JPS6351076B2 - - Google Patents

Info

Publication number
JPS6351076B2
JPS6351076B2 JP13388283A JP13388283A JPS6351076B2 JP S6351076 B2 JPS6351076 B2 JP S6351076B2 JP 13388283 A JP13388283 A JP 13388283A JP 13388283 A JP13388283 A JP 13388283A JP S6351076 B2 JPS6351076 B2 JP S6351076B2
Authority
JP
Japan
Prior art keywords
wastewater
steel
ions
pit
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13388283A
Other languages
Japanese (ja)
Other versions
JPS6025590A (en
Inventor
Masahiro Fujii
Minoru Kamata
Shigeharu Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58133882A priority Critical patent/JPS6025590A/en
Publication of JPS6025590A publication Critical patent/JPS6025590A/en
Publication of JPS6351076B2 publication Critical patent/JPS6351076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はPHが5.0以下の鋼材表面処理排水を活
性汚泥処理する方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for treating steel surface treatment wastewater with a pH of 5.0 or less with activated sludge.

〔従来技術〕[Prior art]

製鉄所において、冷延鋼板あるいは亜鉛メツ
キ、錫メツキなどにより表面処理鋼板を製造する
際に鋼板表面のスケール、汚れ、酸化膜、酸など
を除去するために硫酸または塩酸により酸洗処理
を行う。この他に、鋼板の清浄化にも酸洗処理が
多く行われている。
When manufacturing cold-rolled steel sheets or surface-treated steel sheets by galvanizing, tin-plating, etc. in steel works, pickling treatment is performed with sulfuric acid or hydrochloric acid to remove scale, dirt, oxide films, acids, etc. from the surface of the steel sheets. In addition to this, pickling treatment is often used to clean steel plates.

これらの鉄鋼材料の酸洗は、濃度3〜20%程度
の塩酸、硫酸などの酸洗浴をもちいて行い酸洗浴
は、一定期間以上使用すると酸洗能力が低下する
ので廃棄しなければならない。また、鉄鋼材料を
酸洗後、残存している酸洗液を除去するため大量
の水によつて洗浄を行う。さらに、多くのケース
においてこれらの酸洗で鉄鋼材料のスケールのみ
を溶解し、地鉄の酸による溶解を極力抑制するた
め酸洗浴に有機化合物を主成分とするインヒビタ
ーを添加する。このため、鉄鋼材料の酸洗工程か
らは、PHが低く、第1鉄イオンおよび有機化合物
を含有した排水が発生する。
These steel materials are pickled using a pickling bath containing hydrochloric acid, sulfuric acid, or the like with a concentration of about 3 to 20%. If the pickling bath is used for more than a certain period of time, its pickling ability decreases, so it must be discarded. Further, after pickling the steel material, it is washed with a large amount of water to remove the remaining pickling solution. Furthermore, in many cases, an inhibitor containing an organic compound as a main component is added to the pickling bath in order to dissolve only the scale of the steel material and to suppress dissolution of the base iron by acid as much as possible. For this reason, the process of pickling steel materials generates waste water that has a low pH and contains ferrous ions and organic compounds.

また、製鉄所においては、これらの酸洗排水の
他に亜鉛メツキ鋼板、錫メツキ鋼板その他のメツ
キ鋼板の製造工程からも酸洗工程の排水と類似の
排気が排出する。この排水には、鉄イオンの他に
メツキ処理に使用されている亜鉛、錫、クロム、
などの金属イオンおよび有機化合物を主成分とす
るメツキ添加剤が含まれている。このメツキ添加
剤は、良好なメツキ性を得るためにメツキ浴に添
加するもので前述の酸洗インヒビターと異なる有
機化合物を主成分としている。
In addition to these pickling wastewaters, in steel works, exhaust gas similar to the pickling process wastewater is also discharged from the manufacturing process of galvanized steel sheets, tin-plated steel sheets, and other galvanized steel sheets. In addition to iron ions, this wastewater contains zinc, tin, chromium, and other substances used in the plating process.
Contains plating additives whose main components are metal ions and organic compounds such as. This plating additive is added to the plating bath in order to obtain good plating properties, and is mainly composed of an organic compound different from the above-mentioned pickling inhibitor.

