JP2679044B2 - Method for manufacturing magnetically anisotropic conductive member - Google Patents

Method for manufacturing magnetically anisotropic conductive member

Info

Publication number
JP2679044B2
JP2679044B2 JP62089547A JP8954787A JP2679044B2 JP 2679044 B2 JP2679044 B2 JP 2679044B2 JP 62089547 A JP62089547 A JP 62089547A JP 8954787 A JP8954787 A JP 8954787A JP 2679044 B2 JP2679044 B2 JP 2679044B2
Authority
JP
Japan
Prior art keywords
magnetic
composite
conductive material
anisotropic conductive
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62089547A
Other languages
Japanese (ja)
Other versions
JPS63254614A (en
Inventor
晃男 小川
寿幸 首藤
文一 遊座
宏 貝沼
茂 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62089547A priority Critical patent/JP2679044B2/en
Publication of JPS63254614A publication Critical patent/JPS63254614A/en
Application granted granted Critical
Publication of JP2679044B2 publication Critical patent/JP2679044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁性材料と導電材料の占積比率が何れの点に
おいても同一であり、磁性材料の占積率を大きくできる
ようにした磁気異方性導電部材を工程の複雑化および表
面品質の低下を招かずに製造できるようにした誘導電動
機のかご形回転子に使用される磁気異方性導電部材を製
造方法に関する。 [従来の技術] 磁気異方性導電部材として、例えば特開昭57−46657
号公報に示されるものがある。第7図(イ)、(ロ)は
その磁気異方性導電部材を示し、誘導電動機の回転子に
使用されている。即ち、回転軸1と同軸状に通電外被2
と回転子鉄心3が設けられており、通電外被2は、拡大
部分Qで示すように、半径方向に伸びる磁性材料4とそ
の間を充填した導電材料5より成る磁気異方性導電部材
6で主要部が構成されている。 以上の構成により、半径方向の透磁率μが周方向の
透磁率μθより大きく(μ>μθ)、かつ、軸方向の
抵抗率ρの小さい回転子が得られる。ここで、この誘
導電動機を駆動すると、半径方向においてばらつきの少
ない大きな透磁率μのために固定子との間で磁気変動
の少ない磁気的結合が得られ、振動騒音の少ない駆動を
行なうことができ、かつ、回転子から巻線を省略したた
め、小型化および軽量化を図ることができる。また、磁
性材料と導電材料の占積比率に応じて透磁率および抵抗
率を制御することができる。 この磁気異方性導電部材の製造方法として、例えば、
第8図(イ)、(ロ)および第9図(イ)、(ロ)に示
すものが提案されている。第8図(イ)、(ロ)は、鋼
線等の磁性材料11とその外周を被覆した銅、アルミ等の
導電材料12によって構成された複合材料13を示してお
り、第9図(イ)、(ロ)は、その複合材料13を中心点
0からの距離に応じて拡大する複合材料13間の隙間に
銅、アルミ等の導電材料の粉末14を充填し、これらを加
熱加圧することにより内径r、外径Rの環状の磁気異方
性導電部材が製造されることを示している(実際には、
第9図(イ)、(ロ)に示すものを多層に配置すること
になるが、図示上省略した)。この磁気異方性導電部材
の製造方法によれば、磁性材料と導電材料より成る複合
材料の間に導電材料を鋳込む製造方法に比較すると、製
造の容易さ、および磁性材料の占積率の向上を図ること
ができる。 [発明が解決しようとする問題点] しかし、前述した磁気異方性導電部材によれば、中心
点0からの距離に応じて複合材料間の隙間が大になるた
め(第10図(イ))、半径方向において磁性材料と導電
材料の占積比率が相違するという不都合があり、また内
周寸法によって磁性材料の占積率が制限されれるため
(第10図(ロ))、その占積率を、例えば、40%以上に
できないという不都合がある。更に、その製造方法によ
れば、複合材料間の隙間に導電材料の粉末を充填してか
ら加熱加圧するようにしているため、工程の簡素化に限
界が生じるという不都合がある。 [問題点を解決するための手段] 本発明は上記に鑑みてなされたものであり、磁性部材
と導電材料の占積比率が何れの点においても同一にな
り、かつ、磁性材料の占積率を大にするため、前述した
中心点0からの距離に応じてそれぞれの断面積が大にな
る複合部材を用い、工程の簡素化を図り、表面品質の劣
化を抑えるためこの複合部材を間隔のないように整列配
置してから冷間により加圧するようにした誘導電動機の
かご形回転子に使用される磁気異方性導電部材の製造方
法を提供するものである。 即ち、本発明の磁気異方性導電部材の製造方法は、幅
の直線的変化によって一端から他端にかけて断面積の増
大した磁性部材を導電材料により被覆して複合部材を製
造する段階と、 多数本の前記複合部材を中心点から伸びる放射線に沿
って、かつ、前記一端を前記中心点側に位置させて環状
に隣接させて整列配置する段階と、 環状に整列配置された前記多数本の複合部材を多段に
積層した状態で冷間により加圧して多数本の前記磁性部
材を前記導電材料により一体化した中空円筒体を構成す
る段階を有する。 このように、本発明では、冷間加圧を採用しているの
で、加熱加圧を採用する場合に比較して酸化による表面
劣化を抑えることができる。以下の説明では、冷間加圧
として加圧条件の設定が容易な静水圧加圧を採用してい
るが、これに限定されることはない。以下、本発明の誘
導電動機のかご形回転子に使用される磁気異方性導電部
材の製造方法を詳細に説明する。 [実施例] 第1図(イ)、(ロ)、(ハ)は本発明において使用
される複合部材13を示し、断面が矩形で一端から他端に
かけて後述する中心点0からの距離に応じて断面積が大
になる鋼線等の磁性部材11と、その外周を被覆した銅、
アルミ等の導電材料12から構成されており、前述した断
面積の変化は一辺1を不変としながら他の一辺をl1から
l2に中心点0からの距離に応じて正比例増加させること
によって行っている。この場合、導電材料12はその被覆
厚を一定にしても、磁性部材11の外周変化に応じてその
断面積が変化する。 第2図(イ)、(ロ)はこの複合部材13を中心点0か
ら伸びる放射線に沿って環状に整列配置した状態を示
し、第3図(イ)、(ロ)はそれを2段配置したとき第
2図の(イ)のb1−b2およびc1−c2の断面を示す。ここ
で、複合部材13は前述した断面積変化を有するので、半
径方向の何れの点においても密に配置することができ
る。また、第2図(ハ)は後述する製造方法によって製
造された磁気異方性導電部材を示し、磁性部材11が導電
材料12によって一体化されている。 第4図は本発明で使用される冷間静水圧加圧装置を示
し、高圧油入口14aおよび19aを有した上蓋14および下蓋
19と、上下の蓋14、19によって筒状の空間を形成する高
圧円筒体18によって構成され、その筒状の空間にヒマシ
油の高圧液体15を存在させている。 以上の装置において、前述した複合部材13を、例え
ば、1段当り182本づつ整列して配置し、これを所定の
高さになるように多段に積層する。これをゴム袋17に入
れゴム栓16をして密封した後、冷間静水圧加圧装置の筒
状の空間に入れ、高液圧発生ポンプ(図示せず)により
高圧油入口14aおよび19aを介して高圧液体15を筒状の空
間に送り込むことにより密封されたゴム袋17全体を冷間
で1500kg/cm2以上の圧力で加圧する。これによって積層
された複合部材を均一に圧着し、一体化することができ
る。この加圧後、降圧し一体になった複合部材13を取り
出し所定の形状および寸法に仕上げると誘導電動機のか
ご形回転子に使用される磁気異方性導電部材が得られ
る。 第5図(イ)、(ロ)、(ハ)は、本発明の他の実施
例を示し、第1図(イ)、(ロ)、(ハ)と共通する部
分は共通する引用数字で示したので重複する説明は省略
するが、長方形の角部が曲面を有している点において相
違している。この曲面の曲率は、複合部材13を整列配置
したものを多段に積層して冷間により加圧したときそれ
ぞれの塑性変形によって磁性部材11間に隙間が生じない
