JPH09253886A - Flux cored wire for gas shielded metal arc welding for 690mpa class high tensile steel - Google Patents
Flux cored wire for gas shielded metal arc welding for 690mpa class high tensile steelInfo
- Publication number
- JPH09253886A JPH09253886A JP8069537A JP6953796A JPH09253886A JP H09253886 A JPH09253886 A JP H09253886A JP 8069537 A JP8069537 A JP 8069537A JP 6953796 A JP6953796 A JP 6953796A JP H09253886 A JPH09253886 A JP H09253886A
- Authority
- JP
- Japan
- Prior art keywords
- wire
- amount
- welding
- flux
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Arc Welding In General (AREA)
- Nonmetallic Welding Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、690MPa級高
張力鋼の溶接において、溶接ままおよび溶接後熱処理
(以下、PWHTとも言う)を行った後の溶接金属性
能、特に高温強度と低温靭性の両立が可能なフラックス
入りワイヤに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to welding of 690 MPa-class high-strength steel, as-welded and after-weld heat treatment (hereinafter, also referred to as PWHT), weld metal performance, particularly both high temperature strength and low temperature toughness. And a flux-cored wire capable of
【0002】[0002]
【従来の技術】近年、石油化学プラントや発電設備で使
用される圧力容器やペンストックなどでは、操業効率向
上の目的でより高圧での操業が望まれ、構造物に使用さ
れる鋼材および溶接部の高強度化が進み、690MPa
級高張力鋼の適用が増加しつつある。従来、これらの鋼
材にはMn−Mo鋼やMn−Mo−Ni鋼が使用されて
いるが、溶接部における、PWHT後の高温強度および
低温靭性、特に装置の設置地域によっては氷点下域での
靭性を考慮して、低温用Mn−Ni系鋼をベースとして
0.5%未満のCrやNi、Cuさらには微量のNbや
V添加したタイプの鋼種も使用されている。これらの鋼
材を用いた装置では、溶接部の強度要求の例として、例
えば620℃×12時間のPWHT後の350℃におけ
る高温強度が600MPaでかつPWHT後におけるの
溶接部の靭性が−30℃で47J以上のようなものがあ
り、従来のフラックス入りワイヤの技術で対応するには
非常に厳しい要求となってきている。2. Description of the Related Art In recent years, in pressure vessels and penstocks used in petrochemical plants and power generation facilities, it is desired to operate at a higher pressure for the purpose of improving operational efficiency, and steel materials and welds used for structures are required. Of 690 MPa
The application of high-grade high-strength steel is increasing. Conventionally, Mn-Mo steel and Mn-Mo-Ni steel have been used for these steel materials, but the high temperature strength and low temperature toughness after PWHT in the welded part, especially the toughness in the sub-zero region depending on the installation area of the equipment. In consideration of the above, a steel type of a type in which Cr, Ni, Cu of less than 0.5% and a trace amount of Nb or V are added based on low temperature Mn-Ni steel is also used. In the apparatus using these steel materials, as an example of the strength requirement of the welded part, for example, the high temperature strength at 350 ° C. after PWHT for 620 ° C. × 12 hours is 600 MPa and the toughness of the welded part after PWHT is −30 ° C. There are things such as 47 J or more, and it is becoming very strict requirement to cope with the conventional flux-cored wire technology.
【0003】一方、溶接施工法としては、溶接棒に比べ
高能率であり、姿勢溶接における溶接ビード形状も良好
であることから、フラックス入りワイヤを用いたガスシ
ールドアーク溶接を採用する事例が増加している。特
に、高温高圧で使用される部材には、十分な高温強度と
同時に溶接部の脆性破壊防止の観点から、低温における
靭性の要求もより高度化してきており、高強度と高靭性
の両立が大きな課題となっている。On the other hand, as a welding method, the efficiency is higher than that of a welding rod and the shape of the welding bead in the posture welding is good, so that the number of cases of using gas shielded arc welding using flux-cored wire is increasing. ing. In particular, for members used at high temperature and high pressure, the requirements for toughness at low temperatures have also become more sophisticated from the viewpoint of sufficient high temperature strength and at the same time preventing brittle fracture of the welded part, and compatibility of high strength and high toughness is great. It has become a challenge.
【0004】また、このような高強度部材の溶接では、
溶接部の残留応力緩和や溶接影響部の軟化、溶接金属中
の水素を拡散放出する等の目的で、溶接部にPWHTを
行うことが一般である。ところが、このPWHTが高温
長時間におよぶ場合には、溶接金属の靭性が劣化するこ
とがある。特にフラックス入りワイヤを用いて施工され
るガスシールドアーク溶接部においては、ソリッドワイ
ヤや溶接棒、サブマージアーク溶接に比べて、溶接金属
中の酸素レベルが高く、PWHTによる靭性劣化の挙動
も異なっており、溶接まま、PWHT後の何れにおいて
も良好な溶接金属性能の得られる、最適な成分設計のフ
ラックス入りワイヤの開発が要望されていた。In welding such high strength members,
PWHT is generally performed on the welded portion for the purpose of relaxing the residual stress in the welded portion, softening the welded affected portion, and diffusing and releasing hydrogen in the weld metal. However, when this PWHT is exposed to high temperature for a long time, the toughness of the weld metal may deteriorate. In particular, in gas shielded arc welds constructed using flux-cored wire, the oxygen level in the weld metal is higher and the behavior of toughness deterioration due to PWHT is different compared to solid wire, welding rod, and submerged arc welding. It has been demanded to develop a flux-cored wire having an optimum component design, which can obtain good weld metal performance both in the as-welded state and after PWHT.
