JPH0748937B2 - Method for producing magnetically anisotropic conductive material - Google Patents

Method for producing magnetically anisotropic conductive material

Info

Publication number
JPH0748937B2
JPH0748937B2 JP16171385A JP16171385A JPH0748937B2 JP H0748937 B2 JPH0748937 B2 JP H0748937B2 JP 16171385 A JP16171385 A JP 16171385A JP 16171385 A JP16171385 A JP 16171385A JP H0748937 B2 JPH0748937 B2 JP H0748937B2
Authority
JP
Japan
Prior art keywords
conductive material
magnetic
powder
anisotropic conductive
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16171385A
Other languages
Japanese (ja)
Other versions
JPS6223345A (en
Inventor
寿幸 首藤
修 中村
宏 貝沼
武司 瀬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP16171385A priority Critical patent/JPH0748937B2/en
Publication of JPS6223345A publication Critical patent/JPS6223345A/en
Publication of JPH0748937B2 publication Critical patent/JPH0748937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は位置による透磁率の変動がなく、磁性材料の占
積率の向上、および磁性材料と導電材料の占積比率の設
定が容易にできる磁気異方性材料を簡単な工程によって
製造できるようにした磁気異方性導電材料の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention does not change the magnetic permeability depending on the position, so that the space factor of the magnetic material can be improved and the space ratio of the magnetic material and the conductive material can be easily set. The present invention relates to a method of producing a magnetically anisotropic conductive material, which can produce a magnetically anisotropic material that can be produced by a simple process.

[従来の技術と問題点] 磁気異方性導電材料として、例えば、特開昭57-46656号
公報に示されるように、誘導電動機に使用されるものが
ある。第7図、第8図はその誘導電動機の回転子20を構
成する部材として使用される磁気異方性導電材料の例を
示しており、回転子20には回転軸と同軸状に通電外被21
と回転子鉄心22が設けられている。通電外被21は、拡大
部分Qで示すように、半径方向に伸びる磁性材料からな
る鉄線24とその間を充填した導電材料からなる銅材料25
より成る磁気異方性導電材料で主要部を構成されてい
る。
[Prior Art and Problems] As a magnetic anisotropic conductive material, for example, there is a material used for an induction motor as disclosed in JP-A-57-46656. 7 and 8 show examples of magnetic anisotropic conductive materials used as members constituting the rotor 20 of the induction motor, and the rotor 20 has an energization jacket coaxial with the rotating shaft. twenty one
And a rotor core 22 are provided. As shown by the enlarged portion Q, the energization jacket 21 has an iron wire 24 made of a magnetic material extending in the radial direction and a copper material 25 made of a conductive material filling the space between them.
The main part is made of a magnetic anisotropic conductive material.

以上の構成により、半径方向の透磁率μrが周方向の透
磁率μθより大きく(μr>>μθ)、かつ、軸方向の
抵抗率ρzの小さい回転子が得られる。ここで、この誘
導電動機を駆動すると、半径方向においてばらつきの少
い大きな透磁率μrのために固定子との間で磁気変動の
少ない磁気結合が得られ、振動騒音の少ない駆動を行う
ことができ、かつ、回転子から巻線を省略したため、小
型化および軽量化を図ることができる。
With the above configuration, a rotor having a radial magnetic permeability μr larger than the circumferential magnetic permeability μθ (μr >> μθ) and a small axial resistivity ρz can be obtained. Here, when this induction motor is driven, magnetic coupling with less magnetic fluctuation is obtained between the stator and the stator due to the large magnetic permeability μr with little variation in the radial direction, and driving with less vibration noise can be performed. Moreover, since the winding is omitted from the rotor, it is possible to reduce the size and weight.

また、磁性材料と導電材料の占積率に応じて透磁率およ
び抵抗率を制御することができる。
Further, the magnetic permeability and the resistivity can be controlled according to the space factor of the magnetic material and the conductive material.

第9図は導電材料中の磁性材料の占積比率と電磁気的性
質の関係を一つの実験結果からみたものである。
FIG. 9 shows the relationship between the space factor of the magnetic material in the conductive material and the electromagnetic property from one experimental result.