程度に設定すれば良い。 第6図(イ)、(ロ)は第1図(イ)、(ロ)、
(ハ)で説明した複合部材13を拙劣配置用のケース30に
整列配置した例を示し、金型の外部でこのケース30内に
複合部材13を整列配置した後、前述の筒状の空間18に収
納するようにするものである。この場合ケース30は導電
材料12と同一の材料で構成され、ケース30の幅lは空間
18の幅38mmに収まるように設計されている。又、ケース
30の厚みtはできるだけ薄い方が良く、それによって磁
性部材11の占積率の低下を抑えることができる。この方
法によって、複合部材13の整列配置および多段積層の作
業性を向上させることができる。当然、ケース30を円周
方向において、複数に分割すると作業性を更に向上させ
ることができる。この場合、複合部材の端部はケース30
の係合部30aと円滑に整合する形状を有し、また、ケー
ス30の両側に磁性部材11を両端が露出しているので、半
径方向の透磁率には影響を与えない。 [発明の効果] 以上説明した通り、本発明の誘導電動機のかご形回転
子に使用される磁気異方性導電部材の製造方法によれ
ば、磁性材料と導電材料の断面積が一端から他端にかけ
て大となる複合部材を使用し、この複合部材を間隔のな
いように整列配置してから冷間により加圧するようにし
たため、磁性材料と導電材料との比率を何れの点におい
ても同一にすることができ、かつ、磁性材料の占積率を
大にすることができる。又、工程の簡素化を図り、か
つ、酸化による表面品質の低下を抑えることができる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention has the same space factor of a magnetic material and a conductive material at any point, and a magnetic material having a large space factor of a magnetic material. The present invention relates to a method of manufacturing a magnetic anisotropic conductive member used for a squirrel cage rotor of an induction motor, which is capable of manufacturing the anisotropic conductive member without complicating the process and reducing the surface quality. [Prior Art] As a magnetic anisotropic conductive member, for example, JP-A-57-46657.
There is one shown in Japanese Patent Publication No. FIGS. 7A and 7B show the magnetic anisotropic conductive member, which is used for the rotor of the induction motor. That is, the energization jacket 2 is coaxial with the rotating shaft 1.
And a rotor core 3 are provided, and the energization jacket 2 is a magnetic anisotropic conductive member 6 composed of a magnetic material 4 extending in the radial direction and a conductive material 5 filling the space between them, as shown by an enlarged portion Q. The main part is composed. With the above configuration, a rotor having a radial magnetic permeability μ r larger than the circumferential magnetic permeability μ θr > μ θ ) and a small axial resistivity ρ x can be obtained. When the induction motor is driven, magnetic coupling with less magnetic fluctuation is obtained between the stator and the stator due to the large magnetic permeability μ r with little variation in the radial direction, and driving with less vibration noise can be performed. In addition, since the winding is omitted from the rotor, the size and weight can be reduced. Further, the magnetic permeability and the resistivity can be controlled according to the space factor of the magnetic material and the conductive material. As a method of manufacturing this magnetic anisotropic conductive member, for example,
The ones shown in FIGS. 8 (a) and (b) and FIGS. 9 (a) and (b) have been proposed. FIGS. 8 (a) and 8 (b) show a composite material 13 composed of a magnetic material 11 such as a steel wire and a conductive material 12 such as copper or aluminum covering the outer periphery thereof, and FIG. ) And (b), filling the gap between the composite materials 13 that expands the composite material 13 according to the distance from the center point 0 with a powder 14 of a conductive material such as copper or aluminum, and heating and pressing these. Shows that a ring-shaped magnetic anisotropic conductive member having an inner diameter r and an outer diameter R is manufactured (actually,
The layers shown in FIGS. 9 (a) and 9 (b) will be arranged in multiple layers, but they are omitted in the drawing). According to this method of manufacturing a magnetic anisotropic conductive member, as compared with a manufacturing method in which a conductive material is cast between a magnetic material and a composite material made of a conductive material, the ease of manufacture and the space factor of the magnetic material are reduced. It is possible to improve. [Problems to be Solved by the Invention] However, according to the above-described magnetic anisotropic conductive member, the gap between the composite materials becomes large according to the distance from the center point 0 (Fig. 