したがつて、製鉄所の酸洗、メツキなどの鋼材
の表面処理工程あるいはその他の鉄鋼関連工場か
ら排出する排水は、PHが非常に低く、また、鉄イ
オンの他に亜鉛、錫、その他の金属イオンおよび
有機化合物を含有している。
Therefore, wastewater discharged from steel surface treatment processes such as pickling and plating at steel plants, or from other steel-related factories, has a very low pH and contains zinc, tin, and other metals in addition to iron ions. Contains ions and organic compounds.

なお、これらの表面処理排水に含まれている鉄
イオンは大部分が第1鉄(Fe2+)イオンである。
Note that most of the iron ions contained in these surface treatment wastewaters are ferrous (Fe 2+ ) ions.

これらの排水を公共用水域に排出する場合、
鉄、亜鉛、錫などの金属イオン、CODによつて
表示される有機化合物およびPHを環境規制値以下
に除去または調整して排出を行つている。
When discharging these wastewaters into public waters,
Metal ions such as iron, zinc, and tin, organic compounds indicated by COD, and pH are removed or adjusted to below environmental regulation values before being discharged.

そのための従来の方法は次の通にである。 The conventional method for this is as follows.

先づ金属イオンの除去には、主にアルカリ凝集
沈澱法が適用されている。すなわち、これらの排
水はPH2.0〜3.0程度であり、前述の金属イオンは
ほゞ完全に溶解しているので、これらの金属イオ
ンを除去するためには、排水に大量のアルカリ剤
を添加し、排水のPHを9〜10に高めて維持し、前
記金属イオンを水酸化物として沈澱させ除去して
いる。しかし、第1鉄塩は、PH9.5以上にしない
と排水に溶解したまま残存し、またPH9.5以上に
して第1鉄塩の水酸化物を生成させても水酸化第
1鉄は沈降速度が遅いので水酸化第1鉄を沈降分
離するには大容量の設備を必要とする。
First, an alkali coagulation precipitation method is mainly applied to remove metal ions. In other words, these wastewaters have a pH of about 2.0 to 3.0, and the metal ions mentioned above are almost completely dissolved, so in order to remove these metal ions, a large amount of alkaline agent must be added to the wastewater. The pH of the waste water is raised and maintained at 9 to 10, and the metal ions are precipitated and removed as hydroxides. However, ferrous salts remain dissolved in waste water unless the pH is raised to 9.5 or higher, and even if hydroxides of ferrous salts are generated at pH 9.5 or higher, ferrous hydroxide will precipitate. Since the speed is slow, large-capacity equipment is required to separate the ferrous hydroxide by sedimentation.

そこでこれらの問題点を解決するために第1鉄
塩を含む排水に水酸化カルシウム、炭酸カルシウ
ムなどのアルカリ剤を添加してPH9〜10に維持
し、さらに、大量の空気を長時間吹き込み、水酸
化第1鉄を水酸化第2鉄に酸化している。その理
由はこの水酸化第2鉄は、PH5〜11の範囲におい
て溶解度は0.1mg/以下であり水酸化第1鉄に
比べて溶解度が非常に低く、また、このフロツク
は沈降性が良好なので処理水への流出が少ないか
らである。
Therefore, in order to solve these problems, we added alkaline agents such as calcium hydroxide and calcium carbonate to the wastewater containing ferrous salts to maintain the pH at 9 to 10, and then blown a large amount of air for a long period of time. Ferrous oxide is oxidized to ferric hydroxide. The reason for this is that ferric hydroxide has a solubility of less than 0.1 mg/kg in the pH range of 5 to 11, which is extremely low compared to ferrous hydroxide, and this floc has good sedimentation properties, so it cannot be treated. This is because there is less runoff into the water.

