JPS6351679A - Semicondictor device - Google Patents

Semicondictor device

Info

Publication number
JPS6351679A
JPS6351679A JP19607386A JP19607386A JPS6351679A JP S6351679 A JPS6351679 A JP S6351679A JP 19607386 A JP19607386 A JP 19607386A JP 19607386 A JP19607386 A JP 19607386A JP S6351679 A JPS6351679 A JP S6351679A
Authority
JP
Japan
Prior art keywords
film
titanium nitride
gold
layer
tungsten silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19607386A
Other languages
Japanese (ja)
Inventor
Keiji Nagai
永井 慶次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19607386A priority Critical patent/JPS6351679A/en
Publication of JPS6351679A publication Critical patent/JPS6351679A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To build an electrode with its higher-layer gold film adhering strongly to a lower-layer high-melting metal compound film and excellent in heat- resistant and moisture-proof features without using an adhesion-reinforcing titanium or chromium layer by a method wherein the surface of the high-melting metal compound film is subjected to sputter-etching before it is covered by the gold film with a titanium nitride film sandwiched between. CONSTITUTION:On a GaAs substrate 1 whereon an n-type layer 2 is locally formed by ion implantation or others, sputtering is accomplished for the forma tion of a tungsten silicide film 3. Next, a tungsten silicide film 3 is sputter- etched by argon ions 4 for a clean and rough surface for an excellent adhesion with a titanium nitride film 5, and then the titanium nitride film 5 is formed by reactive sputtering. In the wake of the titanium nitride film 5, a gold film 6 is formed by sputtering. A process follows wherein ion-milling is accomplished of gold and titanium nitride with a patterned photoresist serving as a mask and the tungsten silicide is subjected to reactive ion etching using a CF4-based gas, for the construction of a gate electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の電極構造およびその製造方法に関
し、特にGaAs MgSFgT  の耐熱性ゲート電
極等の下層に高融点金属あるいは高融点金属化合物を備
え、上層に金属を備えた電極m造およびその製造方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrode structure of a semiconductor device and a method of manufacturing the same, and in particular, to an electrode structure of a semiconductor device and a method of manufacturing the same, in particular, the present invention relates to an electrode structure of a semiconductor device and a method of manufacturing the same. , relates to an electrode structure having a metal upper layer and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、GaAsMg5FETの耐熱性ゲート電極に代表
されるこの種の電極構造では、耐熱性を得るための下層
の高融点金属あるいは高融点金属化合物と電極の電気抵
抗を低減するための上層の金との密着性が悪いために、
チタンあるいはクロムを間に介した構造となっていた。
Conventionally, in this type of electrode structure, typified by the heat-resistant gate electrode of GaAsMg5FET, a lower layer of a refractory metal or a refractory metal compound is used to obtain heat resistance, and an upper layer of gold is used to reduce the electrical resistance of the electrode. Due to poor adhesion,
It had a structure with titanium or chromium in between.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の高融点金属(化合物)、チタンあるいは
クロム、金の多NI膜電極では、電極形成後の工程でシ
リコン酸化膜の除去等を行なう場合に、フッ酸系エツチ
ング液はチタンあるいはクロムがエツチングされるため
使用できないという問題点のほか、500C程度の熱処
理で金がチタンあるいはクロム層および高融点金属(化
合物)層を透過して基鈑に侵入し、GaAsMg8FE
Tのゲート電極等ではショートキー特性が劣化するとい
う欠点がある。
In the conventional multi-NI film electrode made of high melting point metals (compounds) such as titanium, chromium, and gold, when removing the silicon oxide film in the process after electrode formation, the hydrofluoric acid-based etching solution is not suitable for titanium or chromium. In addition to the problem that it cannot be used because it is etched, gold penetrates the titanium or chromium layer and the high melting point metal (compound) layer and invades the base plate during heat treatment at about 500C.
There is a drawback that the short key characteristic deteriorates when using a T gate electrode or the like.