10 (a)). ), The space factor of the magnetic material differs from that of the conductive material in the radial direction, and the space factor of the magnetic material is limited by the inner peripheral dimension (Fig. 10 (b)). There is an inconvenience that the rate cannot be, for example, 40% or more. Furthermore, according to the manufacturing method, the gap between the composite materials is filled with the powder of the conductive material and then heated and pressed, so that there is a problem in that there is a limit to simplification of the process. [Means for Solving the Problems] The present invention has been made in view of the above, and the space ratios of the magnetic member and the conductive material are the same at any point, and the space ratio of the magnetic material is In order to increase the size of the composite member, a composite member having a large cross-sectional area depending on the distance from the center point 0 is used to simplify the process, and to prevent the deterioration of the surface quality, the composite member is divided into spaces. A method of manufacturing a magnetic anisotropic conductive member used for a squirrel-cage rotor of an induction motor, which is arranged so as not to be aligned and then cold-pressed. That is, the method of manufacturing a magnetic anisotropic conductive member of the present invention comprises the steps of manufacturing a composite member by coating a magnetic member having a cross-sectional area increased from one end to the other end by a linear change in width with a conductive material, Aligning the composite members of the book along a radial line extending from a center point, and arranging the one end of the composite member so as to be adjacent to the center point in a ring shape; and the plurality of composite members arranged in an annular shape. There is a step of forming a hollow cylindrical body in which a large number of the magnetic members are integrated with the conductive material by pressurizing in a cold state in a state where the members are stacked in multiple stages. As described above, in the present invention, since the cold pressurization is adopted, the surface deterioration due to the oxidation can be suppressed as compared with the case where the heat pressurization is adopted. In the following description, as the cold pressurization, the hydrostatic pressurization in which the pressurization condition can be easily set is adopted, but the present invention is not limited to this. Hereinafter, a method for manufacturing the magnetic anisotropic conductive member used in the squirrel cage rotor of the induction motor of the present invention will be described in detail. [Examples] FIGS. 1 (a), (b), and (c) show a composite member 13 used in the present invention, which has a rectangular cross section, and the distance from one end to the other end is different from a center point 0 described later. And a magnetic member 11 such as a steel wire having a large cross-sectional area, and copper coated on the outer periphery thereof,
It is composed of a conductive material 12 such as aluminum, and the above-mentioned change in cross-sectional area does not change one side 1 while the other side changes from l 1
This is done by increasing l 2 in direct proportion to the distance from the center point 0. In this case, even if the coating thickness of the conductive material 12 is constant, the cross-sectional area of the conductive material 12 changes according to the change of the outer circumference of the magnetic member 11. FIGS. 2 (a) and 2 (b) show a state in which the composite member 13 is annularly arranged along the radiation extending from the center point 0, and FIGS. 3 (a) and 3 (b) show it in two stages. Then, the cross sections of b 1 -b 2 and c 1 -c 2 in (a) of FIG. 2 are shown. Here, since the composite member 13 has the above-described change in cross-sectional area, it can be densely arranged at any point in the radial direction. FIG. 2C shows a magnetic anisotropic conductive member manufactured by the manufacturing method described later, in which the magnetic member 11 is integrated with the conductive material 12. FIG. 4 shows a cold isostatic press for use in the present invention, which includes an upper lid 14 and a lower lid having high pressure oil inlets 14a and 19a.