【0005】Ni系低合金鋼用フラックス入りワイヤの
PWHT後の溶接金属性能に関しては、例えば、特開昭
52−65736号公報にMn−Ni−Cu鋼系のサブ
マージアーク溶接用フラックス入りワイヤに関する技術
が開示されているが、この発明のフラックス入りワイヤ
では、ガスーシールドアーク溶接での立向や上向溶接は
困難であると共に、PWHT後の溶接部の高温強度と低
温靭性の両立もできない。Regarding the weld metal performance of the flux cored wire for Ni-based low alloy steel after PWHT, for example, a technique relating to a flux cored wire for Mn-Ni-Cu steel-based submerged arc welding is disclosed in JP-A-52-65736. However, with the flux-cored wire of the present invention, it is difficult to perform vertical or upward welding in gas-shield arc welding, and it is not possible to achieve both high temperature strength and low temperature toughness of the welded portion after PWHT.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記690
MPa級高張力鋼の溶接において、全姿勢溶接で良好な
ビ−ド形状、作業性及び作業能率を確保し、さらに長時
間PWHT後の溶接部の高温強度と低温靭性が良好なフ
ラックス入りワイヤの提供することを目的とするもので
ある。The present invention is based on the above-mentioned 690.
In welding of MPa-class high-strength steel, a flux-cored wire that ensures good bead shape, workability and work efficiency in all-position welding, and has good high-temperature strength and low-temperature toughness of the welded portion after long-time PWHT It is intended to be provided.
【0007】[0007]
【課題を解決するための手段】本発明は、かかる目的の
ために、ワイヤ成分を種々検討した結果完成したもので
あり、その要旨は、鋼製外皮内に粉体を充填してなるガ
スシールドアーク溶接用フラックス入りワイヤにおい
て、ワイヤ全重量に対して重量%で、TiO2 :3.0
〜6.0%、金属弗化物:1.0〜2.0%、を必須と
するスラグ剤とC:0.15%以下、Si:0.3〜
1.2%、Mn:0.5〜2.5%、Ni:1.0〜
3.0%、Cr:0.3%以下、Mo:0.2%以下、
Cu:0.5%以下、Mg:0.4〜1.2%を必須と
する金属脱酸成分または合金成分を(1)式で表される
ワイヤの炭素当量CeqFCWが0.43〜0.50%
となるように含有し、さらに合金成分としてTi:0.
01〜0.20%、B:0.005〜0.015%を含
有し、さらにワイヤ中のMg量と金属弗化物量との比が
0.4≦(Mg量/金属弗化物量)≦0.8であること
を特徴とする690MPa級高張力鋼用ガスシールドア
ーク溶接用フラックス入りワイヤである。The present invention has been completed as a result of various studies on wire components for the above purpose, and the gist thereof is a gas shield obtained by filling a powder into an outer shell of steel. In the flux-cored wire for arc welding, TiO 2 : 3.0% by weight based on the total weight of the wire.
To 6.0%, metal fluoride: 1.0 to 2.0%, and a slag agent that is essential and C: 0.15% or less, Si: 0.3 to
1.2%, Mn: 0.5 to 2.5%, Ni: 1.0 to
3.0%, Cr: 0.3% or less, Mo: 0.2% or less,
Cu: 0.5% or less and Mg: 0.4 to 1.2% are essential metal deoxidizing components or alloying components, and the carbon equivalent CeqFCW of the wire represented by the formula (1) is 0.43 to 0. 50%
So that the content of Ti: 0.
01 to 0.20%, B: 0.005 to 0.015%, and the ratio of the amount of Mg in the wire to the amount of metal fluoride is 0.4 ≦ (Mg amount / metal fluoride amount) ≦ It is a flux-cored wire for gas shielded arc welding for 690 MPa class high-strength steel, characterized in that it is 0.8.
【0008】[0008]
【発明の実施の形態】前述したように、690MPa級
高張力鋼を用いた高温高圧装置の溶接部は、PWHT後
の高温強度、低温靭性の両立が必要である。従来のフラ
ックス入りワイヤを用いた溶接部では、高温強度が得ら
れるが靭性が不足するか、良好な低温靭性が得られるが
高温強度が不足すると言う問題があり、室温における6
90MPa級の強度、350℃にける600MPa級の
強度かつ氷点下域温度における低温靭性の得られる成分
のフラックス入りワイヤの検討は行われていなかった。
本発明者らは、これらの課題を達成するために、合金成
分およびスラグ組成の溶接金属に及ぼす影響を検討した
結果、以下の知見を得た。BEST MODE FOR CARRYING OUT THE INVENTION As described above, the weld portion of the high temperature and high pressure apparatus using 690 MPa class high strength steel is required to have both high temperature strength and low temperature toughness after PWHT. A conventional welded part using a flux-cored wire has a problem that high temperature strength is obtained but toughness is insufficient, or good low temperature toughness is obtained but high temperature strength is insufficient.
The flux-cored wire, which is a component capable of obtaining 90 MPa-class strength, 600 MPa-class strength at 350 ° C., and low-temperature toughness at temperatures below freezing, has not been studied.
The present inventors have obtained the following findings as a result of examining the effects of alloy components and slag composition on weld metal in order to achieve these objects.
【0009】 Si−Mn−Ni系をベースとしたワ
イヤ組成にCr、Mo、Cu、Ti、Bを適正の組合せ
成分となるよう少量ずつ複合添加することにより、高温
強度と低温靭性の両立が可能である。 全姿勢溶接で、安定した低温靭性および高温での延
性が得られるためには、スラグ剤の組成とMgの添加量
を適正な組合せにすることによって、スラグと溶接金属
の粘性を調整し、低温靭性を阻害する非金属介在物を低
下せしめる必要がある。High-temperature strength and low-temperature toughness can be achieved by adding Cr, Mo, Cu, Ti, and B to the wire composition based on the Si-Mn-Ni system in small amounts so as to form an appropriate combination component. Is. In order to obtain stable low temperature toughness and ductility at high temperature in all position welding, the viscosity of the slag and weld metal is adjusted by adjusting the composition of the slag agent and the addition amount of Mg in an appropriate amount, It is necessary to reduce non-metallic inclusions that impair toughness.