上述した従来の高融点金属(化合物)、チタンあるいは
クロム、金の多層膜電極構造に対し、本発明は従来の密
着性強化のためのチタンあるいはクロム層を使用せずに
、下層の高融点金属(化合物)と上層の金との密着性が
良好で耐熱性および耐熱性にすぐれた電極構造およびそ
の製造方法を提供する独創的内容を有する。
In contrast to the above-described conventional multilayer electrode structure of high melting point metals (compounds), titanium, chromium, and gold, the present invention does not use the conventional titanium or chromium layer for reinforcing adhesion, but instead uses the lower layer of high melting point metals. The invention has an original content that provides an electrode structure with good adhesion between the compound (compound) and the upper layer of gold, and has excellent heat resistance and heat resistance, as well as a manufacturing method thereof.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電極構造は下層の高融点金属(化合物)上に直
接窒化チタン層を介して上層に金属を備え、その製造方
法とし7て、窒化チタン層の形成前に高融点金属(化合
物)層表面をスパッタエツチングする工程を有している
The electrode structure of the present invention has a metal as an upper layer directly on a lower layer of a high melting point metal (compound) via a titanium nitride layer, and as a manufacturing method 7, a layer of a high melting point metal (compound) is formed before forming a titanium nitride layer. It has a step of sputter etching the surface.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例としてGaAs M E 8
FETのゲート電極の形成方法を示す工程断面図である
FIG. 1 shows GaAs M E 8 as an embodiment of the present invention.
FIG. 3 is a process cross-sectional view showing a method of forming a gate electrode of an FET.

まず表面の一部1/Cイオン注入等によりn型層2が形
成されているG a A s基板1上にスパッタリング
によりタングステンシリサイド膜3を200 OAの厚
さに形成する(第1図a)。次に反応性スノ(ツタリン
グにより窒化チタン膜4を厚さ100OAK形成するが
それに先立ってタングステンシリサイド膜3を数百Aア
ルゴンイオン4によりスパッタエツチングしく第1図b
)、表面をクリーニングするとともに荒らして窒化チタ
ン膜5の密層性を強化する。次に連続してスパッタリン
グにより金膜6を300OA の厚さに形成する(第1
図C)。
First, a tungsten silicide film 3 is formed to a thickness of 200 OA by sputtering on a GaAs substrate 1 on which an n-type layer 2 has been formed by 1/C ion implantation or the like on a part of the surface (FIG. 1a). . Next, a titanium nitride film 4 is formed to a thickness of 100 Å by reactive sintering, but prior to that, the tungsten silicide film 3 is sputter-etched using argon ions 4 of several hundred amps (see FIG. 1b).
), the surface is cleaned and roughened to strengthen the dense layered nature of the titanium nitride film 5. Next, a gold film 6 is successively formed to a thickness of 300 OA by sputtering (the first
Figure C).

mKバタンニングしたフォトレジストをマスクにイオン
ミリングによシ金および窒化チタンを続いてCB+ 4
  系ガスの反応性イオンエツチングによシタングステ
ンシリサイドを加工してゲート電極を得る(第1図d)
。さらにこのゲート電極構造でFETを形成する場合に
、次にオーミック電極のコンタクト1−としてn 層を
形成するとソース寄生抵抗を低減し、FET0高周波特
性を向上することかできるが、nJWtをこの構造のゲ
ート電極をマスクとしてイオン注入により形成すること
ができる。イオン注入後は注入層の活性化のために80
0C程度のアニールを行なうが、GaAs面から砒素が
分解してとび出すのを防ぐため通常、シリコン酸化膜を
マスクとしてアニールを行ないアニール後にはこのシリ
コン酸化膜をフッ酸系のエツチング液で除去する必要が
ある。本発明のゲート電極構造では以上の工程において
も、ショットキー特性の劣化はなく、7ツ酸系のエツチ
ング処理等の股剥れは生じない。
Using the mK battened photoresist as a mask, ion milling was performed to deposit gold and titanium nitride, followed by CB+4.
A gate electrode is obtained by processing tungsten silicide by reactive ion etching using a system gas (Fig. 1d).
. Furthermore, when forming an FET with this gate electrode structure, if an n layer is then formed as contact 1 of the ohmic electrode, the source parasitic resistance can be reduced and the high frequency characteristics of the FET0 can be improved. It can be formed by ion implantation using the gate electrode as a mask. After ion implantation, 80°C was applied to activate the implanted layer.
Annealing is performed at approximately 0C, but in order to prevent arsenic from decomposing and jumping out from the GaAs surface, annealing is usually performed using a silicon oxide film as a mask, and after annealing, this silicon oxide film is removed using a hydrofluoric acid-based etching solution. There is a need. In the gate electrode structure of the present invention, there is no deterioration of the Schottky characteristics even in the above steps, and no peeling occurs due to etching treatment using a heptase-based etching process.

