JPH01114340A - Solid rotor of induction motor - Google Patents

Solid rotor of induction motor

Info

Publication number
JPH01114340A
JPH01114340A JP26809887A JP26809887A JPH01114340A JP H01114340 A JPH01114340 A JP H01114340A JP 26809887 A JP26809887 A JP 26809887A JP 26809887 A JP26809887 A JP 26809887A JP H01114340 A JPH01114340 A JP H01114340A
Authority
JP
Japan
Prior art keywords
solid
core
rotor
conductive material
solid core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26809887A
Other languages
Japanese (ja)
Inventor
Kazuhisa Hatano
量久 羽田野
Takashi Uchiyama
内山 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP26809887A priority Critical patent/JPH01114340A/en
Publication of JPH01114340A publication Critical patent/JPH01114340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PURPOSE:To reduce current loss by making the pressure welding and forming of the powder of conductive material to parts corresponding to a bar and an end ring by means of a hydrostatic pressure compression method. CONSTITUTION:A member 1 corresponding to an end ring makes the pressure welding and forming of the powder of conductive material to the axial ends of a solid core 3 by means of a hot hydrostatic pressure compression method. A bar 2, which is a member equivalent to a winding, makes the pressure welding and filling of the powder of conductive material into a groove 4 placed at a specific interval in the circumferential direction of the solid core 3 by means of a hot hydrostatic pressure compression method as well as the end ring 1. According to the constitution, the reactive flux increases and the lowering of efficiency can be prevented.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は誘導′電動機のソリッドロータに関するもので
あり、より具体的には誘導電動機の回転子中のかご形回
転子とも呼ばれている型に属するソリッドロータであっ
て、その鉄心として多数の鉄板を積層するタイプの代り
に、実体の鉄心を使用し1巻線に相当する部分であるバ
ーとエンドリンタに相当する部分とか、ソリウドコアに
対し熱間静水圧圧縮(IIIP)又は冷間静水圧圧縮(
CIP)によって一体に成型されたソリッドロータの構
造に関するものである。 (従来の技術l 比較的出力の低い小形の誘導電動機では、主としてかご
形回転子が採用される。 かご形回転子の鉄心(コア)
には固定子鉄心から発生する回転磁界の磁束により誘導
起電力が発生し、導体であるバーに誘導電流が流れ、こ
の誘導電流と回転磁界の相互作用により導体に作用する
電磁力かトルクとなって回転子に作用し回転子を回転磁
界の回転方向と同方向に回転させる。 回転鉄心は回転磁束の通路となるものであり、鉄損低減
のため、従来はケイ素鋼板や電気鉄板などをプレスで打
抜き中心部には軸孔、外周部には導体となるバーを挿入
するため鉄心の外周縁に沿って設けられた複数のスロッ
トなどを明けて成形し、このようにプレス成形されたコ
ア用成形板を軸方向に多数積層してコアとするものであ
った。 かご形回転子として組立てるには、治具などを使用して
スロットの部分に硬銅部のバーを硬く打ち込み、積層さ
れたコアの軸方向外側端から突出したバーの外端を銅製
のエンドリングで連結し短絡する方法が採られていた。 これに代る方法として、アルミニウムなどの導電性金属
を鉄心のスロットからダイカスト法などにより注入し、
エンドリングとバーとを一体に鋳込んで同時に組立てる
方法も採られている。 積層タイプのロータ鉄心の場合には、導電材のバーによ
り鋼板の絶縁層が損傷する場合があり、一方ダイカスト
鋳造や熱間等方圧成形などによる場合は積層された鋼板
相互間の間隙に導電材が流入して無効磁束が増大して効
率が低下するという問題があった。 また鋳造法による場合には鋳造や冷却時に空気が導体内
部に入り易かったり、積層鋼板相互が溶着されるという
問題もあった。 このような積層タイプの回転子鉄心の代りに、第3図(
A) 、 (B)に示すように、純鉄や軟鉄の厚板を円
筒状に巻いたり、小型のモータの場合は第4図(A) 
、 (B)に示すように鋼丸棒を切削して一体に成形し
てソリッドロータとしている。 このようなソリッドロータでは鉄心が二次導体の役目を
兼ねるので電流の方向性を保つため軸方向に細溝を設け
たり、軸方向両側の短絡環、即ちエンドリングの部分を
溶接やロー付で装着する。 第3図(A) 、 (B)の例では、円筒状鉄心11が
4木のスパイダ12を介して軸13に支持されるように
一体に溶接されており1円筒状鉄心11は磁気回路およ
び二次導体の役目をして電波回路を兼ね、スパイダ12
は鉄心11を支えて動力を軸13に伝えるとともにスパ
イダ間の空所は冷却通路となっていて、軸13は動力を
外部に伝えるようになっている。 また第4図(A)、CB)の例では、ロータ14は第3
図の円筒状鉄心11、スパイダ12および軸13に相当
する部分が丸鋼から一体に削り出され、外周には細みぞ
15が付けられ、両端面には導電性の良い鋼板の両側短
絡環、即ちエンドリング16が溶接によって取り付けら
れている。 上述の回転子は、別に製作される固定子と組み合わされ
誘導電動機として電気エネルギーを機械エネルギーに変
換する。 ところがエンドリングは溶接取り付けである
ため、確実な取り付けをするためには溶接、ロー付など
に工数を要し、且つ鉄部との装着面の面積などにばらつ
きが生じたり接合面の強度が低いという問題が認められ
た。 [問題点を解決するための手段] 従来技術における上記の問題点を解決する手段として、
本発明ではロータ鉄心はソリッド型として、鋼板を円筒
形に巻き、又は電磁軟鉄線などから円筒形に切削成形し
た鉄心にバーに相当する部分に導電性材料を充填するた
めの碑と軸孔を形成して準備する。 このようにして準備した鉄心の溝と軸方向両側端面にア
ルミニウム、銅などの導電性材料の粉体を熱間静水圧圧
縮法(HIP)又は冷間静水圧圧縮法(CIP)により
一体に成型してソリッドロータとするものである。 静水圧圧wJ(加圧)法を利用する場合でも、導゛屯性
材料の粉体か溝部を越えて円周方向にハミ出したり、エ
ンドプレートとの間や隣接するバー同士が不規則な接触
面で接触する場合がある。 誘導電動機の構造ト、回転子に流れる電流中で回転トル
クに寄与するのは回転子の軸方向に流れる電流のみであ
り、円周方向に流れる電流は無効磁束を増加させ効率低
