JPS63254614A - Manufacture of magnetically anisotropic conducting material - Google Patents

Manufacture of magnetically anisotropic conducting material

Info

Publication number
JPS63254614A
JPS63254614A JP8954787A JP8954787A JPS63254614A JP S63254614 A JPS63254614 A JP S63254614A JP 8954787 A JP8954787 A JP 8954787A JP 8954787 A JP8954787 A JP 8954787A JP S63254614 A JPS63254614 A JP S63254614A
Authority
JP
Japan
Prior art keywords
conductive material
magnetic
magnetically anisotropic
manufacturing
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8954787A
Other languages
Japanese (ja)
Other versions
JP2679044B2 (en
Inventor
晃男 小川
首藤 寿幸
遊座 文一
貝沼 宏
茂 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62089547A priority Critical patent/JP2679044B2/en
Publication of JPS63254614A publication Critical patent/JPS63254614A/en
Application granted granted Critical
Publication of JP2679044B2 publication Critical patent/JP2679044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性材料と導電材料の占積比率が何れの点にお
いても同一であり、磁性材料の占積率を大きくできるよ
うにした磁気異方性導電材料を工程の複雑化および表面
品質の低下を招かずに製造できるようにした磁気異方性
導電材料の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a magnetic material in which the space ratio of the magnetic material and the conductive material is the same at all points, and the space ratio of the magnetic material can be increased. The present invention relates to a method for producing a magnetically anisotropic conductive material, which enables the production of a magnetically anisotropic conductive material without complicating the process or deteriorating surface quality.

〔従来の技術〕[Conventional technology]

磁気異方性導電材料として、例えば、特開昭57−46
657号公報に示されるものがある。
As a magnetically anisotropic conductive material, for example, JP-A-57-46
There is one shown in Publication No. 657.

第7図(() 、 (+7)はその磁気異方性4電材料
を示し、誘導電動機の回転子に使用されている。
Figure 7 ((), (+7) shows the magnetically anisotropic tetraelectric material, which is used in the rotor of an induction motor.

即ち、回転軸1と同軸状に通電外被2と回転子鉄心3が
設けられており、通電外被2は、拡大部分Qで示すよう
に、半径方向に伸びる磁性材料4とその間を充填した導
電材料5より成る磁気異方性導電材料6で主要部を構成
されている。
That is, a current-carrying jacket 2 and a rotor core 3 are provided coaxially with the rotating shaft 1, and the current-carrying jacket 2 has a magnetic material 4 extending in the radial direction and a magnetic material 4 filled in between, as shown in the enlarged part Q. The main part is composed of a magnetically anisotropic conductive material 6 made of a conductive material 5.

以上の構成により、半径方向の透磁率μrが周方向の透
磁率μeより大きく(μ4〉μe)、かつ、軸方向の抵
抗率ρχの小さい回転子が得られる。ここで、この誘導
電動機を駆動すると、半径方向においてばらつきの少な
い大きな透磁率μrのために固定子との間で磁気変動の
少ない磁気的結合が得られ、振動騒音の少ない駆動を行
うことができ、かつ、回転子から巻線を省略したため、
小型化および軽量化を図ることができる。また、磁性材
料と導電材料の占積比率に応じて透磁率および抵抗率を
制御することができる。
With the above configuration, a rotor can be obtained in which the magnetic permeability μr in the radial direction is larger than the magnetic permeability μe in the circumferential direction (μ4>μe) and the resistivity ρχ in the axial direction is small. When this induction motor is driven, due to the large magnetic permeability μr with little variation in the radial direction, magnetic coupling with little magnetic fluctuation is obtained with the stator, and driving with little vibration and noise can be achieved. , and since the winding was omitted from the rotor,
It is possible to achieve reduction in size and weight. Furthermore, magnetic permeability and resistivity can be controlled depending on the space ratio of the magnetic material and the conductive material.