【0010】本発明は以上の知見を基に、ワイヤの構成
成分を適正な組合せとすることによってのみ効果を発揮
するが、ワイヤの構成要素および個々の添加成分の成分
量限定理由について以下に述べる。 TiO2:3.0〜6.0% TiO2は、アーク安定剤であると共に後述の金属弗化
物と共にスラグ剤の主成分を構成する。溶接時に溶接金
属を被包して大気から遮断すると共に、適度な粘性によ
り溶接ビード形状に影響し、特に姿勢溶接では、他の金
属成分とのバランスによりメタルの垂れ性に大きく影響
する。一方、溶融型または非溶融型の非金属介在物成分
を生成させる原因にもなり、溶接金属性能に影響する。
TiO2が3.0%未満では、スラグの被包が不充分で
姿勢溶接が困難である。また、6.0%を越える場合に
は、金属弗化物との組合せにおいてスラグ量過剰とな
り、姿勢溶接で溶接金属を保持し難くなると共に非溶融
型の非金属介在物が形成され、溶接金属の靭性が劣化す
る。Based on the above findings, the present invention is effective only by appropriately combining the constituent components of the wire, but the reasons for limiting the constituent amounts of the constituent components of the wire and the individual additive components will be described below. . TiO 2: 3.0~6.0% TiO 2 constitutes a major component of the slag agent with later metal fluorides as well as a arc stabilizer. At the time of welding, the weld metal is encapsulated and shielded from the atmosphere, and the moderate viscosity affects the shape of the weld bead. Especially, in position welding, the balance with other metal components greatly affects the sagging property of the metal. On the other hand, it also causes the formation of molten or non-molten non-metallic inclusion components, which affects the weld metal performance.
If TiO 2 is less than 3.0%, the slag is not sufficiently encapsulated and posture welding is difficult. On the other hand, if it exceeds 6.0%, the amount of slag becomes excessive in combination with the metal fluoride, it becomes difficult to hold the weld metal in the posture welding, and a non-melting type non-metal inclusion is formed, so that the weld metal The toughness deteriorates.
【0011】金属弗化物:1.0〜2.0% CaF2、NaF、MgF2、BaF2、K2ZrF6等の
弗化物は、溶接アークによって分解生成する弗素ガスの
作用により、溶接金属の脱酸に効果があると共に、スラ
グの塩基度および粘性に大きく影響する。後述のMgと
のバランスにより適正な成分量が決定されるが、金属弗
化物が1.0%未満では、溶接金属の脱酸が不充分とな
り、溶接金属の靭性が劣化する。また2.0%を越える
場合には、スラグ量が過剰になると共に、アークが不安
定となり姿勢溶接性が劣化する。Metal Fluoride: 1.0 to 2.0% Fluoride such as CaF 2 , NaF, MgF 2 , BaF 2 and K 2 ZrF 6 is a weld metal due to the action of fluorine gas decomposed and produced by the welding arc. It has an effect on deoxidation of slag and has a great influence on basicity and viscosity of slag. Although an appropriate amount of components is determined by the balance with Mg described later, if the metal fluoride content is less than 1.0%, the deoxidation of the weld metal will be insufficient and the toughness of the weld metal will deteriorate. On the other hand, if it exceeds 2.0%, the amount of slag becomes excessive, the arc becomes unstable, and the posture weldability deteriorates.
【0012】C:0.15%以下 本発明における690MPa級鋼用フラックス入りワイ
ヤにおいて、溶接金属の高温強度および低温靭性が最適
となるバランスの合金または金属脱酸剤のワイヤ成分
は、後述のCeqFCWによって決定されるが、個々の
成分についても上限または適正成分範囲の限定が必要で
ある。Cは、溶接金属を固溶強化すると共に、最適なバ
ランス量によって溶接金属の靭性に影響する。またPW
HTを行った場合にCrやMn、Cr、Mo、Nb、V
等との炭化物を形成し易い成分との相互作用により靭性
を劣化させる。ワイヤ中のC量が0.15%を越えて添
加された場合には、低温靭性が劣化すると共に、溶接時
にスパッタが多く発生し溶接作業性も劣化する。また、
Cの下限値は後述のCeqFCWが確保されれば、通常
の鋼製外皮成分の値で良く、特に規定されない。C: 0.15% or less In the flux-cored wire for 690 MPa class steel according to the present invention, the wire component of the alloy or metal deoxidizer having a balance that optimizes the high temperature strength and the low temperature toughness of the weld metal is CeqFCW described later. However, the upper limit or the appropriate component range must be limited for each component. C not only strengthens the weld metal by solid solution, but also affects the toughness of the weld metal by the optimum balance amount. Also PW
When HT is performed, Cr, Mn, Cr, Mo, Nb, V
The toughness is deteriorated by the interaction with a component that easily forms a carbide with the above. When the amount of C in the wire exceeds 0.15%, the low temperature toughness deteriorates, and more spatter is generated during welding, and the welding workability also deteriorates. Also,
The lower limit of C is not particularly limited as long as the below-mentioned CeqFCW is secured, and it may be a value of an ordinary steel shell component.
【0013】Si:0.3〜1.2% Siは溶接金属の脱酸および固溶強化を行う成分であ
る。Siが0.3%未満では溶接金属の強度が確保でき
ない。また、0.3%未満の場合、溶接金属の脱酸が不
充分となり、充分な高温強度および低温靭性が確保でき
なくなると共に、アークが不安定となり、さらに脱酸生
成物として生成されるSiO2量が不足し、スラグ粘性
のバランスが崩れ良好な溶接作業性が得られない。ま
た、1.2%を越えた場合には、溶接金属の低温靭性が
劣化する。Si: 0.3 to 1.2% Si is a component for deoxidizing the weld metal and strengthening the solid solution. If Si is less than 0.3%, the strength of the weld metal cannot be secured. On the other hand, if it is less than 0.3%, deoxidation of the weld metal becomes insufficient, sufficient high temperature strength and low temperature toughness cannot be secured, and the arc becomes unstable, and further SiO 2 produced as a deoxidation product. Since the amount is insufficient, the balance of slag viscosity is lost and good welding workability cannot be obtained. If it exceeds 1.2%, the low temperature toughness of the weld metal deteriorates.