下を招くことになる。 このような問題に対しては、溝の内周面とコアの軸方向
両端面に無aj!tのセラミック塗料などを塗布し加熱
硬化させてから静水圧圧縮法を適用して導電性材料の粉
体を加圧成型するようにして解決したものである。 熱間静水圧圧縮法は10110〜2000Kg/ Cm
ゴのガス圧下で被処理体を2000″Cもの高温で圧縮
する技術であり特に粉末冶金の分野で多用、されている
。 冷間静水圧加圧法は処理温度以外では熱間静水圧圧縮法
とほぼ同様であ。 [実施例] 実施例 l !51図(A)と(8)は本発明の第1の実施例な示す
もので、第1図(B)は第1図(A)のB−B線に沿っ
て見た側断面図で、第1図(A)は第1図(B)のA−
A線に沿って見た正面断面図ゼある。 図面中の符合1はエンドリングに相当する部材で、導電
性材料の粉体をソリッドコア3の軸方向両端面に熱間静
水圧圧縮法により圧着成型した状態を示し、符合2は巻
線に相当する部材であるバーであり、エンドリング1と
同様導電性材料の粉体がソリッドコア3の円周方向に所
定の間隔を保って配置された溝4内に熱間静水圧圧縮法
により圧着充填された状態を示している。 実施例 2 第2図(A)と(B)は本発明の第2の実施例を示すも
ので、第1の実施例と相違するのは、溝4の゛内周面と
ソリッドコア3の軸方向両端面に無機質のセラミック塗
料などな塗布した後加熱硬化させた絶縁層5が形成され
ている点である。 この絶縁層5は、熱間静水圧圧縮法などを適用する際に
導電性材料が円周方向にハミ出て隣接するバーを連結す
ることにより無効磁束を増加させ効率低下を招くのを防
止する必要度が大きい場合に実施される。 「発明の効果j 本発明によるソリッドロータは前述のように構成されて
いて1次のような効果が達成される。 1)バーとエンドリングに相当する部分には導電性材料
の粉体が静水圧圧縮法により圧着成型されているので電
流損失が少く効率的である。 2)ロータの電流損失が少いのでロータの昇温を低減で
きる。 3)導電性材料粉体の材質、溝形状を適宜選択すること
により特性の選択が容易にできる。 4)セラミック材などの無**塗料による絶縁層により
無効磁束の増加を低減できる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a solid rotor for an induction motor, and more specifically to a solid rotor, also called a squirrel cage rotor, in the rotor of an induction motor. A solid rotor that belongs to Inter-Isostatic Pressing (IIIP) or Cold Isostatic Pressing (IIIP)
This relates to the structure of a solid rotor integrally molded by CIP. (Conventional technology) Small induction motors with relatively low output mainly use squirrel cage rotors. Iron core of squirrel cage rotors
An induced electromotive force is generated by the magnetic flux of the rotating magnetic field generated from the stator core, and an induced current flows through the bar, which is a conductor.The interaction between this induced current and the rotating magnetic field creates an electromagnetic force or torque that acts on the conductor. act on the rotor to rotate the rotor in the same direction as the rotating magnetic field. A rotating iron core serves as a path for rotating magnetic flux, and in order to reduce iron loss, conventionally, a silicon steel plate or an electric iron plate is punched out using a press, and a shaft hole is inserted in the center and a bar that becomes a conductor is inserted in the outer periphery. A plurality of slots provided along the outer periphery of the iron core are formed, and a large number of press-formed core forming plates are stacked in the axial direction to form a core. To assemble the squirrel-cage rotor, use a jig or the like to firmly drive a hard copper bar into the slot, and insert the outer end of the bar protruding from the axial outer end of the laminated core into a copper end ring. A method of connecting and shorting was used. As an alternative method, a conductive metal such as aluminum is injected through a slot in the iron core using a die-casting method.
Another method is to cast the end ring and bar together and assemble them at the same time. In the case of a laminated type rotor core, the conductive material bars may damage the insulating layer of the steel plates, while in the case of die casting, hot isostatic pressing, etc., conductive material may be created in the gaps between the laminated steel plates. There was a problem in that the ineffective magnetic flux increased due to the inflow of material, resulting in a decrease in efficiency. In addition, when the casting method is used, there are problems in that air tends to enter the inside of the conductor during casting and cooling, and that the laminated steel plates are welded to each other. Instead of such a laminated type rotor core, the rotor core shown in Fig. 3 (
As shown in A) and (B), thick plates of pure iron or soft iron are rolled into a cylindrical shape, or in the case of a small motor, the motor is shown in Figure 4 (A).
