いることが好ましい。さらに、被覆剤の鋼心線への被覆率は、溶接棒全質量に対する被覆剤の質量%で25〜40%であることが好ましい。 Further, it is preferable to use JIS G3523 SWY11 as the steel core wire to be used. Further, the coverage of the coating material on the steel core wire is preferably 25 to 40% in mass% of the coating agent with respect to the total mass of the welding rod.

本発明の効果を実施例により具体的に説明する。 The effects of the present invention will be specifically described with reference to Examples.

表1に示す直径4.0mm、長さ400mmの鋼心線に、表2に示す被覆剤を被覆率25〜35%で塗装後、乾燥した各種低水素系被覆アーク溶接棒を試作した。 Various low-hydrogen-based coated arc welding rods, which were dried after coating the coating agent shown in Table 2 with a coating ratio of 25 to 35% on a steel core wire having a diameter of 4.0 mm and a length of 400 mm shown in Table 1, were prototyped.

Figure 2020189302
Figure 2020189302

Figure 2020189302
Figure 2020189302

これら試作溶接棒を使用し、溶接作業性、溶接欠陥、溶接金属の機械的性能及び耐食性について調査した。 Using these prototype welding rods, welding workability, welding defects, mechanical performance and corrosion resistance of weld metal were investigated.

溶接作業性の評価は、板厚12mm、幅100mm、長さ450mmの軟鋼板をT字に組んだ試験体を用い、交流溶接機を使用し、水平すみ肉では溶接電流160〜180A、立向姿勢では120〜140Aを使用して溶接を行い、アーク吹き付け、アーク集中性、アーク安定性、スラグ剥離性、ビード形状、スパッタ発生量、棒焼けの有無、高温割れの有無を目視で調査した。なお、棒焼けの有無は、200Aで水平すみ肉溶接を行った際、鋼心線が発熱して棒焼けしないものを良好とし、高温割れは、溶接後の溶接ビードのクレータ割れの有無を調査した。 Welding workability was evaluated by using a test piece made of mild steel plates with a thickness of 12 mm, width of 100 mm, and length of 450 mm assembled in a T shape, using an AC welder, and welding current of 160 to 180 A for horizontal fillets, vertical. Welding was performed using 120 to 140 A in the posture, and the presence or absence of arc spraying, arc concentration, arc stability, slag peelability, bead shape, spatter generation amount, stick burning, and high temperature cracking were visually inspected. As for the presence or absence of bar burning, it is preferable that the steel core wire generates heat when horizontal fillet welding is performed at 200A and the bar does not burn, and for high temperature cracks, the presence or absence of crater cracks in the weld bead after welding is investigated. did.

溶接金属の機械的性能の評価は、JIS Z3111に準じて溶着金属試験を行い、溶接欠陥の有無をX線透過試験で調査した後、腐食試験、引張試験、衝撃試験を行った。 To evaluate the mechanical performance of the weld metal, a weld metal test was conducted according to JIS Z3111, the presence or absence of welding defects was investigated by an X-ray transmission test, and then a corrosion test, a tensile test, and an impact test were performed.

引張試験の評価は、引張強さが490〜590MPaを良好とした。また、靭性の評価は、試験温度−30℃で繰り返し3回シャルピー衝撃試験を行い、吸収エネルギーの平均値が55J以上を良好とした。 In the evaluation of the tensile test, the tensile strength was good at 490 to 590 MPa. The toughness was evaluated by repeating the Charpy impact test three times at a test temperature of −30 ° C., and the average value of absorbed energy was 55 J or more.