この磁気異方性導電材料は、例えば、半径方向に所定の
長さを有した多数本の鉄線あるいは鋼線の磁性材料を放
射状に配置し、その間に銅やアルミニウム等の導電材料
を鋳込んで成形されている。
This magnetic anisotropic conductive material is, for example, a large number of iron or steel magnetic materials having a predetermined length in the radial direction are radially arranged, and a conductive material such as copper or aluminum is cast between them. It is molded.

しかし、前述した磁気異方性導電材料の製造方法によれ
ば、磁性材料を放射状に整列配置することが難しいため
に磁性材料の整列が乱れることがあり、そのため全体的
に均一の透磁率を有した磁気異方性導電材料の製造が困
難であり、また、磁性材料の占積率を向上するために磁
性材料の配列密度を大にする(具体的には例えばびっし
り詰めて配列する)と、磁性材料間の間隔が小さくなる
ばかりでなく、ときには接触したりすることがあるた
め、溶融した導電材料の浸透性が悪化して成形品内部に
巣が発生したり、透磁率の偏りによって特性劣化が生じ
るという不都合がある。従って、従来の製法では磁性材
料の占積率は20〜30%が限度である。また、この鋳込み
方法では鋼線表面の酸化が銅の浸透性および接着状態に
大きな影響を与えるという問題があり、それにより鉄線
あるいは鋼線からなる磁性材料の密度が高くなるほど鋳
込みづらくなるという問題がある。
However, according to the above-described method for manufacturing the magnetic anisotropic conductive material, it is difficult to radially arrange the magnetic materials, which may disturb the alignment of the magnetic materials. Therefore, a uniform magnetic permeability is obtained. It is difficult to manufacture the magnetically anisotropic conductive material described above, and when the arrangement density of the magnetic materials is increased in order to improve the space factor of the magnetic materials (specifically, for example, they are closely packed and arranged), Not only the gap between the magnetic materials becomes smaller, but sometimes they may come into contact with each other, so that the permeability of the molten conductive material deteriorates, forming cavities inside the molded product, and degrading the characteristics due to uneven magnetic permeability. There is a problem that occurs. Therefore, in the conventional manufacturing method, the space factor of the magnetic material is limited to 20 to 30%. Further, in this casting method, there is a problem that the oxidation of the steel wire surface has a great influence on the permeability and adhesion state of copper, and as a result, the higher the density of the magnetic material made of iron wire or steel wire, the more difficult it becomes to cast. is there.

[発明の目的] 本発明は上記に鑑みてなされたものであり、巣の発生や
特性劣化がなく、全体的に均一な透磁率を有し、かつ、
磁性材料の占積率の向上および磁性材料と導電材料の占
積比率の設定が容易にできる磁気異方性導電材料を簡単
な工程によって製造できる磁気異方性導電材料の製造方
法を提供することを目的とする。
[Object of the Invention] The present invention has been made in view of the above, and has a uniform magnetic permeability as a whole without generation of cavities and characteristic deterioration, and
To provide a method for producing a magnetic anisotropic conductive material capable of easily producing a magnetic anisotropic conductive material capable of improving the space factor of the magnetic material and setting the space factor of the magnetic material and the conductive material by a simple process. With the goal.

[発明の概要] 本発明の磁気異方性導電材料の製造方法は、磁性材料の
周上に導電性材料を被覆した複合線の多数本を一定方向
に密に整列配置すると共にこれら複合線の間隙に前記導
電性材料と同じ導電性材料の粉末を充填し、しかるのち
全体を加熱および加圧して冶金学的に一体化することを
特徴とするものである。
[Summary of the Invention] In the method for producing a magnetic anisotropic conductive material of the present invention, a large number of composite wires coated with a conductive material on the circumference of a magnetic material are densely arranged in a certain direction, and It is characterized in that the gap is filled with a powder of the same conductive material as the conductive material, and then the whole is heated and pressurized to be metallurgically integrated.