As shown in (B), a round steel bar is cut and molded into one piece to form a solid rotor. In such a solid rotor, the iron core also serves as a secondary conductor, so in order to maintain the directionality of the current, narrow grooves are provided in the axial direction, and short-circuit rings, or end rings, on both sides in the axial direction are welded or brazed. Installing. In the example shown in FIGS. 3(A) and 3(B), the cylindrical core 11 is welded together so as to be supported by the shaft 13 via four spiders 12, and one cylindrical core 11 is connected to the magnetic circuit and The spider 12 acts as a secondary conductor and also serves as a radio circuit.
supports the iron core 11 and transmits power to the shaft 13, and the space between the spiders serves as a cooling passage, so that the shaft 13 transmits the power to the outside. Furthermore, in the example shown in FIGS. 4(A) and CB), the rotor 14 is
Portions corresponding to the cylindrical core 11, spider 12, and shaft 13 in the figure are machined integrally from round steel, with thin grooves 15 on the outer periphery, and short-circuit rings on both end surfaces made of steel plates with good conductivity. That is, the end ring 16 is attached by welding. The rotor described above is combined with a separately manufactured stator to convert electrical energy into mechanical energy as an induction motor. However, since end rings are attached by welding, it takes a lot of man-hours to weld, braze, etc. to ensure a secure attachment, and the area of the attachment surface with the steel part may vary, and the strength of the joint surface is low. The problem was recognized. [Means for solving the problems] As a means for solving the above problems in the conventional technology,
In the present invention, the rotor core is a solid type, and the core is made by winding a steel plate into a cylindrical shape or by cutting and forming a cylindrical shape from soft electromagnetic wire, etc., and has a monument and a shaft hole for filling the portion corresponding to the bar with a conductive material. Form and prepare. Powder of a conductive material such as aluminum or copper is integrally molded into the groove of the thus prepared iron core and on both axial end faces by hot isostatic pressing (HIP) or cold isostatic pressing (CIP). The rotor is a solid rotor. Even when using the hydrostatic pressure wJ (pressurization) method, the powder of the conductive material may protrude circumferentially beyond the groove, or there may be irregular contact between the end plate and adjacent bars. Surface contact may occur. The structure of an induction motor is that among the current flowing through the rotor, only the current flowing in the axial direction of the rotor contributes to the rotational torque, and the current flowing in the circumferential direction increases reactive magnetic flux and causes a decrease in efficiency. Become. To solve this problem, there is no aj! on the inner circumferential surface of the groove and both axial end surfaces of the core. This problem was solved by applying a ceramic paint, etc., and curing it by heating, and then applying a hydrostatic compression method to press-mold the powder of the conductive material. Hot isostatic compression method is 10110~2000Kg/Cm
It is a technology in which the object to be processed is compressed at a high temperature of 2000"C under the gas pressure of green gas, and is widely used especially in the field of powder metallurgy.The cold isostatic pressing method is the same as the hot isostatic pressing method at other than the processing temperature. [Example] Example l !51 Figures (A) and (8) show the first embodiment of the present invention, and Figure 1 (B) is similar to Figure 1 (A). This is a side sectional view taken along the line B-B, and FIG. 1(A) is the A--