溶接金属の耐食性の評価は、原油油槽環境を模擬した環境での腐食試験を行った。溶着金属試験の鋼材表面1mmの位置から溶接線方向に、長さ80mm、幅30mm、厚さ4mmの試験片を、表面が全て溶接部になるように採取した。次いで、試験片全面を機械研削し、600番の湿式研磨処理の後、80mm×30mmの表面の一面のみを残して端面、裏面を塗料で被覆した。そして、この試験片を、pHが0.2で、20mass%NaClを溶解した1体積%HCl水溶液からなる腐食液中に浸漬した。この際の浸漬条件としては、液温30℃、浸漬時間720時間で実施し、最大腐食深さを測定し、腐食速度に換算(mm/年)して評価し、試験片の最大腐食速度が0.25mm/年以下となるものを良好とした。なお、上述した腐食液の組成は、実際の鋼構造物で局部腐食が発生する際の環境の条件を模擬したものであり、この腐食試験での腐食速度の低減に応じて、実環境で局部腐食の進展速度が低減される。 To evaluate the corrosion resistance of the weld metal, a corrosion test was conducted in an environment simulating the crude oil tank environment. A test piece having a length of 80 mm, a width of 30 mm, and a thickness of 4 mm was collected from a position of 1 mm on the surface of the steel material in the weld metal test in the direction of the weld line so that the entire surface was a welded portion. Next, the entire surface of the test piece was mechanically ground, and after a wet polishing treatment of No. 600, the end face and the back surface were covered with paint, leaving only one surface of 80 mm × 30 mm. Then, this test piece was immersed in a corrosive solution consisting of a 1% by volume HCl aqueous solution in which 20 mass% NaCl was dissolved at a pH of 0.2. As the immersion conditions at this time, the process was carried out at a liquid temperature of 30 ° C. and an immersion time of 720 hours, the maximum corrosion depth was measured, converted into a corrosion rate (mm / year), and evaluated, and the maximum corrosion rate of the test piece was determined. Those having a thickness of 0.25 mm / year or less were considered good. The composition of the above-mentioned corrosive liquid simulates the environmental conditions when local corrosion occurs in an actual steel structure, and according to the reduction in the corrosion rate in this corrosion test, the local corrosion occurs locally in the actual environment. The rate of corrosion development is reduced.

Figure 2020189302
Figure 2020189302

表2及び表3中、溶接棒No.1〜No.15が本発明例、溶接棒No.16〜No.32は比較例である。 In Tables 2 and 3, the welding rod No. 1-No. 15 is an example of the present invention, welding rod No. 16-No. 32 is a comparative example.

本発明例である溶接棒No.1〜No.15は、被覆剤中のSi、Mn、Ti、Cu、Mo及びWの1種又は2種、金属炭酸塩の1種又は2種以上の合計、Ti酸化物のTiO2換算値の合計、Si酸化物のSiO2換算値の合計、Al酸化物のAl23換算値の合計、金属弗化物の1種又は2種以上の合計、有機物の1種又は2種以上の合計、硫化鉄、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が適正であるので、アーク吹き付けが適正で、アーク集中性及びアーク安定性が良好で、スパッタ発生量が少なく、スラグ剥離性に優れ、ビード形状が良好で、棒焼けも発生せず、良好な溶接作業性が得られた。また、溶接欠陥が無く、溶着金属の引張強さ及び吸収エネルギーも良好な結果であった。さらに、最大腐食速度も少なく極めて満足な結果であった。また、溶接棒No.3、6、8、11、15はSn及びSbの1種又は2種が適量添加され、溶接棒No.2、8、13、15はNiが適量添加されているので、溶接金属の最大腐食速度が0.20mm/年未満と非常に低かった。 Welding rod No. which is an example of the present invention. 1-No. 15 is the total of 1 or 2 of Si, Mn, Ti, Cu, Mo and W in the coating agent, 1 or 2 or more of metal carbonates, the total of TiO 2 conversion values of Ti oxides, and Si. Total SiO 2 conversion values of oxides, total Al 2 O 3 conversion values of Al oxides, total of one or more types of metal fluorides, total of one or more types of organic substances, iron sulfide, Since the sum of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound is appropriate, the arc spraying is appropriate, the arc concentration and arc stability are good, the amount of spatter generated is small, and the slag is peeled off. Excellent properties, good bead shape, no stick burning, and good welding workability was obtained. In addition, there were no welding defects, and the tensile strength and absorbed energy of the weld metal were also good results. Furthermore, the maximum corrosion rate was low and the results were extremely satisfactory. In addition, the welding rod No. For 3, 6, 8, 11 and 15, one or two types of Sn and Sb were added in appropriate amounts, and the welding rod No. Since an appropriate amount of Ni was added to 2, 8, 13 and 15, the maximum corrosion rate of the weld metal was very low, less than 0.20 mm / year.