この磁気異方性導電材料の製造方法として、例えば、第
8図(イ)、(U)および第9図(イ)、(ロ)に示す
ものが提案されている。第8図(イ)、(ロ)は、鋼線
等の磁性材料11とその外周を被覆した鋸、アルミ等の
導電材料12によって構成された複合材料13を示して
おり、第9図(1’)、(TJ)は、その複合材料13
を中心点Oからの距離に応じて拡大する複合材料13間
の隙間に1同、アルミ等の導電材料の粉末14を充填し
、これらを加熱加圧することにより内径r、外径Rの環
状の磁気異方性導電材料が製造されることを示している
(実際には、第9図(イ)、([7)に示すものを多層
に配置することになるが、図示上省略した)。この磁気
異方性導電材料の製造方法によれば、磁性材料と導電材
料より成る複合材料の間に導電材料を鋳込む製造方法に
比較すると、製造の容易さ、および磁性材料の占積率の
向上を図ることができる。
As a method for producing this magnetically anisotropic conductive material, for example, the methods shown in FIGS. 8(a) and (U) and FIGS. 9(a) and (b) have been proposed. 8(a) and 8(b) show a composite material 13 composed of a magnetic material 11 such as a steel wire, a saw coated on the outer periphery of the magnetic material 11, and a conductive material 12 such as aluminum. '), (TJ) is the composite material 13
The gap between the composite materials 13, which expands according to the distance from the center point O, is filled with powder 14 of a conductive material such as aluminum, and by heating and pressurizing them, an annular shape with an inner diameter r and an outer diameter R is formed. This shows that a magnetically anisotropic conductive material is manufactured (actually, the materials shown in FIGS. 9(a) and 9([7]) will be arranged in multiple layers, but they are omitted for illustration purposes). According to this manufacturing method of magnetically anisotropic conductive material, compared to a manufacturing method in which a conductive material is cast between a composite material consisting of a magnetic material and a conductive material, manufacturing is easier and the space factor of the magnetic material is lower. You can improve your performance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述した磁気異方性導電材料によれば、中心点
0からの距離に応じて複合材料間の隙間が大にになるた
め(第1O図(イ))、半径方向において磁性材料と導
電材料の占積比率が相違するという不都合があり、また
内周寸法によって磁性材料の占積率が制限されるため(
第10図(II+) ) 、その占積率を、例えば、4
0%以上にできないという不都合がある。
However, according to the above-mentioned magnetically anisotropic conductive material, the gap between the composite materials increases depending on the distance from the center point 0 (Figure 1O (a)). There is an inconvenience that the space ratio of the materials is different, and the space ratio of the magnetic material is limited by the inner circumferential dimension (
Figure 10 (II+) ), the space factor is, for example, 4
There is an inconvenience that it cannot be made higher than 0%.

更に、その製造方法によれば、複合材料間の隙間に導電
材料の粉末を充填してから加熱加圧するようにしている
ため、工程の簡素化に限界が生じるという不都合がある
Furthermore, according to the manufacturing method, since conductive material powder is filled into the gaps between the composite materials and then heated and pressurized, there is a problem in that there is a limit to the simplification of the process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みてなされたものであり、磁性材料と
導電材料の占積比率が何れの点においても同一になり、
かつ、磁性材料の占積率を大にするため、前述した中心
点Oからの距離に応じてそれぞれの断面積が大になる複
合材料を用いた磁気異方性導電材料の製造方法を提供す
るものであり、工程の簡素化を図り、表面品質の劣化を
抑えるためこの複合材料を間隔のないように整列配置し
てから冷間により加圧するようにした磁気異方性導電(
オ料の製造方法を提供するものである。
The present invention has been made in view of the above, and the space ratio of the magnetic material and the conductive material are the same in all respects,
In addition, in order to increase the space factor of the magnetic material, a method for manufacturing a magnetically anisotropic conductive material using a composite material whose cross-sectional area increases according to the distance from the center point O described above is provided. In order to simplify the process and prevent deterioration of surface quality, magnetic anisotropic conductivity (magnetic anisotropic conductivity) is created by arranging this composite material without any gaps and then applying cold pressure.
The present invention provides a method for producing a raw material.

即ち、本発明の磁気異方性導電材料の製造方法は幅の直
線的変化によって一端から他端にかけて断面積の増大し
た磁性材料を導電材料により被覆して複合材料を製造す
る段階と、多数本の前記複合材料を中心点から伸びる放
射線に沿って、かつ、前記一端を前記中心点側に位置さ
せて環状に隣接させて整列配置する段階と、 環状に整列配置された前記多数本の複合材料を多段に積
層した状態で冷間により加圧して多数本の前記磁性材料
を前記導電材料により一体化した中空円筒体を構成する
段階を有する。
That is, the method for manufacturing a magnetically anisotropic conductive material of the present invention includes the steps of manufacturing a composite material by covering a magnetic material whose cross-sectional area increases from one end to the other end with a conductive material by linearly changing the width, and manufacturing a composite material using a conductive material. arranging the composite materials adjacent to each other in a ring shape along a radial line extending from a center point, with the one end located on the center point side; and the plurality of composite materials arranged in a ring shape. There is a step of forming a hollow cylindrical body in which a large number of the magnetic materials are integrated with the conductive material by cold pressurizing the stacked layers in multiple stages.