There is a front sectional view taken along line A. Reference numeral 1 in the drawing indicates a member corresponding to an end ring, and indicates a state in which conductive material powder is crimped onto both axial end faces of the solid core 3 by hot isostatic compression, and reference numeral 2 indicates a member corresponding to the winding. It is a bar which is a corresponding member, and like the end ring 1, conductive material powder is pressed into the groove 4 arranged at a predetermined interval in the circumferential direction of the solid core 3 by hot isostatic compression method. It shows the filled state. Embodiment 2 FIGS. 2(A) and 2(B) show a second embodiment of the present invention, which differs from the first embodiment in that the inner peripheral surface of the groove 4 and the solid core 3 are different from the first embodiment. The insulating layer 5 is formed on both end faces in the axial direction by applying an inorganic ceramic paint or the like and then hardening it by heating. This insulating layer 5 prevents the conductive material from protruding in the circumferential direction and connecting adjacent bars when hot isostatic compression is applied, thereby increasing reactive magnetic flux and reducing efficiency. It will be implemented when there is a great need. Effects of the Invention The solid rotor according to the present invention is constructed as described above and achieves the following effects. 1) Powder of a conductive material is statically applied to the portions corresponding to the bars and end rings. Pressure molding is carried out using the hydraulic compression method, so current loss is low and efficiency is high. 2) Rotor current loss is low, so rotor temperature rise can be reduced. 3) The material and groove shape of the conductive material powder are carefully selected. Characteristics can be easily selected by making appropriate selections. 4) Increase in reactive magnetic flux can be reduced by an insulating layer made of ceramic material or the like without paint.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)と(B)は、それぞれ、本発明の第1の実
施例を示す正面断面図と側面図、第2@(A)とCB)
は、それぞれ、本発明の第2の実施例を示す正面断面図
と側面図、第3図(A)とCB)は′、それぞれ、従来
のソリッドロータの側面図と正面断面図で14図(A)
と(B)は、それぞれ、従来の鋼丸棒から削り出したソ
リッドロータの側面図と正面断面図である。 図面中の符号 1:熱間静水圧圧縮法により圧着成型されたエンドリン
グ相当部、 2:熱間静水圧圧縮法により圧着成型されたバー相当部
、 3:ソリッド=7.4:溝。 5:無機質塗料が塗布後加熱硬化した絶縁層5゜代理人
 弁理士 後 藤 武 夫 代理人 弁理士 斎 藤 春 弥 代理人 弁理士 藤 木   礒 第1図 (A)     (B) 第2図 1  エンドリング相当部 2− バー相当部 3  ソリッドコア 4溝 5  絶縁層 弔3図 (A)       (B) 第4図 (A)     ’  (B)
Figures 1 (A) and (B) are a front sectional view and a side view showing the first embodiment of the present invention, respectively; Figures 2 (A) and CB)
3(A) and CB) are respectively a front sectional view and a side sectional view showing the second embodiment of the present invention, and FIG. A)
and (B) are a side view and a front cross-sectional view, respectively, of a solid rotor machined from a conventional steel round bar. Reference numeral 1 in the drawings: a portion corresponding to an end ring that is crimped and molded by hot isostatic compression; 2: a portion that corresponds to a bar that is crimped and molded by hot isostatic compression; 3: Solid = 7.4: Groove. 5: Insulating layer 5° where the inorganic paint is heated and cured after being applied.Representative: Patent Attorney Takeo Goto, Patent Attorney Haruya Saito, Patent Attorney Patent Attorney Iso Fujiki Figure 1 (A) (B) Figure 2 1 End ring equivalent part 2 - Bar equivalent part 3 Solid core 4 groove 5 Insulating layer 3 (A) (B) Figure 4 (A) ' (B)