比較例中溶接棒No.16は、Siが多いので、溶着金属の吸収エネルギーが低かった。また、Al酸化物のAl23換算値の合計が多いので、ビード形状が凸状であった。また、融合不良が生じた。 Welding rod No. in the comparative example. Since 16 had a large amount of Si, the absorbed energy of the weld metal was low. Moreover, since the total of Al 2 O 3 conversion values of Al oxide was large, the bead shape was convex. In addition, poor fusion occurred.

溶接棒No.17は、Siが少ないので、アークが不安定であった。また、溶着金属中にブローホールが発生した。さらに、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が多いので、アーク吹き付けが過剰に強く、ビード形状が不良であった。 Welding rod No. In No. 17, the arc was unstable because the amount of Si was small. In addition, blow holes were generated in the weld metal. Further, since the total of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound was large, the arc spraying was excessively strong and the bead shape was poor.

溶接棒No.18は、Mnが多いので、溶着金属の引張強さが高く、吸収エネルギーが低かった。また、金属弗化物の1種又は2種以上の合計が多いので、スラグ剥離性が不良であった。 Welding rod No. In No. 18, since Mn was large, the tensile strength of the weld metal was high and the absorbed energy was low. Further, since the total amount of one type or two or more types of metal fluoride was large, the slag peelability was poor.

溶接棒No.19は、Mnが少ないので、溶着金属の引張強さが低かった。また、金属弗化物の1種又は2種以上の合計が少ないので、ビード形状が不良であった。 Welding rod No. In No. 19, since Mn was small, the tensile strength of the weld metal was low. Moreover, since the total amount of one or more types of metal fluoride is small, the bead shape is poor.

溶接棒No.20は、Tiが多いので、溶着金属の吸収エネルギーが低かった。また、Al酸化物のAl23換算値の合計が少ないので、ビード形状が不良であった。 Welding rod No. No. 20 had a large amount of Ti, so that the absorbed energy of the weld metal was low. In addition, since the total of Al 2 O 3 conversion values of Al oxide was small, the bead shape was poor.

溶接棒No.21は、Tiが少ないので、アークが不安定で、スパッタ発生量が多かった。また、溶着金属の吸収エネルギーが低かった。 Welding rod No. In No. 21, since Ti was small, the arc was unstable and the amount of spatter generated was large. In addition, the absorbed energy of the weld metal was low.

溶接棒No.22は、Cuが多いので、溶着金属の吸収エネルギーが低かった。また、金属炭酸塩の1種又は2種以上の合計が多いので、アークが不安定で、ビード形状が凸状となり、スラグ剥離性も不良であった。 Welding rod No. No. 22 had a large amount of Cu, so that the absorbed energy of the weld metal was low. In addition, since the total amount of one or more metal carbonates is large, the arc is unstable, the bead shape is convex, and the slag peelability is also poor.

溶接棒No.23は、Cuが少ないので、溶着金属の最大腐食速度が高かった。また、SnとSbの1種又は2種の合計が少なかったので、耐食性の向上効果が得られなかった。さらに、有機物の1種又は2種以上の合計が少ないので、アーク集中性が不良であった。 Welding rod No. In No. 23, since the amount of Cu was small, the maximum corrosion rate of the weld metal was high. Further, since the total of one or two types of Sn and Sb was small, the effect of improving the corrosion resistance could not be obtained. Further, since the total amount of one or more organic substances is small, the arc concentration is poor.