このように、本発明では、冷間加圧を採用しているので
、加熱加圧を採用する場合に比較して酸化による表面劣
化を抑えることができる。以下の説明では、冷間加圧と
して加圧条件の設定が容易な静水圧加圧を採用している
が、これに限定されることはない。
In this way, in the present invention, since cold pressurization is employed, surface deterioration due to oxidation can be suppressed compared to when heat pressurization is employed. In the following explanation, hydrostatic pressurization is used as the cold pressurization because the pressurization conditions can be easily set, but the present invention is not limited to this.

尚、本発明によって製造される磁気異方性導電材料は前
述した誘導電動機の回転子に使用されるほか、例えば、
同期電動機のダンパ、リニア誘導電動機の二次導体、電
磁誘導遮蔽材料として使用することができるものであり
、特にその用途を限定するものではない。 以下、本発
明の磁気異方性導電材料の製造方法を詳細に説明する 〔実施例〕 第1図(イ)、 (III) 、 (++)は本発明に
おいて使用される複合材料13を示し、断面が矩形で一
端から他端にかけて後述する中心点0からの距離に応じ
て断面積が大になる鋼線等の磁性材料11と、その外周
を被覆した銅、アルミ等の導電材料12から構成されて
おり、前述した断面積の変化は一辺lを不変としながら
他の一辺をβ、からβ2に中心点0からの距離に応じて
正比例増加させることによって行っている。この場合、
導電材料12はその被覆厚を一定にしても、磁性材料1
1の外周変化に応じてその断面積が変化する。
The magnetically anisotropic conductive material produced according to the present invention can be used in the rotor of the induction motor described above, and can also be used, for example, in the rotor of the induction motor.
It can be used as a damper of a synchronous motor, a secondary conductor of a linear induction motor, and an electromagnetic induction shielding material, and its applications are not particularly limited. Hereinafter, the method for manufacturing the magnetically anisotropic conductive material of the present invention will be explained in detail [Example] Figures 1 (a), (III), and (++) show the composite material 13 used in the present invention, It is composed of a magnetic material 11 such as a steel wire whose cross section is rectangular and whose cross-sectional area increases from one end to the other according to the distance from a center point 0 (described later), and a conductive material 12 such as copper or aluminum coated on its outer periphery. The cross-sectional area described above is changed by keeping one side l unchanged and increasing the other side from β to β2 in direct proportion to the distance from the center point 0. in this case,
Even if the conductive material 12 has a constant coating thickness, the magnetic material 1
Its cross-sectional area changes in accordance with the change in the outer circumference of 1.

第2図(イ)、(o)はこの複合材料13を中心点0か
ら伸びる放射線に沿って環状に整列配置した状態を示し
、第3図(()、(D) はそれを2段配置したとき第
2図の(イ)のす、−b2およびc、−c2の断面を示
す。ここで、複合材料13は前述した断面積変化を仔す
るので、半径方向の何れの点においても密に配置するこ
とができる。また、第2図(ハ)は後述する製造方法に
よって製造された磁気異方性導電材料を示し、磁性材料
12が導電材料13によって一体化されている。
Figures 2 (a) and (o) show the composite material 13 arranged in a ring shape along a radial line extending from the center point 0, and Figures 3 (() and (D) show the composite material 13 arranged in two stages. Then, the cross sections of -b2 and c, -c2 of (a) in Fig. 2 are shown.Here, since the composite material 13 has the above-mentioned cross-sectional area change, there is no density at any point in the radial direction. Further, FIG. 2(c) shows a magnetically anisotropic conductive material manufactured by a manufacturing method described later, in which a magnetic material 12 is integrated with a conductive material 13.