Claims (1)

【特許請求の範囲】 1、鉄系材料から所定の寸法に加工され、円周方向に所
定の間隔を保って長手軸線方向に延在する複数個の溝と
、軸方向両端面とを有するソリッドコアと、 導電性材料の粉体が熱間静水圧圧縮法(HIP)又は冷
間静水圧圧縮法(CIP)により、 前記のソリッドコアの溝部に充填されて形成されたバー
部と、 このバー部と、ソリッドコアの軸方向両端面と一体に連
続して圧着されたエンドプレートに相当する部材とを有
していることを特徴とする誘導電動機のソリッドロータ
。 2、鉄系材料から所定の寸法に加工され、円周方向に所
定の間隔を保って長手軸線方向に延在する複数個の溝と
、軸方向両端面とを有するソリッドコアと、 前記のソリッドコア本体部の複数個の溝の内周面と軸方
向両端面とに塗布されて後加熱して硬化された無機質塗
料の被覆層と、 この無機質塗料の被覆層を介して、導電性材料の粉体が
熱間静水圧圧縮法(HIP)又は冷間静水圧圧縮法(C
IP)により、 前記のソリッドコアの溝部に充填されて形成されたバー
部と、 このバー部とソリッドコアの軸方向両端面とに一体に連
続して圧着されたエンドプレートに相当する部材とを有
していることを特徴とする誘導電動機のソリッドロータ
[Claims] 1. A solid made of iron-based material to a predetermined size and having a plurality of grooves extending in the longitudinal axis direction at predetermined intervals in the circumferential direction, and both axial end faces. a core, a bar portion formed by filling the groove of the solid core with conductive material powder by hot isostatic pressing (HIP) or cold isostatic pressing (CIP); and this bar. What is claimed is: 1. A solid rotor for an induction motor, comprising: a solid core; and a member corresponding to an end plate integrally and continuously crimped to both axial end surfaces of a solid core. 2. A solid core machined to a predetermined size from a ferrous material and having a plurality of grooves extending in the longitudinal axis direction at predetermined intervals in the circumferential direction, and both axial end faces; A coating layer of an inorganic paint is applied to the inner circumferential surface and both axial end surfaces of the plurality of grooves in the core body and then cured by heating, and a conductive material is coated through the coating layer of the inorganic paint. The powder is processed by hot isostatic pressing (HIP) or cold isostatic pressing (C
IP), a bar portion formed by filling the groove portion of the solid core, and a member corresponding to an end plate that is integrally and continuously crimped to the bar portion and both axial end surfaces of the solid core. A solid rotor for an induction motor, characterized in that it has a solid rotor.
JP26809887A 1987-10-26 1987-10-26 Solid rotor of induction motor Pending JPH01114340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26809887A JPH01114340A (en) 1987-10-26 1987-10-26 Solid rotor of induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26809887A JPH01114340A (en) 1987-10-26 1987-10-26 Solid rotor of induction motor