溶接棒No.24は、Mo及びWの1種又は2種が多いので、溶接金属の吸収エネルギーが低かった。また、Si酸化物のSiO2換算値の合計が多いので、ビード形状が不良であった。 Welding rod No. In No. 24, since there were many types 1 or 2 of Mo and W, the absorbed energy of the weld metal was low. In addition, the bead shape was poor because the total value of Si oxide converted to SiO 2 was large.

溶接棒No.25は、Mo及びWの1種又は2種が少ないので、溶着金属の最大腐食速度が高かった。また、金属炭酸塩の1種又は2種以上の合計が少ないので、溶接金属中にブローホールが発生し、棒焼けが発生した。 Welding rod No. In No. 25, since one or two types of Mo and W were small, the maximum corrosion rate of the weld metal was high. Further, since the total amount of one type or two or more types of metal carbonate is small, blow holes are generated in the weld metal, and rod burning occurs.

溶接棒No.26は、硫化鉄が多いので、ビード形状が不良であった。 Welding rod No. No. 26 had a poor bead shape because it contained a large amount of iron sulfide.

溶接棒No.27は、Si酸化物のSiO2換算値の合計が少ないので、アークが不安定で、スラグ剥離性が不良であった。また、硫化鉄が少ないので、溶着金属の最大腐食速度が高かった。 Welding rod No. In No. 27, since the total value of Si oxides converted to SiO 2 was small, the arc was unstable and the slag peeling property was poor. Moreover, since the amount of iron sulfide was small, the maximum corrosion rate of the weld metal was high.

溶接棒No.28は、Ti酸化物のTiO2換算値が多いので、ビード形状が凸状であった。また、融合不良が生じた。 Welding rod No. No. 28 had a convex bead shape because the Ti oxide had a large TiO 2 conversion value. In addition, poor fusion occurred.

溶接棒No.29は、Ti酸化物のTiO2換算値が少ないので、アークが不安定で、スパッタ発生量が多かった。また、ビード形状が不良であった。さらに、有機物の1種又は2種以上の合計が多いので、棒焼けが発生した。 Welding rod No. In No. 29, since the value of Ti oxide converted to TIO 2 was small, the arc was unstable and the amount of spatter generated was large. In addition, the bead shape was poor. Furthermore, since the total amount of one or more organic substances is large, stick burning occurred.

溶接棒No.30は、Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計が少ないので、アークの集中性が不良で、アークが不安定でスパッタ発生量が多かった。また、Sn及びSbの1種又は2種が多いので、クレータ割れが発生した。 Welding rod No. In No. 30, since the sum of the Na 2 O conversion value and the K 2 O conversion value of the Na compound and the K compound was small, the arc concentration was poor, the arc was unstable, and the amount of sputtering generated was large. In addition, since there are many types 1 or 2 of Sn and Sb, crater cracking occurred.

溶接棒No.31は、Mo及びWの1種又は2種が少ないので、溶着金属の最大腐食速度が高かった。また、Niが少ないので、耐食性の向上効果が得られなかった。 Welding rod No. In No. 31, the maximum corrosion rate of the weld metal was high because one or two types of Mo and W were small. Further, since the amount of Ni is small, the effect of improving the corrosion resistance could not be obtained.

溶接棒No.32は、Al酸化物のAl23換算値の合計が少ないので、ビード形状が不良であった。また、Niが多いので、クレータ割れが発生した。 Welding rod No. In No. 32, the total of Al 2 O 3 conversion values of Al oxide was small, so that the bead shape was poor. Moreover, since there is a large amount of Ni, crater cracking occurred.

Claims (3)