そして、該処理をした排水を汚泥沈降槽におい
て固液分離を行い、上澄水は硫酸、塩酸などによ
りPHを規制値に中和してから排出している。この
ような処理をなされた処理水に含まれる鉄、亜
鉛、錫その他の金属イオンは、いずれも0.1mg/
以下であり、規制値を十分に満足することがで
きる。
The treated wastewater is then subjected to solid-liquid separation in a sludge settling tank, and the supernatant water is discharged after its pH is neutralized to regulated values using sulfuric acid, hydrochloric acid, etc. The iron, zinc, tin and other metal ions contained in the treated water are all 0.1mg/
or less, and can fully satisfy the regulation value.

しかし、上記の金属イオンを水酸化物として沈
澱させ、さらに水酸化第1鉄を水酸化第2鉄に酸
化させる処理を行つても、排水に含まれている前
記酸洗のインヒビター、メツキ添加剤などの有機
化合物は十分に除去されない。このため、場合に
よつてはこれらの有機化合物を除去するために、
さらに、別途に過酸化水素、次亜塩素酸塩などに
よる化学的酸化処理あるいは活性炭吸着法などの
処理を行うこともある。
However, even if the above-mentioned metal ions are precipitated as hydroxides and ferrous hydroxide is further oxidized to ferric hydroxide, the pickling inhibitor and plating additive contained in the wastewater Organic compounds such as are not removed sufficiently. Therefore, in some cases, to remove these organic compounds,
Furthermore, a separate treatment such as chemical oxidation treatment using hydrogen peroxide, hypochlorite, etc., or activated carbon adsorption method may be performed.

このように、製鉄所の従来の排水処理は、金属
イオン沈澱処理、水酸化第1鉄を水酸化第2鉄に
酸化する処理、有機化合物除去処理の多段処理に
なつているので、処理工程が多いという問題があ
る。
In this way, conventional wastewater treatment at steel plants is a multi-stage process that includes metal ion precipitation, oxidation of ferrous hydroxide to ferric hydroxide, and organic compound removal. The problem is that there are too many.

また、従来の処理方法における他の問題点は、
前記中和凝集沈澱処理に水酸化カルシウム、炭酸
カルシウムなどのカルシウム化合物を使用するの
で、大量のカルシウム化合物と鉄、亜鉛、錫など
の金属水酸化物を含有しているスラツジが非常に
多く発生すること、さらに、該スラツジは各種金
属酸化物が混在しているため、有効利用に多くの
制約を受けることである。一方、排水中の第1鉄
イオンを第2鉄イオンに酸化する生物化学的方
法、いわゆる鉄酸化菌によつて酸化する方法は、
特公昭47−38981号、特公昭47−38981号、特公昭
57−44393号、特公昭55−18559号、特公昭55−
22345号公報などが知られている。しかし、これ
らの対象排水は鉱山、炭鉱、製錬廃水及びこれら
の廃水に類した工場廃水である。これらの廃水に
は有機化合物は含まれておらず、鉄鋼関連排水の
ように有機化合物と第1鉄イオンが共存する排水
にバクテリアをもちいて処理する方法とは異る。
また、前述の公知技術においては、排水中の第1
鉄イオンを第2鉄イオンに酸化するのに必要な曝
気用空気量などの酸化条件についても明らかにさ
れていない。
In addition, other problems with conventional processing methods include:
Since calcium compounds such as calcium hydroxide and calcium carbonate are used in the neutralization coagulation and precipitation treatment, a large amount of sludge containing a large amount of calcium compounds and metal hydroxides such as iron, zinc, and tin is generated. Furthermore, since the sludge contains various metal oxides, its effective utilization is subject to many restrictions. On the other hand, a biochemical method of oxidizing ferrous ions in wastewater to ferric ions, a method using so-called iron-oxidizing bacteria,
Special Publication No. 47-38981, Special Publication No. 47-38981, Special Publication No.
No. 57-44393, Special Publication No. 18559, Special Publication No. 1855-
Publication No. 22345 is known. However, these target wastewaters are mine, coal mine, smelting wastewater, and industrial wastewater similar to these wastewaters. These wastewaters do not contain organic compounds, and are different from methods that use bacteria to treat wastewater that contains organic compounds and ferrous ions, such as steel-related wastewater.
In addition, in the above-mentioned known technology, the first
The oxidation conditions, such as the amount of aeration air required to oxidize iron ions to ferric ions, have not been disclosed.