【0014】Mn:0.5〜2.5% MnもSiと同様に溶接金属の脱酸および固溶強化剤と
して作用する。0.5%未満では、脱酸不足により低温
靭性が劣化する。逆に、2.5%を越える場合には、溶
接金属の強度が高くなると共にPWHTによって低温靭
性が劣化する。 Ni:1.0〜3.0% Niは、固溶強化により溶接金属の強度を向上させると
共に、耐食性、低温靭性を著しく向上させる。またNi
は他の合金成分に比べPWHTによる低温靭性に及ぼす
脆化度が少ない。本発明では、他の成分とのバランス上
1.0%以上の添加で高温強度および低温靭性の向上効
果が得られるが、3.0%以上添加すると、強度が過大
となる上に溶接時に高温割れが発生し易くなる。Mn: 0.5 to 2.5% Mn also acts as a deoxidizing agent for the weld metal and a solid solution strengthening agent like Si. If it is less than 0.5%, the low temperature toughness deteriorates due to insufficient deoxidation. On the other hand, if it exceeds 2.5%, the strength of the weld metal increases and the low temperature toughness deteriorates due to PWHT. Ni: 1.0 to 3.0% Ni improves the strength of the weld metal by solid solution strengthening, and significantly improves the corrosion resistance and the low temperature toughness. Also Ni
Has a lower degree of embrittlement on the low temperature toughness due to PWHT than other alloy components. In the present invention, the effect of improving high temperature strength and low temperature toughness can be obtained by adding 1.0% or more in terms of balance with other components, but if 3.0% or more is added, the strength becomes excessive and high temperature during welding. Cracks easily occur.
【0015】Cr:0.3%以下、Mo:0.2%以下 CrおよびMoはMnと同様に、溶接金属の高温強度を
増大させる成分である。しかし過大に添加するとPWH
Tにより溶接金属を脆化させるため、本発明では他の合
金剤とのバランスによりCr:0.3%以下、Mo:
0.2%以下に制限する必要がある。 Cu:0.5%以下 Cuは、溶接金属の強度を発揮させると共に、Niと同
時添加することによって、耐食性性を向上させる。また
ワイヤ表面にCuめっきを施すことによってワイヤの通
電性と送給性を安定化する。ワイヤ中のCu添加量は他
の成分とのバランスにより適正量が決定されるが、0.
5%を越える場合には高温割れが発生する。Cr: 0.3% or less, Mo: 0.2% or less Cr and Mo, like Mn, are components that increase the high temperature strength of the weld metal. However, if added too much, PWH
Since the weld metal becomes brittle due to T, in the present invention, Cr: 0.3% or less and Mo: depending on the balance with other alloying agents.
It is necessary to limit it to 0.2% or less. Cu: 0.5% or less Cu exhibits the strength of the weld metal and, at the same time, is added together with Ni to improve the corrosion resistance. In addition, by applying Cu plating to the surface of the wire, the electric conductivity and the feedability of the wire are stabilized. The appropriate amount of Cu added to the wire is determined by the balance with other components.
If it exceeds 5%, hot cracking occurs.
【0016】Mg:0.4〜1.2% Mgは高温の溶接アーク中において反応し、強力な脱酸
剤として作用する。また、本発明のワイヤにおいては、
溶融金属の粘性および脱酸反応により生成したMgOが
スラグ組成およびスラグの粘性に大きく影響するため、
後述するように金属弗化物とのバランスにより適正量の
添加が必要である。脱酸による効果が得られるためには
0.4以上の添加が必要である。また、1.2%を越え
るとスラグの粘性が過大になり姿勢溶接における溶接作
業性が劣化する。Mg: 0.4-1.2% Mg reacts in a high temperature welding arc and acts as a strong deoxidizer. In the wire of the present invention,
Since the viscosity of the molten metal and MgO generated by the deoxidation reaction have a great influence on the slag composition and the viscosity of the slag,
As will be described later, it is necessary to add an appropriate amount depending on the balance with the metal fluoride. In order to obtain the effect of deoxidation, it is necessary to add 0.4 or more. On the other hand, if it exceeds 1.2%, the viscosity of the slag becomes excessive and the workability in posture welding deteriorates.
【0017】Ti:0.01〜0.20% Tiは少量の添加で結晶粒が微細化し、0.01%以上
添加することによって低温靭性を向上させる。しかし、
0.20%を越えて添加すると強度が過大となり逆に靭
性が劣化する。上記CからTiまでの成分は主として金
属脱酸剤または合金剤として作用するため、金属単体ま
たは合金の形として鋼製外皮または充填フラックスに添
加する。Ti: 0.01 to 0.20% When Ti is added in a small amount, the crystal grains become fine, and when added in an amount of 0.01% or more, the low temperature toughness is improved. But,
If added over 0.20%, the strength becomes excessive and conversely the toughness deteriorates. Since the above components from C to Ti mainly act as a metal deoxidizing agent or an alloying agent, they are added to the steel shell or the filling flux in the form of a simple metal or an alloy.
【0018】B:0.005〜0.015% Bは、微量の添加で溶接金属の焼き入れ性を高め、溶接
金属の強度をおよび低温靭性を向上させる。0.005
%未満では効果が無く、また0.015%を越える場合
には、強度が過大となり靭性が劣化する。Bの効果は金
属単体、合金または酸化による添加の何れでも発揮する
ことができるため、フラックスに添加する場合の形態は
自由である。B: 0.005 to 0.015% B improves the hardenability of the weld metal by adding a trace amount, and improves the strength and low temperature toughness of the weld metal. 0.005
If it is less than 0.1%, there is no effect, and if it exceeds 0.015%, the strength becomes excessive and the toughness deteriorates. Since the effect of B can be exhibited by any one of a simple metal, an alloy and addition by oxidation, the form of addition to the flux is arbitrary.