鋼心線に被覆剤が塗装されている原油油槽鋼の低水素系被覆アーク溶接棒において、
前記被覆剤は、被覆剤全質量に対する質量%で、
Si:3.5〜8.0%、
Mn:0.5〜2.0%、
Ti:0.3〜1.5%、
Cu:0.2〜1.0%、
Mo:0.05〜0.50%及びW:0.05〜0.50%の1種又は2種、
金属炭酸塩の1種又は2種以上の合計:45〜55%、
Ti酸化物のTiO2換算値の合計:2〜8%、
Si酸化物のSiO2換算値の合計:3〜10%、
Al酸化物のAl23換算値の合計:0.5〜5.0%、
金属弗化物の1種又は2種以上の合計:10〜20%、
有機物の1種又は2種以上の合計:0.3〜1.5%、
硫化鉄:0.05〜0.09%、
Na化合物及びK化合物のNa2O換算値及びK2O換算値の合計:1〜5%を含有し、
残部は塗装剤、鉄粉中のFe分、鉄合金のFe分及び不可避不純物からなることを特徴とする原油油槽鋼の低水素系被覆アーク溶接棒。
In a low hydrogen-based shielded metal arc welding rod of crude oil tank steel in which a coating agent is coated on the steel core wire,
The coating agent is a mass% based on the total mass of the coating agent.
Si: 3.5-8.0%,
Mn: 0.5-2.0%,
Ti: 0.3-1.5%,
Cu: 0.2-1.0%,
One or two types of Mo: 0.05 to 0.50% and W: 0.05 to 0.50%,
Total of one or more metal carbonates: 45-55%,
Total TiO 2 conversion value of Ti oxide: 2-8%,
Total SiO 2 conversion value of Si oxide: 3-10%,
Total Al 2 O 3 conversion value of Al oxide: 0.5-5.0%,
Total of one or more metal fluorides: 10-20%,
Total of one or more organic substances: 0.3-1.5%,
Iron sulfide: 0.05-0.09%,
Total of Na 2 O conversion value and K 2 O conversion value of Na compound and K compound: 1 to 5% is contained.
The balance is a low hydrogen-based shielded metal arc welding rod of crude oil tank steel, which is composed of a coating agent, Fe content in iron powder, Fe content of iron alloy, and unavoidable impurities.
被覆剤全質量に対する質量%で、Ni:0.05〜1.0%を更に含有することを特徴とする請求項1に記載の原油油槽鋼の低水素系被覆アーク溶接棒。 The low hydrogen-based coated arc welding rod for crude oil tank steel according to claim 1, further containing Ni: 0.05 to 1.0% in mass% with respect to the total mass of the coating agent. 被覆剤全質量に対する質量%で、Sn:0.01〜0.30%、Sb:0.01〜0.30%の1種又は2種を更に含有することを特徴とする請求項1又は2に記載の原油油槽鋼の低水素系被覆アーク溶接棒。 Claim 1 or 2 further contains one or two kinds of Sn: 0.01 to 0.30% and Sb: 0.01 to 0.30% in mass% with respect to the total mass of the coating agent. Low hydrogen-based shielded metal arc welding rod for crude oil tank steel described in.
JP2019094081A 2019-05-17 2019-05-17 Low-Hydrogen Covered Arc Welding Rod for Crude Oil Tank Steel Active JP7308657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019094081A JP7308657B2 (en) 2019-05-17 2019-05-17 Low-Hydrogen Covered Arc Welding Rod for Crude Oil Tank Steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019094081A JP7308657B2 (en) 2019-05-17 2019-05-17 Low-Hydrogen Covered Arc Welding Rod for Crude Oil Tank Steel

Publications (2)

Publication Number Publication Date
JP2020189302A true JP2020189302A (en) 2020-11-26
JP7308657B2 JP7308657B2 (en) 2023-07-14

Family

ID=73453192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019094081A Active JP7308657B2 (en) 2019-05-17 2019-05-17 Low-Hydrogen Covered Arc Welding Rod for Crude Oil Tank Steel

Country Status (1)

Country Link
JP (1) JP7308657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114905187A (en) * 2022-04-29 2022-08-16 燕山大学 Low-hydrogen type welding rod applicable to austenitic light steel and preparation method
CN117943741A (en) * 2024-02-29 2024-04-30 重庆大学 Welding rod for corrosion-resistant high-strength steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174274A (en) * 1994-12-26 1996-07-09 Nippon Steel Corp Low hydrogen type coated arc electrode
JP2004090044A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Coated electrode for low alloy steel welding having excellent resistance to sulfuric acid and hydrochloric acid
CN101817130A (en) * 2010-04-06 2010-09-01 天津大桥焊材集团有限公司 Fire and weather resistant steel welding rod at the level of 50 kilograms and preparation method thereof
JP2014188540A (en) * 2013-03-26 2014-10-06 Nippon Steel & Sumikin Welding Co Ltd Low hydrogen type covered electrode
JP2017217672A (en) * 2016-06-08 2017-12-14 日鐵住金溶接工業株式会社 Low-hydrogen type covered arc welding rod