次に本発明の別の実施例として、Q a A s M 
E 5FETのゲート電極の異なる形成方法の工程断面
図を第2図に示す。本実施例では、QaAs基板1およ
び0M2上にシリコン酸化膜7を成長したのち、フォト
レジストをマスクに反応性イオンエツチングにより、シ
リコン酸化膜7の一部を窓あけしく第2図a)、全面に
タングステンシリサイド膜3をスパッタリングにより2
000A厚に形成し、スパッタエッチにより数百へエツ
チングしたのち、窒化チタン膜5、白金膜8、金膜6を
連続スパッタリングにより各々、500A、200A。
Next, as another embodiment of the present invention, Q a A s M
FIG. 2 shows process cross-sectional views of different methods of forming the gate electrode of the E5FET. In this example, after a silicon oxide film 7 is grown on the QaAs substrate 1 and 0M2, a part of the silicon oxide film 7 is etched by reactive ion etching using a photoresist as a mask to open the entire surface as shown in FIG. 2a). 2 by sputtering a tungsten silicide film 3.
The titanium nitride film 5, the platinum film 8, and the gold film 6 were formed to a thickness of 500 A and 200 A, respectively, by continuous sputtering.

4000A と破着する(第2図b)。ここで白金層は
窒化チタンと金とのvfj着強化の目的で入れている。
4000A (Fig. 2b). Here, the platinum layer is included for the purpose of strengthening the VFJ adhesion between titanium nitride and gold.

次にフォトレジストをマスクに金、白金、窒化チタンを
イオンミリングで、タングステンシリサイドを反応性イ
オンエツチングにより加工し、′r字型の断面形状をも
つゲート電極を形成する(第2図c)。本実施例ではゲ
ート長を小さく制御でき、かつT′f−型することによ
りゲート電極抵抗を小さくすることができる特徴をもつ
。さらに、シリコン酸化膜をフッ酸系エツチング液で除
去することKよジ(第2図d)浮遊g」°を低減し、F
ET0高周波特性を向上することができる。
Next, using the photoresist as a mask, the gold, platinum, and titanium nitride are processed by ion milling, and the tungsten silicide is processed by reactive ion etching to form a gate electrode having an 'r-shaped cross-section (FIG. 2c). This embodiment has the characteristics that the gate length can be controlled to be small and that the gate electrode resistance can be made small by making it T'f-type. Furthermore, by removing the silicon oxide film with a hydrofluoric acid-based etching solution, the floating g'° (Fig. 2 d) can be reduced and the F
ET0 high frequency characteristics can be improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、高融点金属(化合物)表
面をスパッタエッチ処理した後直接窒化チタンを介し、
上層に金を備えた構造及び形成方法により、密着性およ
び耐酸性が良好で高耐熱性をもつ電極を得ることができ
る。智N性については、通常の4桜き試験、ポンドプル
試験での電極剥れは生じない。また耐熱性ではこの構造
、形成方法によるタングステンシリサイドショットキー
ダイオードの800Cアニール後のφ8は0.75V、
n値は1. lと安定して良好なショットキー特性が得
られている。
As explained above, in the present invention, after sputter etching the surface of a high melting point metal (compound), directly through titanium nitride,
With the structure and formation method in which the upper layer includes gold, an electrode with good adhesion and acid resistance and high heat resistance can be obtained. Regarding the strength and resistance, electrode peeling does not occur in the usual four-way test and pound-pull test. In terms of heat resistance, the φ8 of the tungsten silicide Schottky diode with this structure and formation method after annealing at 800C is 0.75V.
The n value is 1. A stable and good Schottky characteristic of 1 was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第tha−dは本発明によるQaAs ME S FE
Tのゲート電極構造の形成方法を示す工程断面図の一例
である。第2図a−zdは同じく本発明によるQaAs
ME8T!’ETのゲート電極構造の形成方法を示す工
程断面図の別の例である。 1・・・・・・G a A s 基板、2・・・・・・
QaAsn層、3・・・・・・タングステンシリサイド
膜、4・・・・・・アルゴンイオン、5・・・・・・窒
化チタン、6・・・・・・金、7・・・・・・シリコン
酸化膜、8・・・・・・白金。 代理人 弁理士  内 涼   xr−”:。 日 t     : (−゛ 第1図
The th-d are QaAs ME S FE according to the present invention.
3 is an example of a process cross-sectional view showing a method for forming a gate electrode structure of T. FIG. FIG. 2 a-zd also show QaAs according to the present invention.
ME8T! It is another example of a process cross-sectional view showing a method for forming a gate electrode structure of 'ET. 1...G a As substrate, 2...
QaAsn layer, 3...Tungsten silicide film, 4...Argon ions, 5...Titanium nitride, 6...Gold, 7... Silicon oxide film, 8...Platinum. Agent Patent Attorney Ryo Uchi xr-”:. Date: (-゛Figure 1