【0019】また、本発明ではC、Si、Mn、Ni、
Cr、Mo、CuおよびMgについて、(1)式で表さ
れる炭素当量CeqFCWが0.43〜0.50%であ
ることが必要である。CeqFCWが0.43%未満で
はPWHT後の溶接金属の引張強さが室温で690MP
aかつ350℃における高温引張強さが600MPa以
上である強度が得られない。また、0.50%を越えた
場合には強度が過大となり低温靭性が劣化する。Further, in the present invention, C, Si, Mn, Ni,
Regarding Cr, Mo, Cu and Mg, it is necessary that the carbon equivalent CeqFCW represented by the formula (1) is 0.43 to 0.50%. When CeqFCW is less than 0.43%, the tensile strength of the weld metal after PWHT is 690MP at room temperature.
a and high temperature tensile strength at 350 ° C. of 600 MPa or more cannot be obtained. Further, if it exceeds 0.50%, the strength becomes excessive and the low temperature toughness deteriorates.
【0020】本発明はさらに、PWHT後の溶接金属の
高温延性、低温靭性および姿勢溶接における溶接作業性
の何れをも良好とするために、Mg量と金属弗化物量の
比を一定範囲内に保つことをその特徴の一つとしてい
る。一般に、立向や上向溶接のように溶接金属の垂れや
すい溶接姿勢では、界面張力によりスラグが溶接金属を
保持する必要があるが、本発明のようにTiO2および
金属弗化物を主成分としたスラグ系のフラックス入りワ
イヤでは、弗化物を添加したことによりスラグの粘性が
比較的低いのが特徴である。The present invention further sets the ratio of the amount of Mg to the amount of metal fluoride within a certain range in order to improve the hot ductility, the low temperature toughness of the weld metal after PWHT, and the welding workability in posture welding. Keeping it is one of its characteristics. Generally, in a welding position such as vertical or upward welding in which the weld metal is liable to sag, it is necessary for the slag to hold the weld metal due to interfacial tension. However, as in the present invention, TiO 2 and metal fluoride are the main components. The slag-based flux-cored wire is characterized in that the viscosity of the slag is relatively low due to the addition of fluoride.
【0021】Mgは脱酸剤としてアーク雰囲気中のワイ
ヤ先端部や溶滴中で急激に酸化反応しMgOとなるが、
Mgを多量に添加した場合にはこのMgOが溶融スラグ
に固溶することによってスラグの粘性が高まり、溶接作
業性が向上する。Mg量/弗化物量と立向接溶接におけ
るメタルの垂れ性との関係を図1に示すが、Mg量/弗
化物量を0.4以上にすることによってメタルの垂れ性
が向上する。しかし、Mg量/弗化物量が過大な場合に
はスラグの粘性が過大になると共に、スパッタ発生量が
多くなり安定な溶接ができなくなるためMg量/弗化物
量は0.8以下にする必要がある。尚、Mgをフラック
スから添加する場合には金属Mg単体または他の金属元
素との合金による添加の何れでもかまわない。As a deoxidizing agent, Mg undergoes a rapid oxidation reaction in the tip of the wire or in the droplets in an arc atmosphere to become MgO.
When a large amount of Mg is added, this MgO forms a solid solution in the molten slag, so that the viscosity of the slag is increased and the welding workability is improved. The relationship between the Mg amount / fluoride amount and the sagging property of the metal in vertical welding is shown in FIG. 1. By setting the Mg amount / fluoride amount to 0.4 or more, the sagging property of the metal is improved. However, if the amount of Mg / fluoride is too large, the viscosity of the slag becomes too large, and the amount of spatter increases, which makes stable welding impossible. Therefore, the amount of Mg / fluoride must be 0.8 or less. There is. When Mg is added from the flux, it may be added as a simple substance of metal Mg or as an alloy with another metal element.
【0022】また、スラグ剤であるTiO2や弗化物の
不純物としてNbおよびVが不可避的にワイヤ中に存在
するのが通常であるが、これらのNbやVはPWHTに
よって炭化物を形成し易く、PWHT後の低温靭性を劣
化させる。本発明のフラックス入りワイヤではこれらN
b、Vについては規定しないが、何れも0.015%以
下に限定することが好ましい。Further, although it is usual that Nb and V are inevitably present in the wire as impurities of TiO 2 which is a slag agent and fluoride, these Nb and V easily form a carbide by PWHT, Deteriorates the low temperature toughness after PWHT. In the flux-cored wire of the present invention, these N
Although b and V are not specified, it is preferable that both are limited to 0.015% or less.
【0023】尚、本発明のフラックス入りワイヤには、
上記成分以外にも鉄粉、微量のアーク安定剤、微量のス
ラグ剤等を添加してもその効果には影響無い。またフラ
ックスの充填率は通常のフラックス入りワイヤに適用さ
れている8〜25%の範囲内であれば良いが、アーク安
定性の観点から12%以上が望ましい。さらに適用する
シールドガスもCO2、ArとCO2との混合ガスさらに
これらのガスに少量のO2を添加したもの等通常のMA
G溶接に仕様されるシールドガスであれば何れでも使用
可能である。The flux-cored wire of the present invention includes
In addition to the above components, addition of iron powder, a small amount of arc stabilizer, a small amount of slag agent, etc. does not affect the effect. Further, the filling rate of the flux may be in the range of 8 to 25% which is applied to a normal flux-cored wire, but is preferably 12% or more from the viewpoint of arc stability. Further applied to the shielding gases CO 2, Ar and CO 2 and a small amount of O 2 added ones such conventional MA gas mixture further to these gases
Any shielding gas specified for G welding can be used.