第4図は本発明で使用される冷間静水圧加圧装置を示し
、高圧油入口14aおよび19aを有した上M14およ
び下M19と、上下のM14.19によって筒状の空間
を形成する高圧円筒体18によって構成され、その筒状
の空間にヒマシ油の高圧液体15を存在させている 以上の装置において、前述した複合材料13を、例えば
、1段当り182本づつ整列して配置し、これを所定の
高さになるように多段に積層する。これをゴム袋17に
入れゴム栓16をして密封した後、冷間静水圧加圧装置
の筒状の空間に入れ、高液圧発生ポンプ(図示せず)に
より高圧油入口14aおよび19aを介して高圧液体1
5を筒状の空間に送り込む事により密封されたゴム袋1
7全体を冷間で1500kgz’cm2以上の圧力で加
圧する。これによって積層された複合材料を均一に圧着
し、一体化する事が出来る。この加工層、降圧し一体に
なった複合材料13を取り出し所定の形状および寸法に
仕上げると磁気磁気異方性導電材料が得られる。
FIG. 4 shows a cold isostatic pressurizing device used in the present invention, in which the upper M14 and lower M19 have high-pressure oil inlets 14a and 19a, and the upper and lower M14.19 form a cylindrical space. In the above-described apparatus, which is constituted by a cylindrical body 18 and in which a high-pressure liquid 15 of castor oil is present in the cylindrical space, the above-described composite materials 13 are arranged in an array of, for example, 182 pieces per stage, These are stacked in multiple stages to a predetermined height. After putting it in a rubber bag 17 and sealing it with a rubber stopper 16, it is put into a cylindrical space of a cold isostatic pressurizing device, and the high-pressure oil inlets 14a and 19a are opened by a high-pressure generating pump (not shown). High pressure liquid through 1
Rubber bag 1 sealed by sending 5 into a cylindrical space
The whole of 7 is pressurized in a cold state at a pressure of 1500 kgz'cm2 or more. This allows the laminated composite materials to be uniformly compressed and integrated. The composite material 13 which has been reduced in pressure and integrated with the processed layer is taken out and finished into a predetermined shape and size to obtain a magnetomagnetic anisotropic conductive material.

第5図(イ)、 (o)、 (++)は本発明の他の実
施例を示し、第1図(イ)、([+)、(ハ)と共通す
る部分は共通する引用数字で示したので重複する説明は
省略するが、長方形の角部が曲面を有している点におい
て相違している。この曲面の曲率は、複合材料13を整
列配置したものを多段に積層して冷間により加圧したと
きそれぞれの塑性変形によって磁性材料11間に隙間が
生じない程度に設定すれば良い。
Figures 5 (a), (o), and (++) show other embodiments of the present invention, and parts common to Figure 1 (a), ([+), and (c) are indicated by common reference numerals. Although the redundant explanation will be omitted since it has already been shown, the difference is that the corners of the rectangle have curved surfaces. The curvature of this curved surface may be set to such an extent that when the composite materials 13 arranged in an array are laminated in multiple stages and cold pressurized, no gaps are created between the magnetic materials 11 due to plastic deformation of each layer.

第6図(イ)、(ロ)は第1図(イ)、(Il)、(ハ
)で説明した複合材料13を整列配置用のケース30に
整列配置した例を示し、金型の外部でこのケース30内
に複合材料13を整列配置した後、前述の筒状の空間1
8に収納するようにするものである。この場合ケース3
0は導電材料12と同一の材料で構成され、ケース30
の幅lは空間18の幅38mmに収まるように設計され
ている。
6(a) and (b) show an example in which the composite materials 13 explained in FIG. 1(a), (Il), and (c) are arranged in a case 30 for alignment, and After arranging the composite materials 13 in this case 30, the above-mentioned cylindrical space 1 is
8. In this case case 3
0 is made of the same material as the conductive material 12, and the case 30
The width l is designed to fit within the width of the space 18 of 38 mm.