19 and a high-pressure cylinder 18 that forms a cylindrical space by the upper and lower lids 14 and 19, and the high-pressure liquid 15 of castor oil is present in the cylindrical space. In the above apparatus, the above-mentioned composite members 13 are arranged in a line, for example, 182 per stage, and are laminated in multiple stages so as to have a predetermined height. After putting this in a rubber bag 17 and sealing it with a rubber stopper 16, it is put in the cylindrical space of the cold isostatic press and the high pressure oil inlets 14a and 19a are turned on by a high hydraulic pressure generation pump (not shown). The high-pressure liquid 15 is fed into the cylindrical space through the rubber bag 17 and the entire rubber bag 17 is cold pressed at a pressure of 1500 kg / cm 2 or more. As a result, the laminated composite members can be uniformly pressed and integrated. After this pressurization, the pressure is reduced and the integrated composite member 13 is taken out and finished into a predetermined shape and size to obtain a magnetic anisotropic conductive member used in a squirrel cage rotor of an induction motor. 5 (a), (b), and (c) show another embodiment of the present invention, and parts common to those in FIGS. 1 (a), (b), and (c) are common reference numerals. Although it is shown, redundant description will be omitted, but it is different in that the corners of the rectangle have curved surfaces. The curvature of this curved surface may be set to such an extent that a gap is not created between the magnetic members 11 due to plastic deformation of the composite members 13 arranged in a line and stacked in multiple stages and pressed by cold. 6 (a) and (b) are shown in FIG. 1 (a), (b),
An example is shown in which the composite member 13 described in (c) is aligned in a case 30 for poor placement, and after the composite member 13 is aligned in the case 30 outside the mold, the cylindrical space 18 It should be stored in. In this case, the case 30 is made of the same material as the conductive material 12, and the width l of the case 30 is a space.
Designed to fit 18 in 38mm wide. Also, the case
It is preferable that the thickness t of 30 is as thin as possible, so that the reduction of the space factor of the magnetic member 11 can be suppressed. By this method, it is possible to improve the workability of aligning and arranging the composite members 13 and multi-stage stacking. Of course, the workability can be further improved by dividing the case 30 into a plurality of pieces in the circumferential direction. In this case, the end of the composite member is the case 30.
Since it has a shape that smoothly matches with the engaging portion 30a and both ends of the magnetic member 11 are exposed on both sides of the case 30, the magnetic permeability in the radial direction is not affected. [Effects of the Invention] As described above, according to the method of manufacturing the magnetic anisotropic conductive member used for the squirrel cage rotor of the induction motor of the present invention, the cross-sectional areas of the magnetic material and the conductive material are from one end to the other end. Since a composite member that becomes large over time is used and the composite members are aligned and arranged so that there is no space between them and then pressed by cold, the ratio of the magnetic material and the conductive material is the same at any point. In addition, the space factor of the magnetic material can be increased. Further, it is possible to simplify the process and suppress deterioration of the surface quality due to oxidation.