【0024】[0024]
【実施例】次に、実施例により本発明をさらに具体的に
説明する。軟鋼パイプ製外皮を用い、外皮の中空部にフ
ラックスを充填後、伸線し、1.2mmφに仕上げてフラ
ックス入りワイヤを作成した。尚、弗化物はCaF2、
MgF2、K2ZrF6を1:2:1の一定の比で複合添
加した。また、フラックス充填率は全て16%とした。
ワイヤの成分組成を表1に示す。表1の、No.1〜6
は本発明例であり、No.7〜26は比較例である。上
記ワイヤを用いて、表2の条件で立向溶接を行い、アー
ク状態観察およびメタル垂れをおこす上限電圧を測定す
ることによって溶接作業性を評価した。図2は溶接作業
試験方法を示す模式図であり、符号1は試験片、2は溶
接トーチである。溶接作業性が特に不良なもの以外につ
いて、表3の条件で溶接を行い、溶接金属性能試験を実
施した。図3は溶接金属試験における開先形状を示す断
面図である。溶接後の試験体は620℃×12時間のP
WHTを行った後、試験板の板厚中央部からJIS Z
3111 A1号引張り試験片およびJIS G056
7 II−10型高温引張り試験を採取し、溶着金属の
引張り試験を実施した。またJIS Z31114号試
験片により−30℃における2mmVノッチシャルピー
衝撃試験を行った。尚、引張り試験は室温および350
℃の2温度で実施した。Next, the present invention will be described more specifically with reference to examples. Using a jacket made of mild steel pipe, after filling the hollow part of the jacket with flux, wire drawing and finishing to 1.2 mmφ were performed to prepare a flux-cored wire. Fluoride is CaF 2 ,
MgF 2 and K 2 ZrF 6 were compounded in a fixed ratio of 1: 2: 1. In addition, all the flux filling rates were 16%.
The composition of the wire is shown in Table 1. In Table 1, No. 1-6
Is an example of the present invention, and No. 7 to 26 are comparative examples. Using the above wire, vertical welding was performed under the conditions shown in Table 2, and the welding workability was evaluated by observing the arc state and measuring the upper limit voltage that causes metal dripping. FIG. 2 is a schematic diagram showing a welding work test method, in which reference numeral 1 is a test piece and 2 is a welding torch. Welding was performed under the conditions shown in Table 3 and a weld metal performance test was carried out except for those having particularly poor welding workability. FIG. 3 is a sectional view showing a groove shape in a weld metal test. After welding, the test piece had a P of 620 ° C for 12 hours.
After performing WHT, JIS Z
3111 A1 tensile test piece and JIS G056
7 II-10 type high temperature tensile test was sampled and the tensile test of the deposited metal was carried out. A 2 mmV notch Charpy impact test at −30 ° C. was performed using a JIS Z31114 test piece. The tensile test was conducted at room temperature and 350
It was carried out at two temperatures of ° C.
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【表3】 [Table 3]
【0028】表4に試験結果を示す。ここで、衝撃試験
結果は試験片3個の平均で示した。表4から明らかなよ
うに、TiO2が3%未満であるNo.7、逆にTiO2
が6%を越えるNo.8および弗化物量が2%を越える
No.10のワイヤについては、スラグ量が不適正であ
り何れもアークが不安定で、スパッタの発生量も多く、
姿勢は困難であった。また、Siが0.3%未満である
No.12についてもスラグの粘性が不足し安定した立
向溶接は困難であった。さらに、Cuを0.5%を越え
て添加したNo.20では、溶接ビード中央部に高温割
れと思われる縦割れが発生した。Table 4 shows the test results. Here, the results of the impact test were shown as an average of three test pieces. As is clear from Table 4, No. 3 with TiO 2 less than 3%. 7. Conversely, TiO 2
No. over 6% No. 8 and No. 8 containing more than 2% of fluoride. With regard to the wire No. 10, the amount of slag is improper, the arc is unstable, and the amount of spatter is large.
The posture was difficult. Moreover, No. with Si less than 0.3%. Also for No. 12, it was difficult to perform stable vertical welding because the viscosity of the slag was insufficient. Further, in No. 3 containing more than 0.5% Cu. In No. 20, vertical cracks, which are considered to be high temperature cracks, occurred at the center of the weld bead.
【0029】Cが0.15%を越えるNo.11、Si
が1.2%を越えるNo.13、Niが3.0%を越え
るNo.17、Mgが1.2%を越えるNo.22のワ
イヤは、何れもCeqFCWが0.50%を越え溶接金
属の強度過大となり、良好な低温靭性が得られなかっ
た。さらにTiが0.20%を越えるNo.24および
Bが0.015%を越えるNo.26のワイヤについて
も溶接金属の強度が過大となると共に良好な靭性が得ら
れなかった。No. 3 with C exceeding 0.15%. 11, Si
Is over 1.2%. No. 13, Ni containing more than 3.0%. 17, No. 17 with Mg exceeding 1.2%. In all of the wires of No. 22, the CeqFCW exceeded 0.50% and the strength of the weld metal was excessive, and good low temperature toughness was not obtained. Further, the Ti content of Ti exceeding 0.20%. Nos. 24 and B exceeding 0.015%. With respect to the wire No. 26, the strength of the weld metal was too high and good toughness was not obtained.
【0030】一方、Mnが0.5%未満であるNo.1
4およびNiが1.0%未満であるNo.16は、Ce
qFCWも0.43未満であるが、何れもワイヤも溶接
金属の強度が690MPa未満となった。Mnが2.5
%を越えるNo.15、Crが0.3%を越えるNo.
18、Moが0.2%を越えるNo.19のワイヤでは
PWHT脆化による靭性不足が認められた。Tiが0.
01%未満のNo.23およびBが0.005%未満の
No.25では良好な靭性が得られなかった。On the other hand, No. 3 having Mn of less than 0.5%. 1
No. 4 and Ni with less than 1.0%. 16 is Ce
Although qFCW was also less than 0.43, the strength of the weld metal of each wire was less than 690 MPa. Mn is 2.5
%, Which exceeds%. No. 15 with Cr exceeding 0.3%.
18, No. 18 with Mo exceeding 0.2%. In the wire No. 19, insufficient toughness due to PWHT embrittlement was observed. Ti is 0.
No. less than 01%. Nos. 23 and B of less than 0.005%. In No. 25, good toughness was not obtained.