又、ケース30の厚みtはできるだけ薄い方が良く、そ
れによって磁性材料11の占積率の低下を抑えることが
できる。この方法によって、複合材料13の整列配置お
よび多段積層の作業性を向上することができる。当然、
ケース30を円周方間において、複数に分割すると作業
性を更に向上させることができる。この場合、複合材料
の端部はケース30の係合部30aと円滑に整合する形
状を有し、また、ケース30の両側に磁性材料11の両
端か露出しているので、半径方向の透磁率には形容を与
えない。
Further, it is better for the thickness t of the case 30 to be as thin as possible, thereby suppressing a decrease in the space factor of the magnetic material 11. By this method, it is possible to improve the workability of aligning and arranging the composite materials 13 and laminating them in multiple stages. Of course,
Workability can be further improved by dividing the case 30 into a plurality of parts in the circumferential direction. In this case, the end of the composite material has a shape that smoothly aligns with the engaging part 30a of the case 30, and since both ends of the magnetic material 11 are exposed on both sides of the case 30, the magnetic permeability in the radial direction does not give a description.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の磁気異方性導電材料の製造
方法によれば、磁性材料と導電材料の断面積が一端から
他端にかけて大になる複合材料を使用し、この複合材料
を間隔のないように整列配置してから冷間により加圧す
るようにしたため、工程の簡素化を図り、かつ、酸化に
よる表面品質の低下を抑えることができる。
As explained above, according to the method for producing a magnetically anisotropic conductive material of the present invention, a composite material in which the cross-sectional area of a magnetic material and a conductive material increases from one end to the other is used, and this composite material is By arranging them in such a way that they are aligned and pressurizing them cold, it is possible to simplify the process and suppress deterioration of surface quality due to oxidation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ) 、 (o) 、 (++) は本発明の
使用される複合材料を示す説明図、第2図(イ) 、 
(o)は複合材料を整列配置した状態を示す説明図、第
2図(ハ)は本発明により得られた磁気異方性導電材料
を示す説明図、第3図(イ) 、 ([+)は第2図(
イ)における断面図、第4図は本発明の磁気異方性導電
材料の製造方法に利用される冷間静水圧加圧装置を示す
説明図、第5図(イ)([1)、(ハ)は複合材料の他
の例を示す説明図、第6図(イ)、(0)は本発明の磁
気異方性導電材料の製造方法の他の例を示す説明図。第
7図(イ) 、 (II)は磁気異方性導電材料を有し
た誘導電動機用回転子を示す説明図、第8図(イ)、(
+7)は本発明によって問題点を解決される複合材料を
示す説明図、第9図は(イ)、([1)は第8図(()
、(o)に示した複合材料を整列配置した状態を示す説
明図、第10図(イ)、(D)は第9図(イ)の断面図
。 符号の説明 11−・−−一−−−−磁性材料   12−・・・・
・〜・・−導電材料13−・−・−・−複合材料   
14−−−−−・−上蓋15−−−−−−一高圧液体 
  16−−−−−−−−−・ゴム栓17・・−・−−
−−−ゴム袋    18−−・−−−−一高圧円筒体
特許出願人 日 立 電 線 株 式 会 社代理人 
 弁理士 平 1)  忠 雄l4・・・・・−・・−
・上蓋 15−−−−−−・・−・高圧液体 16−・−・・・・・・・ゴム栓 17・・・・−・−・−・ゴム袋 18−・・−・−高圧円筒体 第4図
Figure 1 (a), (o), (++) is an explanatory diagram showing the composite material used in the present invention, Figure 2 (a),
(o) is an explanatory diagram showing the state in which the composite materials are aligned, FIG. 2 (c) is an explanatory diagram showing the magnetically anisotropic conductive material obtained by the present invention, and FIG. ) is shown in Figure 2 (
Fig. 4 is an explanatory diagram showing a cold isostatic pressurizing apparatus used in the method for manufacturing a magnetically anisotropic conductive material of the present invention, Fig. 5(a) ([1), ( C) is an explanatory view showing another example of the composite material, and FIGS. 6(A) and 6(0) are explanatory views showing other examples of the method for manufacturing the magnetically anisotropic conductive material of the present invention. FIGS. 7(a) and (II) are explanatory views showing a rotor for an induction motor having a magnetically anisotropic conductive material, and FIGS. 8(a) and (
+7) is an explanatory diagram showing a composite material whose problems are solved by the present invention, Figure 9 is (A), ([1) is Figure 8 (()
, (o) are explanatory diagrams showing the state in which the composite materials shown in FIG. 9 (a) are aligned, and FIGS. Explanation of symbols 11--1--Magnetic material 12-...
・〜・・−Conductive material 13−・−・−・−Composite material
14--------Top lid 15--High pressure liquid
16----------Rubber stopper 17...--
---Rubber bag 18--・-----1 High-voltage cylindrical body patent applicant Hitachi Cable Co., Ltd. Company agent
Patent Attorney Taira 1) Tadao 14・・・・・・−・・−
・Top lid 15------High pressure liquid 16---Rubber stopper 17---Rubber bag 18---High pressure cylinder Body diagram 4

Claims (1)