Claims (1)

【特許請求の範囲】[Claims] 高融点金属あるいは高融点金属化合物上に直接窒化チタ
ン層を介し上層に金層をそなえていることを特徴とする
半導体装置。
A semiconductor device comprising a titanium nitride layer directly interposed on a high melting point metal or a high melting point metal compound and a gold layer thereon.
JP19607386A 1986-08-20 1986-08-20 Semicondictor device Pending JPS6351679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19607386A JPS6351679A (en) 1986-08-20 1986-08-20 Semicondictor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19607386A JPS6351679A (en) 1986-08-20 1986-08-20 Semicondictor device

Publications (1)

Publication Number Publication Date
JPS6351679A true JPS6351679A (en) 1988-03-04

Family

ID=16351750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19607386A Pending JPS6351679A (en) 1986-08-20 1986-08-20 Semicondictor device

Country Status (1)

Country Link
JP (1) JPS6351679A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143422A (en) * 1988-11-24 1990-06-01 Mitsubishi Electric Corp Manufacture of semiconductor device
EP0552763A2 (en) * 1992-01-22 1993-07-28 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor device with self-aligned gate and method of producing this compound semiconductor device
JPH06326297A (en) * 1993-03-19 1994-11-25 Nec Corp Semiconductor device
US5567647A (en) * 1993-12-07 1996-10-22 Nec Corporation Method for fabricating a gate electrode structure of compound semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171171A (en) * 1983-03-17 1984-09-27 Fujitsu Ltd Manufacture of compound semiconductor device
JPS59181676A (en) * 1983-03-31 1984-10-16 Fujitsu Ltd Semiconductor device
JPS61127181A (en) * 1984-11-26 1986-06-14 Fujitsu Ltd Manufacture of field-effect compound semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171171A (en) * 1983-03-17 1984-09-27 Fujitsu Ltd Manufacture of compound semiconductor device
JPS59181676A (en) * 1983-03-31 1984-10-16 Fujitsu Ltd Semiconductor device
JPS61127181A (en) * 1984-11-26 1986-06-14 Fujitsu Ltd Manufacture of field-effect compound semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143422A (en) * 1988-11-24 1990-06-01 Mitsubishi Electric Corp Manufacture of semiconductor device
EP0552763A2 (en) * 1992-01-22 1993-07-28 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor device with self-aligned gate and method of producing this compound semiconductor device
JPH06326297A (en) * 1993-03-19 1994-11-25 Nec Corp Semiconductor device
US5567647A (en) * 1993-12-07 1996-10-22 Nec Corporation Method for fabricating a gate electrode structure of compound semiconductor device

Similar Documents

Publication Publication Date Title
US5753546A (en) Method for fabricating metal oxide field effect transistors
JP7035223B2 (en) Method for Forming Gate Structure of III-V Field Effect Transistor
KR900008277B1 (en) Method manufacturing a field effect transistor
JPH07161659A (en) Semiconductor device and its manufacture
JPH04229618A (en) Integrated circuit device contact and formation method thereof
JPS6351679A (en) Semicondictor device
US4700455A (en) Method of fabricating Schottky gate-type GaAs field effect transistor
JPS61134072A (en) Gate structure of mos type fet
JPS62154784A (en) Semiconductor device
JPS629677A (en) Field effect semiconductor device
JP3353773B2 (en) Method for manufacturing semiconductor device
JPS60244075A (en) Manufacture of e/d structure integrated circuit
JPH05167063A (en) Ohmic electrode, its formation method and semiconductor device
JPS6074682A (en) Manufacture of semiconductor device
JPH02109326A (en) Electrode structure and manufacture thereof
JPS58135678A (en) Manufacture of field effect transistor
JPH0461496B2 (en)
JPS6267870A (en) Manufacture of semiconductor integrated circuit device
JPH0341732A (en) Manufacture of semiconductor device
JPH04127423A (en) Manufacture of semiconductor device
JPS6194347A (en) Forming method of wiring metal
JPS58112373A (en) Manufacture of gaas ic
JPH0330432A (en) Manufacture of semiconductor device
JPS61188959A (en) Manufacture of capacitor for integrated circuit
JPH0783026B2 (en) Method for manufacturing field effect transistor