〔発明の目的〕[Purpose of the invention]

本発明は、前記問題点を解決することを目的と
する排水中の第1鉄塩の新しい処理方法及び排水
中の第1鉄塩を処理すると同時に共存する有機物
も酸化分解する新しい処理方法である。
The present invention aims to solve the above-mentioned problems and is a new treatment method for ferrous salts in wastewater, and a new treatment method for treating ferrous salts in wastewater and at the same time oxidizing and decomposing coexisting organic matter. .

〔発明の構成、及び作用〕[Structure and operation of the invention]

本発明の要旨は、鉄鋼関連工場から排出する少
くとも水溶性第1鉄イオンと有機化合物を含有す
るPH5.0以下の排水を集水するピツトに曝気装置
と酸化還元電位測定装置とを設置し、ピツト内の
酸化還元電位を指標にして曝気を行ない、ピツト
内に生息している微生物を増殖させるとともに、
この微生物を用いて第1鉄イオンを第2鉄イオン
に酸化すると同時に共存する有機化合物も分解す
ることを特徴とする鉄鋼関連排水の生物化学的処
理法、ならびに、鉄鋼関連工場から排出する少く
とも水溶性第1鉄イオンと有機化合物を含有する
PH5.0以下の排水を集水するピツトに生成した微
生物を含むスライム、またはスラツジを採取し
て、別に設けられた好気性活性汚泥処理装置の曝
気槽に入れ、曝気槽の酸化還元電位が+700mV
(水素電極を基準)以上になるように曝気を行な
いながら、第1鉄イオン及び有機化合物が共存す
るPH5.0以下の鉄鋼関連排水を通水して排水中の
第1鉄イオンを第2鉄イオンに酸化すると同時に
共存する有機化合物を分解することを特徴とする
鉄鋼関連排水の生物化学的処理法である。
The gist of the present invention is to install an aeration device and a redox potential measuring device in a pit that collects wastewater with a pH of 5.0 or less that contains at least water-soluble ferrous ions and organic compounds discharged from steel-related factories. , Aeration is carried out using the redox potential in the pit as an indicator, and the microorganisms living in the pit are multiplied.
A biochemical treatment method for steel-related wastewater, which uses this microorganism to oxidize ferrous ions to ferric ions and simultaneously decomposes coexisting organic compounds, and at least Contains water-soluble ferrous ions and organic compounds
Slime or sludge containing microorganisms generated in a pit that collects wastewater with a pH of 5.0 or less is collected and placed in the aeration tank of a separate aerobic activated sludge treatment equipment, and the oxidation-reduction potential of the aeration tank is +700 mV.
Ferrous ions in the wastewater are replaced with ferric iron by passing steel-related wastewater with a pH of 5.0 or less, in which ferrous ions and organic compounds coexist, while performing aeration so that the pH is above (based on the hydrogen electrode). This is a biochemical treatment method for steel-related wastewater that is characterized by oxidizing it into ions and simultaneously decomposing coexisting organic compounds.

先づ、本発明者が行つた実験について述べる。 First, an experiment conducted by the present inventor will be described.

酸洗排水、メツキ排水等に含まれている第1鉄
イオンを、前述の従来の方法によつて化学的酸化
処理を行う場合、処理を円滑に行うため、各種の
排水を混合して均一にする集水ピツト(容量が大
きい程、各種の排水が良く混合して均質化する)
を設置するのが通常である。そして、このピツト
における前述の排水の滞留時間は、約10分ないし
1時間以上である。
When chemically oxidizing ferrous ions contained in pickling wastewater, pickling wastewater, etc. using the conventional method described above, in order to perform the process smoothly, it is necessary to mix various types of wastewater and make it uniform. Water collection pit (the larger the capacity, the better the various types of wastewater will be mixed and homogenized)
It is normal to install The residence time of the waste water in this pit is approximately 10 minutes to over 1 hour.