【特許請求の範囲】 多数本の磁性材料を導電材料により一体化 して中空円筒体を構成し、前記多数本の磁性材料を前記
中空円筒体の中心軸から伸びる放射線に沿って配置する
ことにより半径方向の透磁率を周方向の透磁率より大に
した磁気異方性導電材料の製造方法において、 幅の直線的変化によって一端から他端にか けて断面積の増大した磁性材料を導電材料により被覆し
て複合材料を製造する段階と、 多数本の前記複合材料を中心点から伸びる 放射線に沿って、かつ、前記一端を前記中心点側に位置
させて環状に隣接させて整列配置する段階と、 環状に整列配置された前記多数本の複合材料を多段に積
層した状態で冷間により加圧して多数本の前記磁性材料
を前記導電材料により一体化した中空円筒体を構成する
段階を有することを特徴とする磁気異方性導電材料の製
造方法。
[Scope of Claims] A hollow cylindrical body is constructed by integrating a large number of magnetic materials with a conductive material, and the radial radius is A method for manufacturing a magnetically anisotropic conductive material in which the magnetic permeability in the direction is greater than the magnetic permeability in the circumferential direction, in which a magnetic material whose cross-sectional area increases from one end to the other due to a linear change in width is coated with a conductive material. a step of manufacturing a composite material; a step of arranging a plurality of composite materials so as to be adjacent to each other in a ring shape along a radial line extending from a center point with the one end located on the center point side; The method further comprises the step of stacking the plurality of aligned composite materials in multiple stages and applying cold pressure to form a hollow cylindrical body in which the plurality of magnetic materials are integrated with the conductive material. A method for manufacturing a magnetically anisotropic conductive material.
JP62089547A 1987-04-10 1987-04-10 Method for manufacturing magnetically anisotropic conductive member Expired - Lifetime JP2679044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62089547A JP2679044B2 (en) 1987-04-10 1987-04-10 Method for manufacturing magnetically anisotropic conductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62089547A JP2679044B2 (en) 1987-04-10 1987-04-10 Method for manufacturing magnetically anisotropic conductive member

Publications (2)

Publication Number Publication Date
JPS63254614A true JPS63254614A (en) 1988-10-21
JP2679044B2 JP2679044B2 (en) 1997-11-19

Family

ID=13973847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62089547A Expired - Lifetime JP2679044B2 (en) 1987-04-10 1987-04-10 Method for manufacturing magnetically anisotropic conductive member

Country Status (1)

Country Link
JP (1) JP2679044B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223345A (en) * 1985-07-22 1987-01-31 Hitachi Cable Ltd Manufacture of magnetic anisotropic materials
JPS6253161A (en) * 1985-08-28 1987-03-07 Hitachi Cable Ltd Manufacture of magnetic anisotropic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223345A (en) * 1985-07-22 1987-01-31 Hitachi Cable Ltd Manufacture of magnetic anisotropic materials
JPS6253161A (en) * 1985-08-28 1987-03-07 Hitachi Cable Ltd Manufacture of magnetic anisotropic material

Also Published As

Publication number Publication date
JP2679044B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
US5592731A (en) Method of constructing a stator
US4392072A (en) Dynamoelectric machine stator having articulated amorphous metal components
US6274962B1 (en) Induction motor driven seal-less pump
EP0629034B1 (en) Stator of dynamo-electric machine
US7538467B2 (en) Magnetic powder metal composite core for electrical machines
KR930018816A (en) Method of manufacturing inner stator for electromagnetic pump
JP2011091932A (en) Magnetic core, method of manufacturing the same, axial gap type rotating electric machine, and stationary machine
JP2007074841A (en) Stator core, motor employing it and its manufacturing process
WO2019176254A1 (en) Assembled wire, method of manufacturing assembled wire and segment coil
DE10143253A1 (en) Manufacturing rotor for reluctance motor, involves dividing and re-assembling cylinder of concentric magnetic layers with peripheral surfaces facing axis
US5793138A (en) Fabrication of induction motors
JP4214383B2 (en) Stator piece and motor stator
KR101540150B1 (en) Switched reluctance motor
JP5399317B2 (en) Reactor
JPS63254614A (en) Manufacture of magnetically anisotropic conducting material
DE102017220735A1 (en) Electric machine and method for producing an electrical machine
JPS63254613A (en) Manufacture of magnetically anisotropic conducting material
JP2003079113A (en) Resin-sealed stator for electric motor, manufacturing method therefor and die for resin sealing
JPS63140504A (en) Manufacture of magnetically anisotropic conductive material
JPS63254612A (en) Manufacture of magnetically anisotropic conducting material
JPS6351604A (en) Manufacture of magnetically anisotropic conductive material
JPS63261620A (en) Manufacture of magnetically anisotropic conducting material
JPS6351605A (en) Magnetically anisotropic conductive material and manufacture thereof
JP3550071B2 (en) Pre-preg insulated coil for rotating electric machine
WO2024111450A1 (en) Green compact production method, stator core production method, and axial gap motor production method