【0031】弗化物が1.0%未満であるNo.9、M
gが0.4%未満であるNo.21では何れも溶接金属
の脱酸不足が原因と思われる非金属介在物を起点とした
低衝撃値のものが認められ、平均として良好な靭性は得
られなかった。以上の比較例に比べ、本発明例であるN
o.1〜No.6のワイヤは、高温強度および低温靭性
共に良好な値が得られている。No. 1 containing less than 1.0% of fluoride. 9, M
No. in which g is less than 0.4%. In No. 21, in each case, a low impact value starting from non-metallic inclusions, which is considered to be due to insufficient deoxidation of the weld metal, was observed, and good toughness was not obtained on average. In comparison with the above comparative example, N which is an example of the present invention
o. 1 to No. The wire of No. 6 has good values for both high temperature strength and low temperature toughness.
【0032】[0032]
【表4】 [Table 4]
【0033】[0033]
【発明の効果】以上詳細に説明したように、本発明の6
90MPa級高張力鋼用ガスシールドアーク溶接用フラ
ックス入りワイヤにより、PWHT後の室温強度、高温
強度および低温靭性の何れの点についても良好で、バラ
ンスの取れた溶接金属を得ることができる。As described above in detail, the sixth aspect of the present invention
The flux-cored wire for gas shielded arc welding for 90 MPa class high-strength steel enables to obtain a well-balanced weld metal in terms of room temperature strength, high temperature strength and low temperature toughness after PWHT.
【図1】ワイヤ中のMg量/弗化物量と上進溶接におけ
る限界電圧の関係を示す図、FIG. 1 is a diagram showing a relationship between the amount of Mg / amount of fluoride in a wire and a limit voltage in upward welding.
【図2】溶接作業性試験方法を示す模式図、FIG. 2 is a schematic diagram showing a welding workability test method,
【図3】溶接金属試験における開先形状を示す断面図で
ある。FIG. 3 is a sectional view showing a groove shape in a weld metal test.
1 試験片 2 溶接トーチ 1 Test piece 2 Welding torch
Claims (1)
ールドアーク溶接用フラックス入りワイヤにおいて、ワ
イヤ全重量に対して重量%で、 TiO2 :3.0〜6.0% 金属弗化物:1.0〜2.0% を必須とするスラグ剤と C:0.15%以下 Si:0.3〜1.2% Mn:0.5〜2.5% Ni:1.0〜3.0% Cr:0.3%以下 Mo:0.2%以下 Cu:0.5%以下 Mg:0.4〜1.2% を必須とする金属脱酸成分または合金成分を下記(1)
式で表されるワイヤの炭素当量CeqFCWが0.43
〜0.50%となるように含有し、さらに合金成分とし
て Ti:0.01〜0.20% B:0.005〜0.015% を含有し、さらにワイヤ中のMg量と金属弗化物量との
比が 0.4≦(Mg量/金属弗化物量)≦0.8 であることを特徴とする690MPa級高張力鋼用ガス
シールドアーク溶接用フラックス入りワイヤ。 CeqFCW=C+0.08Si+0.07Mn+0.05Ni+0.07Cr +0.15Mo+0.02Cu+0.08Mg … (1) (ただし、各成分は重量%)1. A flux-cored wire for gas shielded arc welding, comprising a steel shell filled with powder, wherein TiO 2 is 3.0 to 6.0% by weight with respect to the total weight of the wire. Compound: 1.0 to 2.0% essential slag agent and C: 0.15% or less Si: 0.3 to 1.2% Mn: 0.5 to 2.5% Ni: 1.0 to 3.0% Cr: 0.3% or less Mo: 0.2% or less Cu: 0.5% or less Mg: 0.4 to 1.2% are essential metal deoxidizing components or alloy components as described below (1 )
The carbon equivalent CeqFCW of the wire represented by the formula is 0.43
To 0.50%, and further contains Ti: 0.01 to 0.20% B: 0.005 to 0.015% as an alloy component, and further contains Mg in the wire and metal fluoride. A flux-cored wire for gas shielded arc welding of 690 MPa class high-strength steel, characterized in that the ratio with the amount is 0.4 ≦ (Mg amount / metal fluoride amount) ≦ 0.8. CeqFCW = C + 0.08Si + 0.07Mn + 0.05Ni + 0.07Cr + 0.15Mo + 0.02Cu + 0.08Mg (1) (however, each component is% by weight)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06953796A JP3442563B2 (en) | 1996-03-26 | 1996-03-26 | Flux-cored wire for gas shielded arc welding of 690 MPa class high tensile steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06953796A JP3442563B2 (en) | 1996-03-26 | 1996-03-26 | Flux-cored wire for gas shielded arc welding of 690 MPa class high tensile steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09253886A true JPH09253886A (en) | 1997-09-30 |
JP3442563B2 JP3442563B2 (en) | 2003-09-02 |
Family
ID=13405577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06953796A Expired - Fee Related JP3442563B2 (en) | 1996-03-26 | 1996-03-26 | Flux-cored wire for gas shielded arc welding of 690 MPa class high tensile steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3442563B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2289661A1 (en) | 2009-08-27 | 2011-03-02 | Nippon Steel & Sumikin Welding Co., Ltd. | Flux cored wire for gas shielded arc welding of high strength steel |
EP2394771A1 (en) * | 2010-06-10 | 2011-12-14 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method for welding high strength steels with basic flux-cored wire |
US8574381B2 (en) | 2009-03-26 | 2013-11-05 | Kobe Steel, Ltd. | Weld metal and welded structure having weld joints using the same |
CN103962743A (en) * | 2014-04-30 | 2014-08-06 | 西安理工大学 | Welding stick for all-position welding of X100 pipeline steel and manufacturing method thereof |
WO2014136601A1 (en) | 2013-03-08 | 2014-09-12 | 株式会社神戸製鋼所 | Welded metal and welded structure provided with same |
JP2017185521A (en) * | 2016-04-05 | 2017-10-12 | 日鐵住金溶接工業株式会社 | Gas shield arc welding flux-cored wire |
CN113894393A (en) * | 2021-09-30 | 2022-01-07 | 广州黄船海洋工程有限公司 | Welding process of FH36 high-strength steel ultra-thick plate |
EP4039404A1 (en) | 2021-02-05 | 2022-08-10 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Flux-cored wire, weld metal, gas shielded arc welding method, and welding joint production method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63252694A (en) * | 1987-04-08 | 1988-10-19 | Nippon Steel Corp | Flux cored wire for selfshield arc welding |