発明者等は、このピツトの側壁に付着している
寒天状のスライムに注目して、このスライムを採
取し、好気性活性汚泥実験装置の曝気槽に入れて
曝気を行い、このピツトに流入する排水を該曝気
槽に供給して活性汚泥処理の実験を行つた結果、
処理時間約1時間で、この排水に含まれている約
500mg/の第1鉄イオンが第2鉄イオンに約
99.9%以上の酸化率で酸化され、また、全有機炭
素(TOC)として約30mg/含まれている酸洗
インヒビター、メツキ添加剤などの有機化合物が
T.O.Cとして5mg/以下に除去される事を見い
出した。また、同様の作用をこのピツトの底に堆
積しているスラツジも有していることが明らかに
なつた。
The inventors focused on the agar-like slime that adhered to the side wall of this pit, collected this slime, put it in the aeration tank of an aerobic activated sludge experimental device, aerated it, and then let it flow into the pit. As a result of conducting an experiment on activated sludge treatment by supplying wastewater to the aeration tank, we found that
The treatment time is about 1 hour, and the wastewater contains about
500 mg/ferrous ion to ferric ion
It is oxidized with an oxidation rate of 99.9% or more, and organic compounds such as pickling inhibitors and pickling additives, which contain about 30 mg/total organic carbon (TOC), are
It was found that the amount of TOC removed was less than 5 mg. It has also become clear that the sludge deposited at the bottom of this pit has a similar effect.

これらの実験結果から、前記寒天状のスライム
又はスラツジに前記排水に含まれている第1鉄イ
オンを第2鉄イオンに酸化するバクテリヤ及び酸
洗のインヒビター、メツキ添加剤等として使用さ
れた有機化合物を酸化分解するバクテリヤが存在
する事が推定された。
From these experimental results, it was found that the agar-like slime or sludge contains bacteria that oxidizes ferrous ions contained in the wastewater to ferric ions, and organic compounds used as pickling inhibitors, plating additives, etc. It is presumed that there are bacteria that oxidize and decompose it.

本発明はこのような新しい知見に基づいてなさ
れたものである。
The present invention has been made based on such new findings.

発明者らは、この自然に生息したバクテリヤを
含有するスライス又はスラツジを利用して鉄鋼の
酸洗関係の排水、鉄鋼のメツキ関係の排水等の鉄
鋼関連排水を処理することができた。
The inventors were able to treat steel-related wastewater, such as wastewater from pickling of steel and wastewater from plating of steel, by using slices or sludge containing naturally occurring bacteria.

以下実施例によつて説明する。 This will be explained below using examples.

実施例 1 鉄鋼関連の酸洗工程とメツキ工程から排出され
る排水の集水ピツト1に、第1図に示すように底
部に曝気用の散気管6を、又ピツト上部に酸化還
元電位測定装置として、酸化還元電位センサー1
1、酸化還元電位計器12、記録計13を設置し
通水ピツトとした。尚第1図において、2,3は
堰、4は集水パイプ、5はポンプ、7は剰余汚泥
抜取りポンプ、8は抜取つた汚泥排出パイプ、9
は送水ポンプ、10は排水パイプである。
Example 1 In a pit 1 for collecting wastewater discharged from pickling and plating processes related to steel, a diffuser pipe 6 for aeration is installed at the bottom as shown in Fig. 1, and an oxidation-reduction potential measuring device is installed at the top of the pit. As, redox potential sensor 1
1. An oxidation-reduction potential meter 12 and a recorder 13 were installed to form a water-flowing pit. In Fig. 1, 2 and 3 are weirs, 4 is a water collection pipe, 5 is a pump, 7 is a surplus sludge extraction pump, 8 is a sludge discharge pipe, and 9
1 is a water pump, and 10 is a drainage pipe.