【図面の簡単な説明】 第1図(イ)、(ロ)、(ハ)は本発明に使用される複
合部材を示す説明図、 第2図(イ)、(ロ)は複合部材を整列配置した状態を
示す説明図、第2図(ハ)は本発明により得られた磁気
異方性導電部材を示す説明図、第3図(イ)、(ロ)は
第2図(イ)における断面図、第4図は本発明の磁気異
方性導電部材の製造方法に利用される冷間静水圧加圧装
置を示す説明図、第5図(イ)、(ロ)、(ハ)は複合
部材の他の例を示す説明図、第6図(イ)、(ロ)は本
発明の磁気異方性導電部材の製造方法の他の例を示す説
明図。第7図(イ)、(ロ)は磁気異方性導電部材を有
した誘導電動機用回転子を示す説明図、第8図(イ)、
(ロ)は本発明によって問題点を解決される複合部材を
示す説明図、第9図(イ)、(ロ)は第8図(イ)、
(ロ)に示した複合部材を整列配置した状態を示す説明
図、第10図(イ)、(ロ)は第9図(イ)の断面図。 符号の説明 11……磁性材料 12……導電材料 13……複合部材 14……上蓋 15……高圧液体 16……ゴム栓 17……ゴム袋 18……高圧円筒体
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 (a), (b), and (c) are explanatory views showing a composite member used in the present invention, and FIGS. 2 (a) and (b) align the composite members. FIG. 2 (C) is an explanatory view showing the state of arrangement, FIG. 2 (C) is an explanatory view showing the magnetic anisotropic conductive member obtained by the present invention, and FIGS. 3 (A) and 3 (B) are in FIG. 2 (A). A cross-sectional view and FIG. 4 are explanatory views showing a cold isostatic pressing device used in the method for producing a magnetic anisotropic conductive member of the present invention, and FIGS. 5 (a), 5 (b) and 5 (c) are Explanatory drawing which shows the other example of a composite member, FIG. 6 (a), (b) is explanatory drawing which shows the other example of the manufacturing method of the magnetic anisotropic conductive member of this invention. 7A and 7B are explanatory views showing a rotor for an induction motor having a magnetic anisotropic conductive member, and FIG. 8A and FIG.
(B) is an explanatory view showing a composite member in which the problems are solved by the present invention, FIGS. 9 (A) and (B) are FIG. 8 (A),
FIG. 10 is an explanatory view showing a state in which the composite members shown in (B) are arranged in an array, and FIGS. 10 (A) and 10 (B) are sectional views of FIG. 9 (A). Explanation of code 11 …… Magnetic material 12 …… Conductive material 13 …… Composite member 14 …… Top cover 15 …… High pressure liquid 16 …… Rubber stopper 17 …… Rubber bag 18 …… High pressure cylinder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 貝沼 宏 日立市川尻町1500番地 日立電線株式会 社豊浦工場内 (72)発明者 岡本 茂 東京都千代田区丸の内2丁目1番2号 日立電線株式会社内 (56)参考文献 特開 昭62−23345(JP,A) 特開 昭62−53161(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hiroshi Kainuma               1500 Kawajiri-cho, Hitachi City Hitachi Cable Stock Association               Company Toyoura factory (72) Inventor Shigeru Okamoto               2-1-2 Marunouchi, Chiyoda-ku, Tokyo               Hitachi Cable, Ltd.                (56) References JP-A-62-23345 (JP, A)                 JP-A-62-53161 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.多数本の磁性部材を導電材料により一体化して中空
円筒体を構成し、前記多数本の磁性部材を前記中空円筒
体の中心軸から伸びる放射線に沿って配置することによ
り半径方向の透磁率を周方向の透磁率より大にしてな
り、誘導電動機のかご形回転子に使用される磁気異方性
導電部材の製造方法において、 幅の直線的変化によって一端から他端にかけて断面積の
増大した磁性材料を導電材料により被覆して複合部材を
製造する段階と、 多数本の前記複合部材を中心点から伸びる放射線に沿っ
て、かつ、前記一端を前記中心点側に位置させて環状に
隣接させて整列配置する段階と、 環状に整列配置された前記多数本の複合部材を多段に積
層した状態で冷間により加圧して多数本の前記磁性部材
を前記導電材料により一体化した中空円筒体を構成する
段階を有することを特徴とする誘導電動機のかご形回転
子に使用される磁気異方性導電部材の製造方法。
(57) [Claims] A large number of magnetic members are integrated by a conductive material to form a hollow cylindrical body, and the plurality of magnetic members are arranged along the radiation extending from the central axis of the hollow cylindrical body so that the magnetic permeability in the radial direction is reduced. In a squirrel cage rotor of an induction motor, a magnetic material whose cross-sectional area increases from one end to the other due to a linear change in width. And manufacturing a composite member by coating the same with a conductive material, and aligning a plurality of the composite members along the radiation extending from the center point and with the one end positioned at the center point side and annularly adjacent to each other. Arranging and forming a hollow cylindrical body in which a large number of the magnetic members are integrated by the conductive material by cold pressing in a state where the large number of composite members arranged in an annular shape are stacked in multiple stages Method for producing a magnetic anisotropy conductive member used in the cage rotor for an induction motor and having a that stage.
JP62089547A 1987-04-10 1987-04-10 Method for manufacturing magnetically anisotropic conductive member Expired - Lifetime JP2679044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62089547A JP2679044B2 (en) 1987-04-10 1987-04-10 Method for manufacturing magnetically anisotropic conductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62089547A JP2679044B2 (en) 1987-04-10 1987-04-10 Method for manufacturing magnetically anisotropic conductive member