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08174274A (en) * 1994-12-26 1996-07-09 Nippon Steel Corp Low hydrogen type coated arc electrode
JP2004090044A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Coated electrode for low alloy steel welding having excellent resistance to sulfuric acid and hydrochloric acid
CN101817130A (en) * 2010-04-06 2010-09-01 天津大桥焊材集团有限公司 Fire and weather resistant steel welding rod at the level of 50 kilograms and preparation method thereof
JP2014188540A (en) * 2013-03-26 2014-10-06 Nippon Steel & Sumikin Welding Co Ltd Low hydrogen type covered electrode
JP2017217672A (en) * 2016-06-08 2017-12-14 日鐵住金溶接工業株式会社 Low-hydrogen type covered arc welding rod

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114905187A (en) * 2022-04-29 2022-08-16 燕山大学 Low-hydrogen type welding rod applicable to austenitic light steel and preparation method
CN114905187B (en) * 2022-04-29 2023-01-31 燕山大学 Low-hydrogen type welding rod applicable to austenitic light steel and preparation method
CN117943741A (en) * 2024-02-29 2024-04-30 重庆大学 Welding rod for corrosion-resistant high-strength steel

Also Published As

Publication number Publication date
JP7308657B2 (en) 2023-07-14

Similar Documents

Publication Publication Date Title
JP5704573B2 (en) Flux-cored wire for gas shielded arc welding of crude oil tank steel
JP5717688B2 (en) Flux-cored wire for horizontal fillet gas shielded arc welding of crude oil tank steel
JP6786472B2 (en) Flux-cored wire for duplex stainless steel welding
JP6939508B2 (en) Corrosion-resistant steel gas shield arc welding flux-cored wire and welding joint manufacturing method
JP7408295B2 (en) Covered arc welding rod for 9% Ni steel welding
JP7308657B2 (en) Low-Hydrogen Covered Arc Welding Rod for Crude Oil Tank Steel
KR102272173B1 (en) Manufacturing method of flux-encapsulated wire, manufacturing method of flux-laden wire and welded joint
JP2009190042A (en) Two-electrode fillet gas-shielded metal arc welding method
JP6815157B2 (en) Flux-cored wire for gas shielded arc welding of crude oil tank steel
JP4838100B2 (en) Flux-cored wire for horizontal corner gas shielded arc welding for weathering steel
JP6658424B2 (en) Flux-cored wire for gas shielded arc welding of corrosion resistant steel
JP2021090980A (en) Flux-cored wire for gas shielded arc welding for coastal weather-resistant steel
JP5863570B2 (en) Flux-cored wire for gas shielded arc welding
CN111819030B (en) Method for manufacturing flux-cored wire and method for manufacturing welded joint
JP6463234B2 (en) Flux-cored wire for two-electrode horizontal fillet gas shielded arc welding of crude oil tank steel
JP7321958B2 (en) Flux-cored wire for gas-shielded arc welding of seawater-resistant steel
JPH08300185A (en) Nickel-base coated electrode
JP7383513B2 (en) Covered arc welding rod for 9% Ni steel welding
JP7346328B2 (en) Low hydrogen coated arc welding rod for horizontal fillet welding
JP2022121317A (en) Wire with flux for gas shield arc-welding
JP2022121316A (en) Wire with flux for gas shield arc-welding
JP2022149326A (en) Flux-cored wire for welding 9% Ni steel
JP2023147099A (en) Coated arc welding rod for galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230704

R150 Certificate of patent or registration of utility model

Ref document number: 7308657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150