この通水ピツトにおいて前記排水を通水しなが
ら曝気を行うとスライム、汚泥等が大量に増加
し、酸化還元電位が上昇した。この酸化還元電位
の上昇にともない、排水中の第1鉄イオン及び又
は共存する有機化合物の除去率が上昇した。そし
て、酸化還元電位が約+700mV(水素電極を基準
にして)以上になるとこれらの除去率はほぼ100
%になり、第1鉄イオンは第2鉄イオンにほとん
ど酸化され例えば集水ピツト出口の第1鉄イオン
濃度は1mg/以下に、また、有機化合物もほと
んど酸化分解されその濃度は、全有機性炭素とし
て3mg/以下になつた。
When aeration was carried out while water was flowing through the water passage pit, slime, sludge, etc. increased in large quantities, and the oxidation-reduction potential increased. As the redox potential increased, the removal rate of ferrous ions and/or coexisting organic compounds in the wastewater increased. When the redox potential is about +700 mV or higher (based on the hydrogen electrode), the removal rate of these is approximately 100 mV.
%, most of the ferrous ions are oxidized to ferric ions, and for example, the ferrous ion concentration at the outlet of the water collection pit is less than 1 mg/%, and most of the organic compounds are oxidized and decomposed, and the concentration is the same as that of the total organic The amount of carbon was less than 3mg/.

なお、このような処理を長期間行つていると集
水ピツト内の汚泥濃度が20万mg/以上になり、
曝気のみでは十分に撹拌が行われず、処理効率が
低下すること、及び最適汚泥濃度は3万mg/な
いし10万mg/程度であることが判明した。
Furthermore, if this kind of treatment is carried out for a long period of time, the sludge concentration in the water collection pit will increase to over 200,000 mg/kg.
It has been found that aeration alone does not result in sufficient stirring, resulting in a decrease in treatment efficiency, and that the optimum sludge concentration is approximately 30,000 mg/ to 100,000 mg/.

汚泥濃度が10万mg/程度以上になつたなら
ば、第1図の汚泥抜取りポンプ7により汚泥を抜
き取るとともに汚泥を分離した上澄水を第1図の
送水ポンプ9により抜き取り図示されない中和槽
に入れ、ここで苛性ソーダ、炭酸カルシウム、水
酸化カルシウム等によりPH4〜5に調整し前記酸
化された第2鉄イオンを中和して水酸化第2鉄を
主成分とするスラツジを回収した。尚これを焼成
すると鉄分約50%以上の酸化鉄が得られ、これは
顔料などに使用することができる。
When the sludge concentration reaches 100,000 mg/or more, the sludge is removed by the sludge removal pump 7 shown in Fig. 1, and the supernatant water from which the sludge has been separated is extracted by the water supply pump 9 shown in Fig. 1 and sent to a neutralization tank (not shown). The pH was adjusted to 4 to 5 using caustic soda, calcium carbonate, calcium hydroxide, etc. to neutralize the oxidized ferric ions, and a sludge containing ferric hydroxide as a main component was recovered. When this is fired, iron oxide with an iron content of about 50% or more is obtained, which can be used for pigments, etc.

実施例 2 鉄鋼関連の酸洗工程とメツキ工程から排出され
る排水の集水ピツトに排水を通水しながら空気を
吹き込むと約1〜2ケ月間で大量のスラツジが生
成する。このスラツジを回収し、集水ピツトとは
別に設けられた第2図に示した好気性活性汚泥処
理装置14の曝気槽15に入れ、さらに該曝気槽
に酸化還元電位センサー11を設置し、酸洗関係
の排水とメツキ関係の排水を通水し、酸化還元電
位を指標にして空気又は酸素を曝気した。これに
よつて前記排水に含まれている第1鉄イオンは第
2鉄イオンに酸化され、また、酸洗インヒビタ
ー、メツキ添加剤などの有機化合物も酸化分解さ
れた。
Example 2 If air is blown into a collection pit for wastewater discharged from steel-related pickling and plating processes while water is flowing through it, a large amount of sludge will be generated over a period of about 1 to 2 months. This sludge is collected and put into the aeration tank 15 of the aerobic activated sludge treatment equipment 14 shown in FIG. Washing-related wastewater and plating-related wastewater were passed through, and air or oxygen was aerated using the oxidation-reduction potential as an index. As a result, ferrous ions contained in the waste water were oxidized to ferric ions, and organic compounds such as pickling inhibitors and plating additives were also oxidized and decomposed.