Publications (2)

Publication Number Publication Date
JPS63254614A JPS63254614A (en) 1988-10-21
JP2679044B2 true JP2679044B2 (en) 1997-11-19

Family

ID=13973847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62089547A Expired - Lifetime JP2679044B2 (en) 1987-04-10 1987-04-10 Method for manufacturing magnetically anisotropic conductive member

Country Status (1)

Country Link
JP (1) JP2679044B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748937B2 (en) * 1985-07-22 1995-05-24 日立電線株式会社 Method for producing magnetically anisotropic conductive material
JPH0740778B2 (en) * 1985-08-28 1995-05-01 日立電線株式会社 Method for manufacturing magnetically anisotropic material

Also Published As

Publication number Publication date
JPS63254614A (en) 1988-10-21

Similar Documents

Publication Publication Date Title
US5382859A (en) Stator and method of constructing same for high power density electric motors and generators
CN101053139B (en) Motor generator and automobile carrying the same
US6455976B1 (en) Motor/generator with separated cores
US6900573B2 (en) Rotor core lamination for a laminated rotor
JP3704029B2 (en) Starting motor stator
US6064134A (en) Rotor for a synchronous reluctance machine
JP2000341889A (en) Dynamo-electric machine core, manufacture thereof, core segments and dynamo-electric machine
US3940648A (en) Laminated core and support assembly for a dynamoelectric machine
JP4214383B2 (en) Stator piece and motor stator
WO2012046408A1 (en) Stator core of motor, and manufacturing method
JP4497187B2 (en) Manufacturing method of stator core of rotating electric machine and stator core of rotating electric machine manufactured by the manufacturing method
JP2679044B2 (en) Method for manufacturing magnetically anisotropic conductive member
US2919357A (en) Electric motor construction
US3307059A (en) Laminated yokes in rotary electric machines
US4007867A (en) Method of making resiliently compressed laminated core for a dynamoelectric machine
JP5144163B2 (en) Split stator core, split stator, stator and stator manufacturing method
EP0514875A2 (en) Armature core
JPWO2022101975A5 (en)
JP2008086172A (en) Shrink-fit ring and motor stator
JPS63140504A (en) Manufacture of magnetically anisotropic conductive material
JPS6351605A (en) Magnetically anisotropic conductive material and manufacture thereof
JPS63254612A (en) Manufacture of magnetically anisotropic conducting material
KR100529118B1 (en) Disk type multi-induction motor
JP2679043B2 (en) Method for manufacturing magnetically anisotropic conductive member
JPH04265643A (en) Manufacture of stator core fitted with rib in casingless dynamo-electric machine