Publications (1)

Publication Number Publication Date
JPH01114340A true JPH01114340A (en) 1989-05-08

Family

ID=17453864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26809887A Pending JPH01114340A (en) 1987-10-26 1987-10-26 Solid rotor of induction motor

Country Status (1)

Country Link
JP (1) JPH01114340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3936520A1 (en) * 1988-11-02 1990-05-03 Tokai Rika Co Ltd Vehicular electrically heated external mirror connection package - has groove around resin filled space enclosing conductive terminal elements in housing of heater mounted connector
JP2010154689A (en) * 2008-12-25 2010-07-08 Panasonic Electric Works Co Ltd Motor with speed reducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3936520A1 (en) * 1988-11-02 1990-05-03 Tokai Rika Co Ltd Vehicular electrically heated external mirror connection package - has groove around resin filled space enclosing conductive terminal elements in housing of heater mounted connector
JP2010154689A (en) * 2008-12-25 2010-07-08 Panasonic Electric Works Co Ltd Motor with speed reducer

Similar Documents

Publication Publication Date Title
US6088906A (en) Method of manufacturing squirrel cage rotors
RU2237335C2 (en) Stator having dents of magnetically soft powder material
JP3350889B2 (en) Stator for high power density motor / generator and its manufacturing method
US20170237323A1 (en) Rotor design for an electric motor having brazed structure for connecting rotor bars
US6675460B2 (en) Method of making a powder metal rotor for a synchronous reluctance machine
US9219399B2 (en) Method for fabricating rotor for induction motor
EP1575146B1 (en) Soft Magnetic composite powder metal cores
US4625392A (en) Method of manufacturing a molded rotatable assembly for dynamoelectric machines
US5729885A (en) Method for rotor construction for alternating induction motor
EP2804297B1 (en) Squirrel-cage rotor assembly with electron beam welded end caps
US6877210B2 (en) Electrofriction method of manufacturing squirrel cage rotors
EP1865587B1 (en) Magnetic powder metal composite core for electrical machines
JPH01144346A (en) Motor
CN102651592A (en) Method and apparatus for producing an induction rotor
CA2215765C (en) Rotors and methods of manufacturing such rotors
CN109217598B (en) Rotor for induction motor
EP3046224B1 (en) Method of manufacturing the rotor assembly for an electric motor
JPH01114340A (en) Solid rotor of induction motor
JPH06133478A (en) Field core with pawl and manufacture thereof
CN215528838U (en) Squirrel-cage rotor for an electric motor, in particular an asynchronous motor, and electric motor
JPH07163107A (en) Squirrel-cage induction motor, manufacture thereof, and fluid machinery having square torque characteristics driven thereby
KR100434289B1 (en) rotor of squirrel cage induction motor
JPH01144345A (en) Induction motor
JPH05316699A (en) Manufacture of cage shaped rotor
CN216959467U (en) Motor rotor and self-starting synchronous reluctance motor