前記集水ピツトで増殖したスラツジを好気性活
性汚泥処理の曝気槽に入れ、前記排水を通水する
と、当初は、曝気槽の酸化還元電位は+550mV
〜600mV(水素電極を基準)と低いが、約10日〜
1ケ月後には酸化還元電位が+700mV以上にな
り、曝気槽の汚泥濃度も20万mg/以上に達し
た。このように汚泥濃度が高濃度になると処理効
率が低下した。そして曝気槽の汚泥濃度が1万
mg/〜10万mg/、好ましくは5万mg/〜10
万mg/の範囲のときが処理効率が最高であるこ
とが判つた。
When the sludge grown in the water collection pit is placed in an aeration tank for aerobic activated sludge treatment and the wastewater is passed through, the oxidation-reduction potential of the aeration tank is initially +550 mV.
~600mV (based on hydrogen electrode), which is low, but for about 10 days~
One month later, the redox potential rose to over +700mV, and the sludge concentration in the aeration tank reached over 200,000mg/. As described above, when the sludge concentration became high, the treatment efficiency decreased. And the sludge concentration in the aeration tank is 10,000
mg/~100,000 mg/, preferably 50,000 mg/~10
It was found that the treatment efficiency was highest when the amount was in the range of 10,000 mg/.

前記の酸洗関係の排水とメツキ関係の排水とを
集水ピツトで混合した排水をポンプ5で曝気槽1
5に導き入れ、前記曝気槽の酸化還元電位や800
±25mV(水素電極基準)になるように排水流入
量及び、又は空気曝気量を調整して曝気槽での滞
留時間が約1時間になるように通水し、堰2,3
により曝気の影響を遮断して汚泥分解を行い上澄
水をポンプ9で排出した。
The above-mentioned pickling-related wastewater and plating-related wastewater are mixed in a water collection pit, and the wastewater is pumped to the aeration tank 1 by a pump 5.
5, the oxidation-reduction potential of the aeration tank and 800
Adjust the amount of wastewater inflow and/or the amount of air aeration so that the voltage is ±25 mV (hydrogen electrode standard), and water is passed so that the residence time in the aeration tank is about 1 hour.
The influence of aeration was blocked, the sludge was decomposed, and the supernatant water was discharged using the pump 9.

その結果、PH2.5、第1鉄イオン濃度が約500
mg/、有機化合物の濃度が全有機性炭素として
約50mg/であつた前記混合排水が、第1鉄イオ
ン濃度が1mg/以下、全有機性炭素濃度が3
mg/以下の排水になつた。
As a result, the pH was 2.5 and the ferrous ion concentration was approximately 500.
The mixed wastewater had an organic compound concentration of about 50 mg/ as total organic carbon, a ferrous ion concentration of 1 mg/or less, and a total organic carbon concentration of 3.
The wastewater amounted to less than mg/mg.

また、この排水を常法によつて、苛性ソーダ、
炭酸カルシウム、水酸化カルシウム等によりPH4
〜5に調整することにより水酸化第2鉄を主成分
とするスラツジが回収できた。これを焼成すると
鉄分約50%以上の酸化鉄が得られ、顔料等に使用
できる。
In addition, this wastewater was treated with caustic soda and
PH4 due to calcium carbonate, calcium hydroxide, etc.
By adjusting the temperature to ~5, sludge containing ferric hydroxide as a main component could be recovered. When this is fired, iron oxide with an iron content of approximately 50% or more is obtained, which can be used for pigments, etc.