また、もう一つの本発明の磁気異方性導電材料の製造方
法は、中心になる軸を設定し、磁性材料の周上に導電性
材料を被覆した複合線の多数本を前記軸を中心とする半
径方向に放射状に密に整列配置すると共にこれら複合線
の間隙に前記導電性材料と同じ導電性材料の粉末を充填
し、しかるのち全体を加熱および加圧して冶金学的に一
体化することを特徴とするものでる。
Further, another method for producing a magnetic anisotropic conductive material of the present invention is to set a central axis, and to arrange a large number of composite wires coated with a conductive material on the circumference of the magnetic material with the central axis as the center. Radially closely aligned in a radial direction and filling the gaps of these composite wires with a powder of the same conductive material as the above-mentioned conductive material, and then heating and pressing the whole to metallurgically integrate them. It is characterized by.

本発明において、磁性材料の周上に導電性材料を被覆し
た複合線としては、例えば銅被鉄あるいは鋼線、アルミ
被鉄あるいは鋼線が用いられ、したがってまた、導電性
材料の粉末としては銅粉あるいはアルミ粉が用いられ
る。なお、導電性材料の粉末としては、粉末の中にバイ
ンダーを含有したスラリー状のものも含まれる。
In the present invention, as the composite wire in which the conductive material is coated on the circumference of the magnetic material, for example, copper-covered steel or steel wire, aluminum-covered steel or steel wire is used, and therefore, as the conductive material powder, copper is used. Powder or aluminum powder is used. It should be noted that the powder of the conductive material also includes a slurry in which a binder is contained in the powder.

冶金学的に一体化するとは、金属同志を文字通り金属結
合された状態におくことをいい、金属同志を単に機械的
に結合あるいは混合された状態におくことは通常冶金学
的に一体化するといわない。バインダーを含有したスラ
リー状の粉末は本来品質面からは好ましくないのである
が、製造技術面からは次のような利点がある。すなわち
粉末の中に複合線の多数本を一定方向に整列配置し、し
かもこれらを積層していくことは一般的にいって技術的
に非常に難しいことであるが、粉末が適当にバインダー
を含有したスラリー状のものであるとそのような整列配
置作業も比較的容易に行うことができる。つまり、スラ
リー状のものを用いた場合は複合線の位置決めが容易と
なり、その結果複合線の整列配置作業を容易に行なうこ
とができるという利点がある。
Metallurgically unifying means that the metals are literally in a metal-bonded state, and simply keeping the metals in a mechanically bonded or mixed state is usually said to be metallurgically united. Absent. Although a slurry-like powder containing a binder is originally not preferable from the viewpoint of quality, it has the following advantages from the viewpoint of manufacturing technology. That is, it is generally technically very difficult to arrange a number of composite wires in a powder in a certain direction and stack them, but the powder does not contain a binder properly. If it is in the form of a slurry, such alignment work can be performed relatively easily. That is, when the slurry type is used, there is an advantage that the composite wire can be easily positioned and, as a result, the composite wire can be easily arranged and arranged.

また、このような整列配置作業には粉末としてスラリー
状のものを使用することのほかに粉末と同じ導電性材料
のスペーサを使用することも複合線のズレを防止し整列
配置作業を容易化するうえで大きな効果がある。このス
ペーサは複合線を整列配置作業する際に複合線が容易に
ズレるのを防止するいわゆるスペーサあるいは担体とし
ての役目をするものであり、加熱加圧後は粉末とともに
複合線に一体化されてしまうことになるので、スペーサ
としての役目は終わりである。
In addition to using slurry-like powder as the powder for such alignment work, spacers made of the same conductive material as the powder can be used to prevent deviation of the composite wire and facilitate alignment work. Has a great effect on These spacers serve as so-called spacers or carriers that prevent the composite wires from being easily displaced when the composite wires are aligned and arranged, and after heating and pressing, they are integrated with the powder into the composite wires. The role of the spacer is over.

[実施例] 以下本発明を第1図〜第6図に示す実施例により説明す
る。
[Examples] The present invention will be described below with reference to Examples shown in Figs. 1 to 6.