JPH02217195A (en) * | 1989-02-18 | 1990-08-29 | Nippon Steel Corp | Flux cored wire for gas shielded arc welding for heat resistant steel |
JPH04224094A (en) * | 1990-12-26 | 1992-08-13 | Nippon Steel Corp | Flux cored wire for gas shielded arc welding |
JPH0810982A (en) * | 1994-06-24 | 1996-01-16 | Kobe Steel Ltd | Flux cored wire for gas shielded arc welding |
JPH08174267A (en) * | 1994-12-26 | 1996-07-09 | Nippon Steel Corp | Flux cored wire for arc welding |
-
1996
- 1996-03-26 JP JP06953796A patent/JP3442563B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63252694A (en) * | 1987-04-08 | 1988-10-19 | Nippon Steel Corp | Flux cored wire for selfshield arc welding |
JPH02217195A (en) * | 1989-02-18 | 1990-08-29 | Nippon Steel Corp | Flux cored wire for gas shielded arc welding for heat resistant steel |
JPH04224094A (en) * | 1990-12-26 | 1992-08-13 | Nippon Steel Corp | Flux cored wire for gas shielded arc welding |
JPH0810982A (en) * | 1994-06-24 | 1996-01-16 | Kobe Steel Ltd | Flux cored wire for gas shielded arc welding |
JPH08174267A (en) * | 1994-12-26 | 1996-07-09 | Nippon Steel Corp | Flux cored wire for arc welding |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8574381B2 (en) | 2009-03-26 | 2013-11-05 | Kobe Steel, Ltd. | Weld metal and welded structure having weld joints using the same |
EP2289661A1 (en) | 2009-08-27 | 2011-03-02 | Nippon Steel & Sumikin Welding Co., Ltd. | Flux cored wire for gas shielded arc welding of high strength steel |
EP2394771A1 (en) * | 2010-06-10 | 2011-12-14 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method for welding high strength steels with basic flux-cored wire |
WO2014136601A1 (en) | 2013-03-08 | 2014-09-12 | 株式会社神戸製鋼所 | Welded metal and welded structure provided with same |
EP3424637A1 (en) | 2013-03-08 | 2019-01-09 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Weld metal and welded structure provided with same |
CN103962743A (en) * | 2014-04-30 | 2014-08-06 | 西安理工大学 | Welding stick for all-position welding of X100 pipeline steel and manufacturing method thereof |
CN103962743B (en) * | 2014-04-30 | 2016-02-24 | 西安理工大学 | For welding wire that X100 pipe line steel full position welds and preparation method thereof |
JP2017185521A (en) * | 2016-04-05 | 2017-10-12 | 日鐵住金溶接工業株式会社 | Gas shield arc welding flux-cored wire |
EP4039404A1 (en) | 2021-02-05 | 2022-08-10 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Flux-cored wire, weld metal, gas shielded arc welding method, and welding joint production method |
KR20220113255A (en) | 2021-02-05 | 2022-08-12 | 가부시키가이샤 고베 세이코쇼 | Flux-cored wire, welded metal, gas-shielded arc welding method, and welded joint manufacturing method |
CN113894393A (en) * | 2021-09-30 | 2022-01-07 | 广州黄船海洋工程有限公司 | Welding process of FH36 high-strength steel ultra-thick plate |
Also Published As
Publication number | Publication date |
---|---|
JP3442563B2 (en) | 2003-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4986562B2 (en) | Flux-cored wire for titania-based gas shielded arc welding | |
EP2110195B1 (en) | Pure Ar gas shielded welding MIG flux-cored wire and MIG arc welding method | |
EP1647351B1 (en) | Self-shielded flux cored electrode | |
KR101923806B1 (en) | Stainless steel flux cored wire | |
JP5138242B2 (en) | Flux-cored wire for duplex stainless steel welding | |
JP4566899B2 (en) | High strength stainless steel welding flux cored wire | |
JP6953869B2 (en) | Flux-cored wire for gas shielded arc welding and welding joint manufacturing method | |
JP2004058086A (en) | Flux-cored wire for gas shielded metal arc welding for low-alloy heat resisting steel | |
WO2018051823A1 (en) | Wire for electroslag welding, flux for electroslag welding and welded joint | |
JP2018043288A (en) | Wire for electroslag weldment, flux for electroslag weldment, and weld joint | |
JP3815984B2 (en) | Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel | |
JP6953870B2 (en) | Flux-cored wire for gas shielded arc welding and welding joint manufacturing method | |
JP2015112625A (en) | Stainless steel flux-cored wire for self-shielded arc welding | |
JP3442563B2 (en) | Flux-cored wire for gas shielded arc welding of 690 MPa class high tensile steel | |
KR100502571B1 (en) | Flux cored wire for co2 gas shielded arc welding | |
JP4309172B2 (en) | Low hydrogen coated arc welding rod for low alloy heat resistant steel | |
CN111886110B (en) | Flux-cored wire | |
JPS632592A (en) | Flux cored wire for low alloy heat resistant steel welding | |
JP2017170515A (en) | Flux-cored wire for gas shield arc welding | |
JPH09277088A (en) | Flux cored wire for gas shielded metal-arc welding | |
JP3547282B2 (en) | Low hydrogen coated arc welding rod | |
JPH04305396A (en) | Low hydrogen type coated arc welding rod | |
JPH08174267A (en) | Flux cored wire for arc welding | |
JP7323497B2 (en) | flux cored wire | |
JPH0542390A (en) | Low hydrogen type coated electrode for welding 9cr steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030610 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090620 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100620 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120620 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130620 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |