JPS6351602A - Manufacture of magnetically anisotropic conductive material - Google Patents

Manufacture of magnetically anisotropic conductive material

Info

Publication number
JPS6351602A
JPS6351602A JP61194774A JP19477486A JPS6351602A JP S6351602 A JPS6351602 A JP S6351602A JP 61194774 A JP61194774 A JP 61194774A JP 19477486 A JP19477486 A JP 19477486A JP S6351602 A JPS6351602 A JP S6351602A
Authority
JP
Japan
Prior art keywords
conductive material
magnetic material
plate
anisotropic conductive
magnetically anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61194774A
Other languages
Japanese (ja)
Inventor
Akio Ogawa
晃男 小川
Takeshi Seya
瀬谷 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP61194774A priority Critical patent/JPS6351602A/en
Publication of JPS6351602A publication Critical patent/JPS6351602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Induction Machinery (AREA)

Abstract

PURPOSE:To make the setting of the space ratio of a magnetic material and a conductive material easy, to make the space factor of the magnetic material totally uniform and to make the increase of the space factor easy by combining the definite shape magnetic material and the complementary shape conductive material to a ring compound plate and by laminating these and heating and pressurizing. CONSTITUTION:A slit 2 is formed by blanking in a ring shape magnetic material plate 1 such as a steel plate and then, a slit 3 is formed in the same way in a ring shape conductive material plate 2 made of such as copper or aluminum. These shapes and the dimensions have complementary relations and by combining these, a ring compound plate 5 is made. Then, the compound plates 5 are laminated in a multistage to a definite height and after held for 2 hours, e.g., by raising to 800-1000 deg.C by a heater 46 in an atmospheric furnace, a hollow cylinder is formed by rapidly pressurizing by a mold 45 and by sintering. This is taken out from the metal mold after cooling, processed to a definite shape and dimensions and is made a magnetically anisotropic conductive material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は位置による透磁率の変動がなく、磁性材料の占
積率の増大、および磁性材料と導電材料の占積比率の設
定が容易にできる磁気異方性導電材料を前車な工程によ
って製造できるようにした磁気異方性導電材料の製造、
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has no variation in magnetic permeability depending on position, and it is easy to increase the space factor of the magnetic material and to easily set the space ratio of the magnetic material and the conductive material. Manufacture of magnetically anisotropic conductive material that can be manufactured using a simple process,
Regarding the method.

〔背景技術〕[Background technology]

磁気異方性導電材料として、例えば、特開昭57−46
656号公報に示されるように、誘導電動機に使用され
るものがある。第5図(イ)、(ロ)はその誘導電動機
の回転子に使用されている磁気異方性導電材料を示して
おり、回転軸51と同軸状に通電外被52と回転子鉄心
53が設けられている。通電外被52は、拡大部分Qで
示すように、半径方向に伸びる磁性材料54とその間を
充填した導電材料55より成る磁気異方性導電材料56
で主要部を構成されている。
As a magnetically anisotropic conductive material, for example, JP-A-57-46
As shown in Japanese Patent No. 656, there is one used in an induction motor. FIGS. 5(a) and 5(b) show the magnetically anisotropic conductive material used in the rotor of the induction motor, in which the current-carrying jacket 52 and the rotor core 53 are coaxial with the rotating shaft 51. It is provided. As shown in the enlarged portion Q, the current-carrying jacket 52 includes a magnetically anisotropic conductive material 56 made of a magnetic material 54 extending in the radial direction and a conductive material 55 filled in between.
The main parts are made up of.

以上の構成により、半径方向の透磁率μ、が周方向の透
磁率μ8より大きく (μ、シμ。)、かつ、軸方向の
抵抗率ρ8の小さい回転子が得られる。ここで、この誘
導電動機を駆動すると、半径方向においてばらつきの少
い太きな透磁性μ、のために固定子との間で磁気変動の
少ない磁気結合が得られ、振動騒音の少ない駆動を行う
ことができ、かつ、回転子から巻線を省略したため、小
型化および軽量化を図ることができる。
With the above configuration, a rotor can be obtained in which the magnetic permeability μ in the radial direction is larger than the magnetic permeability μ8 in the circumferential direction (μ, μ.) and the resistivity ρ8 in the axial direction is small. When this induction motor is driven, due to the large magnetic permeability μ with little variation in the radial direction, magnetic coupling with little magnetic fluctuation is obtained between it and the stator, resulting in driving with little vibration and noise. In addition, since windings are omitted from the rotor, it is possible to reduce the size and weight of the rotor.

また、磁性材料と導電材料の占積比率に応じて透磁率お
よび抵抗率を制御することができる。
Furthermore, magnetic permeability and resistivity can be controlled depending on the space ratio of the magnetic material and the conductive material.

この磁気異方性導電材料はの製造方法として、例えば、
第6図に示すものがある。まず、金型10a、10bの
空間に鋼線等の磁性材料11の束を配置し、これを鋼帯
等の磁性材料のバンド12で崩れないようにし、ヒータ
13で加熱した状態で銅、アルミ等の導電材料の溶湯1
4を鋳込んだ後、抑え板15で抑える。磁性材料110
間に溶湯14を充分に充填した後ヒータ13の加熱を停
止し、冷却水16で冷却して固化し、金型10a、10
bより中空円筒体として取り出す。
This magnetically anisotropic conductive material can be manufactured using, for example,
There is one shown in Figure 6. First, a bundle of magnetic material 11 such as a steel wire is placed in the space between the molds 10a and 10b, and is prevented from collapsing by a band 12 of magnetic material such as a steel strip. Molten metal of conductive material such as
After casting 4, it is held down with a holding plate 15. magnetic material 110
After sufficiently filling the molten metal 14 in between, the heating of the heater 13 is stopped, and the metal is cooled and solidified with the cooling water 16, and the molds 10a, 10 are
A hollow cylindrical body is taken out from b.

また、磁気異方性導電材料の他の製造方法として、第7
図(イ)、([1)、(ハ)に示すものがある。この製
造方法は、鋼線等の磁性材料20の外周に銅、アルミ等
の導電材料21を被覆した複合線材22を中心点0から
伸びる放射線に沿って環状に配置し、複合線材22の間
に導電材料の粉末等を充填するとともにこれを多段に積
層して所定の高さにしてから加熱加圧して中空円筒体の
構造物を製造するものである。
In addition, as another manufacturing method of magnetically anisotropic conductive material, the seventh
There are those shown in Figures (A), ([1), and (C). In this manufacturing method, a composite wire 22 in which the outer periphery of a magnetic material 20 such as a steel wire is coated with a conductive material 21 such as copper or aluminum is arranged in a ring shape along a radial line extending from a center point 0, and between the composite wires 22. A hollow cylindrical structure is manufactured by filling the powder with conductive material, stacking the layers in multiple stages to a predetermined height, and then heating and pressing them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、第6図の磁気異方性導電材料の製造方法によれ
ば、磁性材料を放射状に整列配置することが難しいため
に磁性材料の整列が乱れることがあり、そのため全体的
に均一の透磁率を有した磁気異方性導電材料の製造が困
難であり、また、磁性材料の占積率を向上するために磁
性材料の配列密度を大にすると、磁性材料間の間隔が小
さくなるばかりでなく、ときには接触したりすることが
あるため、溶融した導電材料の浸透性が低下して成形品
に巣が発生したり、i3磁率の偏りによって特性劣化が
生じるという不都合がある。従って、磁性材料の占積率
は40%が限度である。
However, according to the manufacturing method of the magnetically anisotropic conductive material shown in FIG. It is difficult to manufacture magnetically anisotropic conductive materials with , and sometimes come into contact with each other, resulting in disadvantages such as reduced permeability of the molten conductive material, causing cavities in the molded product, and deterioration of characteristics due to uneven i3 magnetic flux. Therefore, the space factor of the magnetic material is limited to 40%.

また、第7図(イ)、(Il+)、(ハ)に示した製造
方法によれば、前述した巣の発生を抑えることはできる
が、中心点0からの距離に応じて複合材料間の隙間が大
になるため(第7図(O))、半径方向において磁性材
料と導電材料の占積比率が相違するという不都合があり
、また、内周寸法によって磁性材料の占積率が制限され
るため(第7図(ハ))、外周部の占積率を、例えば、
45%以上にできないという不都合がある。加えて、複
合材料間の隙間に導電材料の粉末等を充填してから加熱
加圧するようにしているため、工程の面素化に限界が生
じるという不都合がある。
In addition, according to the manufacturing method shown in FIG. 7(a), (Il+), and (c), the occurrence of the above-mentioned nests can be suppressed, but depending on the distance from the center point 0, the gap between the composite materials Since the gap becomes large (Fig. 7 (O)), there is an inconvenience that the space ratio of the magnetic material and the conductive material differ in the radial direction, and the space ratio of the magnetic material is limited by the inner peripheral dimension. (Fig. 7 (c)), the space factor of the outer periphery is, for example,
There is an inconvenience that it cannot be made higher than 45%. In addition, since the gap between the composite materials is filled with conductive material powder or the like and then heated and pressurized, there is a problem in that there is a limit to the surface-graining process.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は上記に鑑みてなされたものであり、巣が発生す
ることなり、磁性材料と導電材料の占積比率の設定が容
易であり、磁性材料の占積率が全体的に均一であり、占
積率の増大が容易にできる磁気異方性導電材料を簡単な
工程によって製造できるようにするため、所定の形状の
磁性材料板と、この磁性材料板と相補的な形状を存する
導電材料板を組み合せて環状の複合板を構成し、これを
積層して加熱加圧するようにした磁気異方性導電材料の
製造方法を提供するものである。
The present invention has been made in view of the above, and it is easy to set the space ratio of the magnetic material and the conductive material, and the space ratio of the magnetic material is uniform throughout. In order to manufacture a magnetically anisotropic conductive material that can easily increase the space factor through a simple process, we have developed a magnetic material plate with a predetermined shape and a conductive material plate with a complementary shape to the magnetic material plate. The present invention provides a method for manufacturing a magnetically anisotropic conductive material, in which a ring-shaped composite plate is formed by combining the above, and the plates are laminated and heated and pressurized.

ここで製造される磁気異方性導電材料は、前述した誘導
電動機の回転子としてだけではなく、例えば、同期電動
機のダンパ、リニア誘導電動機の二次導体、電磁誘導遮
蔽材料等にも使用することができる。
The magnetically anisotropic conductive material manufactured here can be used not only as the rotor of the induction motor mentioned above, but also as a damper of a synchronous motor, a secondary conductor of a linear induction motor, an electromagnetic induction shielding material, etc. Can be done.

以下、本発明の磁気異方性導電材料の製造方法を詳細に
説明する。
Hereinafter, the method for manufacturing the magnetically anisotropic conductive material of the present invention will be explained in detail.

〔実施例〕〔Example〕

第1図は打ち抜きによりスリット2(櫛歯2a)を有し
た環状の形状にした鋼板等の磁性材料板1を示す。
FIG. 1 shows a magnetic material plate 1, such as a steel plate, which is punched into an annular shape having slits 2 (comb teeth 2a).

第2図は同じようにして打ち抜いたスリット3 (櫛歯
3a)を有した環状の形状にした銅、アルミ等の導電材
料板2を示す。ここで、第1図および第2図の形状、お
よびサイズは相補的な関係を有し、これを組み合わせる
と、第3図のように、環状の複合板5が構成される。
FIG. 2 shows a conductive material plate 2 made of copper, aluminum, etc., which has an annular shape and has slits 3 (comb teeth 3a) punched out in the same manner. Here, the shapes and sizes in FIGS. 1 and 2 have a complementary relationship, and when they are combined, an annular composite plate 5 is constructed as shown in FIG. 3.

第4図(イ)は本発明で使用される加圧装置を示し、金
型底40上には金型中子41と金型ケース42が設けら
れており、両者の間に筒状の空間43が形成されている
。この空間43の上方には、油圧シリンダー44によっ
て昇降する押型45が設けられている。尚、46は雰囲
炉のヒータであり、また、金型中子の外径は、例えば・
54龍であり、金型ケース42の内径は、例えば、92
mmである。
FIG. 4(a) shows a pressurizing device used in the present invention, in which a mold core 41 and a mold case 42 are provided on a mold bottom 40, and a cylindrical space is formed between them. 43 is formed. A press die 45 that is raised and lowered by a hydraulic cylinder 44 is provided above this space 43 . In addition, 46 is a heater of the atmosphere furnace, and the outer diameter of the mold core is, for example,
The inner diameter of the mold case 42 is, for example, 92 mm.
It is mm.

以上の加圧装置において、第3図の複合板5を空間43
に多段に積層して所定の高さにし、雰囲炉に入れてヒー
タ46で800〜1000℃に昇温しで2時間保持した
後、押型45で速やかに加圧して焼結することにより中
空円筒体を構成する。これを冷却後金型より取り出して
所定の形状、寸法に加工して磁気異方性導電材料とする
。ここで、第4図(ロ)は積層された複合板5の断面状
態を示す。尚、加圧方法はこれに限定せず、例えば、熱
間静水圧加圧法等を採用しても良い。
In the above pressurizing device, the composite plate 5 shown in FIG.
The layers are laminated in multiple stages to a predetermined height, placed in an atmosphere furnace, heated to 800 to 1000°C with a heater 46, held for 2 hours, and then quickly pressurized with a mold 45 and sintered to form a hollow cylinder. make up the body. After cooling, it is taken out from the mold and processed into a predetermined shape and size to obtain a magnetically anisotropic conductive material. Here, FIG. 4(b) shows a cross-sectional state of the laminated composite plate 5. Note that the pressurization method is not limited to this, and for example, a hot isostatic pressurization method or the like may be adopted.

以上の実施例では、第1図のものを磁性材料としたが、
第2図のものを磁性材料としても良い。むしろ、後者の
方が中空円筒体の内周側が磁性材料で構成されることに
なるため、誘導電動機の回転子等に適用したときは回転
子鉄心とを接触することになって磁気回路の構成上好ま
しい。
In the above embodiments, the material shown in Fig. 1 was used as a magnetic material.
The material shown in FIG. 2 may be used as a magnetic material. Rather, in the latter case, the inner circumferential side of the hollow cylindrical body is made of magnetic material, so when applied to the rotor of an induction motor, it comes into contact with the rotor core, forming a magnetic circuit. It is preferable.

また、磁性材料板を磁性材料と導電材料のクラツド板で
構成することもできる。
Further, the magnetic material plate may be composed of a clad plate of magnetic material and conductive material.

この場合、各複合板間の接着性が向上するばかりでなく
、加熱加圧時に発生する恐れがある磁性材料と導電材料
の合金化を防ぐことができる。
In this case, not only the adhesion between the respective composite plates is improved, but also it is possible to prevent alloying of the magnetic material and the conductive material, which may occur during heating and pressing.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の磁気異方性導電材料の製造
方法によれば、所定の形状の磁性材料板と、この形状と
相補的な形状を有する導電材料板を組み合せて環状の複
合板を構成し、これを多段に積層して加熱加圧するよう
にしたため、内部に巣を発生させることもなく、磁性材
料と導電材料の占積比率の設定が容易であり、磁性材料
の占積率が全体的に均一であり、かつ、占積率の増大が
容易にできる磁気異方性導電材料を簡単な工程によって
製造することができる。
As explained above, according to the method for manufacturing a magnetically anisotropic conductive material of the present invention, a ring-shaped composite plate is produced by combining a magnetic material plate with a predetermined shape and a conductive material plate with a complementary shape to this shape. By stacking these layers in multiple stages and heating and pressurizing them, no cavities are generated inside, and it is easy to set the space ratio between the magnetic material and the conductive material, and the space factor of the magnetic material is A magnetically anisotropic conductive material that is uniform throughout and whose space factor can be easily increased can be manufactured through a simple process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は磁性材料板および導電材料板を示
す説明図、第3図は複合板を示す説明図、第4図(イ)
は加圧装置を示す説明図、第4図(III)は第4図(
イ)のc−c’断面図、第5図Cイ) 、 ([1)は
誘導電動機用回転子を示す説明図、第6図および第7図
(()、(I])、(ハ)は本発明が解決する問題点を
有した磁気異方性導電材料の製造方法を示す説明図。 符号の説明 1−・・−磁性材料板    2−−−−スリット2a
・−−−−−・櫛歯      3−−−・−導電材料
4−−−−−−スリット     4a・−・−櫛歯5
・・−一一−−複合板 40.41.42−・−・・−金型 43−・・−空間       45−−−−−−一押
型特許出願人  日 立 電 線 株 式 会 社代理
人   弁理士   平 1)忠 雄第55 (イ) (ロ)
Figures 1 and 2 are explanatory diagrams showing a magnetic material plate and a conductive material plate, Figure 3 is an explanatory diagram showing a composite plate, and Figure 4 (A).
is an explanatory diagram showing the pressurizing device, and FIG. 4 (III) is an explanatory diagram showing the pressurizing device.
cc' sectional view of Figure 5C), ([1) is an explanatory diagram showing the rotor for an induction motor, Figures 6 and 7 ((), (I]), (Ha) ) is an explanatory diagram showing a method for manufacturing a magnetically anisotropic conductive material having the problem solved by the present invention. Explanation of symbols 1 - Magnetic material plate 2 ---- Slit 2a
・-----Comb tooth 3-----Conductive material 4-----Slit 4a・--Comb tooth 5
...-11--Composite plate 40.41.42--Mold 43--Space 45--One push type patent applicant Hitachi Cable Co., Ltd. Company Agent Patent Attorney Hei 1) Tadao No. 55 (a) (b)

Claims (1)

【特許請求の範囲】[Claims]  中心点から伸びる放射線に沿って形成された一連の短
冊条片を有する環状の磁性材料板と、この磁性材料板と
相補的な形状を有する環状の導電材料を組み合せて環状
の複合板を構成する段階と、前記複合板を多段に蓄層し
て所定の高さにし、これを加熱加圧して中空円筒体の構
造物を製造する段階を有することを特徴とする磁気異方
性導電材料の製造方法。
An annular composite plate is constructed by combining an annular magnetic material plate having a series of strips formed along rays extending from a central point and an annular conductive material having a complementary shape to the magnetic material plate. and a step of stacking the composite plate in multiple stages to a predetermined height and heating and pressurizing this to produce a hollow cylindrical structure. Method.
JP61194774A 1986-08-20 1986-08-20 Manufacture of magnetically anisotropic conductive material Pending JPS6351602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61194774A JPS6351602A (en) 1986-08-20 1986-08-20 Manufacture of magnetically anisotropic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61194774A JPS6351602A (en) 1986-08-20 1986-08-20 Manufacture of magnetically anisotropic conductive material

Publications (1)

Publication Number Publication Date
JPS6351602A true JPS6351602A (en) 1988-03-04

Family

ID=16330023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61194774A Pending JPS6351602A (en) 1986-08-20 1986-08-20 Manufacture of magnetically anisotropic conductive material

Country Status (1)

Country Link
JP (1) JPS6351602A (en)

Similar Documents

Publication Publication Date Title
US5382859A (en) Stator and method of constructing same for high power density electric motors and generators
US4625392A (en) Method of manufacturing a molded rotatable assembly for dynamoelectric machines
US7146708B2 (en) Method of making a composite electric machine rotor assembly
RU2237335C2 (en) Stator having dents of magnetically soft powder material
US3848331A (en) Method of producing molded stators from steel particles
EP1300207A2 (en) Manufacturing method and composite powder metal rotor assembly for synchronous reluctance machine
JPH0693404B2 (en) Method for manufacturing multi-pole core made of amorphous alloy
JPS6351602A (en) Manufacture of magnetically anisotropic conductive material
JP2006211828A (en) Stator and its manufacturing method
JP4582947B2 (en) Induction motor rotor and rotor manufacturing method
EP0064846A2 (en) Method of making motor stator
JPS6351601A (en) Manufacture of magnetically anisotropic conductive material
JPS63140504A (en) Manufacture of magnetically anisotropic conductive material
KR100434289B1 (en) rotor of squirrel cage induction motor
JPH1141872A (en) Rotor of motor
JPS6351604A (en) Manufacture of magnetically anisotropic conductive material
JPH0748937B2 (en) Method for producing magnetically anisotropic conductive material
JP5311397B2 (en) Dust core for motor and manufacturing method thereof
JPS63254613A (en) Manufacture of magnetically anisotropic conducting material
JPH0865934A (en) Rotor of motor and its manufacture
JP2679044B2 (en) Method for manufacturing magnetically anisotropic conductive member
JPH01114340A (en) Solid rotor of induction motor
JPS63254612A (en) Manufacture of magnetically anisotropic conducting material
GB1501371A (en) Electromagnetic device and method of manufacturing same
JPS5771254A (en) Rotor ror induction motor