まず、磁性材料の周上に導電性材料を被覆した複合線と
しては、第3図に示すように直径1.4mmの鋼線1の周上
に銅被覆2を有する外径1.6mmの複合線3を使用し、こ
の複合線3を25mmの長さに切断し、これを必要本数用意
すると共にそれぞれ洗滌により表面処理を行う。
First, as a composite wire in which a conductive material is coated on the circumference of a magnetic material, as shown in FIG. 3, a steel wire 1 having a diameter of 1.4 mm and a copper coating 2 on the circumference of a composite wire 3 having an outer diameter of 1.6 mm 3 are used. The composite wire 3 is cut into a length of 25 mm, and a required number of the composite wire 3 is prepared and surface treatment is performed by washing.

一方、導電性材料の粉末としては、粒度350メッシュの
銅粉中にメチルセルロース3%水溶液をバインダーとし
て含有せしめ、混練りにより銅粉100gに対しメチルセル
ロース30ccの割合で含有せしめてなる銅スラリーを用意
する。
On the other hand, as the powder of the conductive material, a copper slurry is prepared in which a 3% aqueous solution of methylcellulose is contained as a binder in copper powder having a particle size of 350 mesh and kneading is performed to add 30cc of methylcellulose to 100g of the copper powder. .

上記の準備を終えた後、第1図に示す加圧装置4に複合
線3および銅スラリー5(第4図参照)を詰め込み、粉
末冶金法による加圧を行う。
After completing the above preparation, the composite wire 3 and the copper slurry 5 (see FIG. 4) are packed in the pressurizing device 4 shown in FIG. 1, and pressurization is performed by the powder metallurgy method.

すなわち、この加圧装置4の金型中子(外径54mm)6と
金型ケース(内径112mm)7の間に形成された環状空間
8内にまず銅スラリー5を65g入れて平滑に敷設する。
銅スラリー5を平滑に敷設するには押型9を用いて銅ス
ラリー5軽く押圧するとよい。
That is, first, 65 g of copper slurry 5 is put into an annular space 8 formed between a mold core (outer diameter 54 mm) 6 and a mold case (inner diameter 112 mm) 7 of the pressurizing device 4 and laid smoothly. .
In order to lay the copper slurry 5 evenly, it is advisable to lightly press the copper slurry 5 using the pressing die 9.

次に銅スラリー5を平滑にしたらその上へ106本の複合
線3を第2図に示すように中子6を中心とする半径方向
に放射状に密に整列配置する。本実施例の場合、この整
列配置作業は平滑にされた銅スラリー上にマークを付け
て手作業で行なった。これが終ったら再度押型9を用い
て複合線3を銅スラリー5の中に押し込み固定する。以
下同じようにして銅スラリー5と複合線3を前記環状空
間8内に交互に入れていくことにより、複合線相互の間
隙を銅スラリーで充填しながら多数の複合線3を立体的
に積み上げていく。この一部を断面で示したのが第4図
である。
Next, when the copper slurry 5 is smoothed, 106 composite wires 3 are radially and densely arranged in a radial direction around the core 6 as shown in FIG. In the case of this example, this alignment work was done manually by marking on the smoothed copper slurry. After this is completed, the pressing wire 9 is used again to push the composite wire 3 into the copper slurry 5 to fix it. By alternately inserting the copper slurry 5 and the composite wire 3 into the annular space 8 in the same manner, a large number of composite wires 3 are stacked three-dimensionally while filling the gaps between the composite wires with copper slurry. Go. FIG. 4 shows a part of this in cross section.

第1図は複合線3と銅スラリー5が環状空間8内の所定
の高さまで密に詰め込まれた状態を示し、この様にした
らこれをそのままいったん室内温度50〜100℃の雰囲気
炉に入れて24Hr予熱保持する。10は雰囲気炉のヒーター
である。予熱終了後、環状空間8内の複合線3および銅
スラリー5を押型9および油圧シリンダー11を用いてプ
レスする。プレス終了後、今度は室内温度900〜1000℃
の雰囲気炉に入れて2時間保持した後、再度プレスを行
う。この方法自体は粉末(金属)を加圧焼結する場合と
同じ方法と考えてよい。
FIG. 1 shows a state in which the composite wire 3 and the copper slurry 5 are densely packed up to a predetermined height in the annular space 8. In this way, the composite wire 3 and the copper slurry 5 are put into an atmosphere furnace with an indoor temperature of 50 to 100 ° C. as they are. Preheat for 24 hours. 10 is a heater for the atmosphere furnace. After the preheating is completed, the composite wire 3 and the copper slurry 5 in the annular space 8 are pressed using the pressing die 9 and the hydraulic cylinder 11. After pressing, the room temperature is now 900-1000 ℃
After holding in the atmosphere furnace for 2 hours and holding for 2 hours, pressing is performed again. This method itself may be considered to be the same as the method for pressure-sintering powder (metal).

このようにして加圧、焼結を終えたら降温後、所定の形
状、寸法に仕上げ、磁気異方性材料として使用する。
After the pressurization and sintering are completed in this way, the temperature is lowered, and the product is finished into a predetermined shape and size and used as a magnetic anisotropic material.

ここで銅スラリーの充填量は複合線3の被覆の厚さとと
もに磁性材料の占積率に関係するので、複合線3のサイ
ズ、磁気異方性材料によって構成される製品例えば回転
子の形状、性能等によって任意に調整することが望まし
い。
Here, since the filling amount of the copper slurry is related to the space factor of the magnetic material as well as the coating thickness of the composite wire 3, the size of the composite wire 3, the product formed of the magnetic anisotropic material, for example, the shape of the rotor, It is desirable to adjust it arbitrarily according to the performance.

第5図および第6図は銅スラリーに変えて銅粉12を使用
した場合の例をそれぞれ示したものである。この場合、
これまでの説明からも明らかなように粉末中に複合線を
整列配置し積層させていくことは非常に難しい(複合線
の位置がズレやすく安定しない)作業なので、銅粉と同
じ銅製の箔状のスペーサ13あるいは14を用いて複合線3
の位置の安定化を図ったものである。複合線3の左右へ
の位置ズレ防止という点では第6図に示すような溝付ス
ペーサ14を用いることが望ましい。これスペーサ13およ
び14は、加圧焼結後は銅粉と一体に焼結されるので、磁
気異方性導電材料の製品をみたときはスペーサ13および
14の存在は分からなくなる。
FIG. 5 and FIG. 6 respectively show examples in which the copper powder 12 is used instead of the copper slurry. in this case,
As is clear from the above explanation, it is very difficult to align and stack composite wires in the powder (the position of the composite wires is easily misaligned and not stable). Composite wire 3 using spacers 13 or 14 of
It is intended to stabilize the position of. It is desirable to use the grooved spacer 14 as shown in FIG. 6 from the viewpoint of preventing the positional deviation of the composite wire 3 to the left and right. Since the spacers 13 and 14 are sintered together with the copper powder after pressure sintering, when looking at the product of the magnetic anisotropic conductive material, the spacers 13 and 14 are
The existence of 14 is unknown.

粉末冶金法による加圧には上記のほかに熱間静水圧加工
(Hot Isostatic Press)があるが、この方法により例
えば次の条件で加圧、焼結を行うと、抗折力と硬度の向
上が図られ材料としての品質の向上を期待することがで
きる。
In addition to the above, pressing by powder metallurgy includes hot isostatic pressing (Hot Isostatic Press), but if this method is used for pressing and sintering under the following conditions, the bending strength and hardness are improved. Therefore, it can be expected that the quality of the material will be improved.

・真 空:0.1〜0.01mmHg ・圧 力:1000〜2000Kg/cm2 ・加熱温度:500〜900℃ ・時 間:2〜5Hr 上記実施例においては主に磁性材料を半径方向に放射状
に設置した構造の磁気異方性材料について述べてきた
が、磁性材料を平行状に配置した構造の磁気異方性材料
もあり、これについても本発明の適用が可能なことは勿
論である。
・ Sky: 0.1-0.01mmHg ・ Pressure: 1000-2000Kg / cm 2・ Heating temperature: 500-900 ℃ ・ Time: 2-5Hr In the above examples, magnetic materials were mainly installed radially in the radial direction. Although the magnetic anisotropic material having a structure has been described, it goes without saying that the present invention can be applied to a magnetic anisotropic material having a structure in which magnetic materials are arranged in parallel.

[発明の効果] 以上説明した通り、本発明の磁気異方性導電材料の製造
方法によれば、磁性材料の周上に導電性材料を被覆した
複合線を素材として使用したため、巣の発生や特性劣化
がなく健全な構造で、全体的に均一な透磁率を有し、か
つ、磁性材料の占積率の向上および磁性材料と導電材料
の占積比率の設定が容易にできる磁気異方性導電材料を
簡単な工程によって、例えば複合線を密に配置してその
整列配置作業を容易化した上で簡単な工程によって製造
することができる。
[Effects of the Invention] As described above, according to the method for producing a magnetic anisotropic conductive material of the present invention, since a composite wire in which a conductive material is coated on the periphery of a magnetic material is used as a material, the occurrence of cavities and Magnetic anisotropy that has a sound structure with no deterioration of properties, has a uniform magnetic permeability overall, and can easily improve the space factor of the magnetic material and set the space ratio of the magnetic material and the conductive material. The conductive material can be manufactured by a simple process, for example, by arranging the composite wires densely and facilitating the alignment work.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明磁気異方性材料の製造方法の一実施例説
明図、第2図は第1図中A−A′断面図、第3図は複合
線の構造説明図、第4図は第1図中B−B′拡大断面
図、第5図および第6図はそれぞれ本発明方法の他の実
施例説明図、第6図はそれぞれ本発明方法の他の実施例
説明図、第7図は電気機械部品を示す一部破断斜視図、
第8図は第7図のQ枠内を拡大して示す斜視図第9図は
鉄の占積率と当時率及び抵抗率の関係を示す曲線図であ
る。 1:銅線、2:銅被覆、3:複合線、4:加圧装置、5:銅スラリ
ー、6:金型中子、7:金型ケース、8:環状空間、9:押型、
10:ヒーター、11:油圧シリンダー、12:銅粉、13,14:ス
ペーサー。
FIG. 1 is an explanatory view of an embodiment of a method for producing a magnetic anisotropic material of the present invention, FIG. 2 is a sectional view taken along the line AA ′ in FIG. 1, FIG. 3 is a structural explanatory view of a composite wire, and FIG. 1 is an enlarged sectional view taken along line BB 'in FIG. 1, FIGS. 5 and 6 are explanatory views of another embodiment of the method of the present invention, and FIG. 6 is an explanatory view of another embodiment of the method of the present invention, and FIG. FIG. 7 is a partially cutaway perspective view showing an electromechanical component,
8 is an enlarged perspective view showing the inside of the Q frame of FIG. 7. FIG. 9 is a curve diagram showing the relationship between the space factor of iron and the rate at that time and the resistivity. 1: Copper wire, 2: Copper coating, 3: Composite wire, 4: Pressurizing device, 5: Copper slurry, 6: Mold core, 7: Mold case, 8: Annular space, 9: Stamping mold,
10: Heater, 11: Hydraulic cylinder, 12: Copper powder, 13, 14: Spacer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 貝沼 宏 茨城県日立市川尻町1500番地 日立電線株 式会社豊浦工場内 (72)発明者 瀬谷 武司 茨城県日立市川尻町1500番地 日立電線株 式会社豊浦工場内 (56)参考文献 特開 昭57−46656(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kainuma 1500 Kawajiri-cho, Hitachi City, Ibaraki Prefecture Toraura Plant, Hitachi Cable Co., Ltd. (72) Inventor Takeshi Seya 1500 Kawajiri-cho, Hitachi City, Ibaraki Hitachi Cable Co., Ltd. In Toyoura Factory (56) Reference JP-A-57-46656 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁性材料の周上に導電性材料を被覆した複
合線の多数本を一定方向に密に整列配置すると共にこれ
ら複合線の間隙に前記導電性材料と同じ導電性材料の粉
末を充填し、しかるのち全体を加熱および加圧して冶金
学的に一体化することを特徴とする磁気異方性導電材料
の製造方法。
1. A plurality of composite wires coated with a conductive material on the circumference of a magnetic material are densely arranged in a fixed direction, and a powder of the same conductive material as the conductive material is placed in the gap between the composite wires. A method for producing a magnetically anisotropic conductive material, which comprises filling and then heating and pressurizing the whole to be metallurgically integrated.
【請求項2】中心になる軸を設定し、磁性材料の周上に
導電性材料を被覆した複合線の多数本を前記軸を中心と
する半径方向に放射状に密に整列配置すると共にこれら
複合線の間隙に前記導電性材料と同じ導電性材料の粉末
を充填し、しかるのち全体を加熱および加圧して冶金学
的に一体化することを特徴とする磁気異方性導電材料の
製造方法。
2. A center axis is set, and a large number of composite wires coated with a conductive material on the circumference of a magnetic material are radially and densely arranged in a radial direction centered on the axis and these composite wires are arranged. A method for producing a magnetic anisotropic conductive material, characterized in that a gap between lines is filled with a powder of the same conductive material as the above-mentioned conductive material, and then the whole is heated and pressed to be metallurgically integrated.
JP16171385A 1985-07-22 1985-07-22 Method for producing magnetically anisotropic conductive material Expired - Lifetime JPH0748937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16171385A JPH0748937B2 (en) 1985-07-22 1985-07-22 Method for producing magnetically anisotropic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16171385A JPH0748937B2 (en) 1985-07-22 1985-07-22 Method for producing magnetically anisotropic conductive material

Publications (2)

Publication Number Publication Date
JPS6223345A JPS6223345A (en) 1987-01-31
JPH0748937B2 true JPH0748937B2 (en) 1995-05-24

Family

ID=15740461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16171385A Expired - Lifetime JPH0748937B2 (en) 1985-07-22 1985-07-22 Method for producing magnetically anisotropic conductive material

Country Status (1)

Country Link
JP (1) JPH0748937B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679043B2 (en) * 1987-04-07 1997-11-19 日立電線株式会社 Method for manufacturing magnetically anisotropic conductive member
JP2679044B2 (en) * 1987-04-10 1997-11-19 日立電線株式会社 Method for manufacturing magnetically anisotropic conductive member
FR2784496B1 (en) * 1998-09-28 2000-12-29 Sagem MAGNETIC CIRCUIT FOR ELECTRIC POWER TRANSFORMER

Also Published As

Publication number Publication date
JPS6223345A (en) 1987-01-31

Similar Documents

Publication Publication Date Title
CN101053139B (en) Motor generator and automobile carrying the same
JP5885176B2 (en) Manufacturing method of armature winding for electric machine
US7579723B2 (en) Power magnetic core and stator core
JP4111745B2 (en) Coil manufacturing apparatus and coil manufacturing method
CN100440693C (en) Stator of brushless direct current electric motor and its manufacturing method
JPH0748937B2 (en) Method for producing magnetically anisotropic conductive material
US20090121560A1 (en) Borealis Technical Limited
JP4869772B2 (en) Stator and manufacturing method thereof
EP0193079B1 (en) Method of manufacturing electromagnetic members
US4286375A (en) Method of manufacturing coreless armature
JPH06295836A (en) Preparation of ferrite core
JPH023288B2 (en)
CN109639074B (en) Stator core forming method
JP2000278919A (en) Magnet member and production thereof
CN212462896U (en) Motor stator structure based on powdery material Somaloy
JP2006042534A (en) Iron core coil, armature, and their manufacturing method
JPH0740778B2 (en) Method for manufacturing magnetically anisotropic material
JP2005322800A (en) Dust core and its manufacturing method
JP7339012B2 (en) Coil component manufacturing method
SU486428A1 (en) A method of manufacturing and assembling stators of electrical machines
JPS63140504A (en) Manufacture of magnetically anisotropic conductive material
CN101752914A (en) Injection molding winding frame and making method thereof
JPS6325906A (en) Manufacture of saddle type superconducting coil
JP2679044B2 (en) Method for manufacturing magnetically anisotropic conductive member
JP2005348584A (en) Powder magnetic core component and manufacturing method therefor, and powder magnetic core and manufacturing method therefor