〔発明の効果〕〔Effect of the invention〕

このように本発明の方法によれば、鉄鋼の酸洗
関係の排水、鉄鋼のメツキ関係の排水などの鉄鋼
関連排水を集水するピツトに生息しているバクテ
リヤの集合体であるスライム、スラツジを利用し
て、排水中の第1鉄イオンを第2鉄イオンに酸化
し、PH5程度の低いPHで沈殿凝固させることがで
きるので、従来方法に比べて短時間で該処理がで
き、又該第1鉄イオン処理と共に有機化合物も処
理できるので、この場合には従来方法に比べて工
程が簡単になるという効果があり、そして第2鉄
イオンのみのスラツジが生成するので該スラツジ
を有効利用できるという効果もある。
As described above, according to the method of the present invention, slime and sludge, which are aggregates of bacteria living in pits that collect steel-related wastewater such as wastewater from pickling of steel and wastewater from plating of steel, can be removed. This method can oxidize ferrous ions in wastewater to ferric ions, which can be precipitated and coagulated at a low pH of about 5, making it possible to carry out the treatment in a shorter time than with conventional methods. Since organic compounds can be treated as well as ferric ions, this method has the effect of simplifying the process compared to conventional methods, and since sludge containing only ferric ions is produced, the sludge can be used effectively. It's also effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための通水ピツ
トの一例を示す図、第2図は本発明方法を実施す
るための好気性活性汚泥処理装置の一例を示す図
である。 1は集水ピツト、2及び3は堰、4は集水パイ
プ、5は集水ポンプ、6は空気曝気用の散気管、
7は、余剰汚泥の抜取りポンプ、8は抜取つた余
剰汚泥用のパイプ、9は送水ポンプ、10は排水
パイプ、11は酸化還元電位センサー、12は酸
化還元電位の計器、13は酸化還元電位の連続記
録用記録計、14は好気性活性汚泥処理装置、1
5は曝気槽。
FIG. 1 is a diagram showing an example of a water flow pit for implementing the method of the present invention, and FIG. 2 is a diagram showing an example of an aerobic activated sludge treatment apparatus for implementing the method of the present invention. 1 is a water collection pit, 2 and 3 are weirs, 4 is a water collection pipe, 5 is a water collection pump, 6 is a diffuser pipe for air aeration,
7 is a pump for removing excess sludge, 8 is a pipe for removing excess sludge, 9 is a water supply pump, 10 is a drainage pipe, 11 is a redox potential sensor, 12 is a redox potential meter, and 13 is a redox potential meter. Recorder for continuous recording, 14 is aerobic activated sludge treatment equipment, 1
5 is an aeration tank.

Claims (1)

【特許請求の範囲】 1 鉄鋼関連工場から排出する少くとも水溶性第
1鉄イオンと有機化合物を含有するPH5.0以下の
排水を集水するピツトに曝気装置と酸化還元電位
測定装置とを設置し、ピツト内の酸化還元電位を
指標にして曝気を行ない、ピツト内に生息してい
る微生物を増殖させるとともに、この微生物を用
いて第1鉄イオンを第2鉄イオンに酸化すると同
時に共存する有機化合物も分解することを特徴と
する鉄鋼関連排水の生物化学的処理法。 2 鉄鋼関連工場から排出する少くとも水溶性第
1鉄イオンと有機化合物を含有するPH5.0以下の
排水を集水するピツトに生成した微生物を含むス
ライム、またはスラツジを採取して、別に設けら
れた好気性活性汚泥処理装置の曝気槽に入れ、曝
気槽の酸化還元電位が+700mV(水素電極を基
準)以上になるように曝気を行ないながら、第1
鉄イオン及び有機化合物が共存するPH5.0以下の
鉄鋼関連排水を通水して排水中の第1鉄イオンを
第2鉄イオンに酸化すると同時に共存する有機化
合物を分解することを特徴とする鉄鋼関連排水の
生物化学的処理法。
[Scope of Claims] 1. An aeration device and an oxidation-reduction potential measuring device are installed in a pit that collects wastewater with a pH of 5.0 or less that contains at least water-soluble ferrous ions and organic compounds discharged from a steel-related factory. Then, aeration is carried out using the redox potential inside the pit as an indicator, and the microorganisms living in the pit are multiplied. At the same time, the microorganisms are used to oxidize ferrous ions to ferric ions, and at the same time, the coexisting organic A biochemical treatment method for steel-related wastewater that also decomposes compounds. 2. Collect slime or sludge containing microorganisms generated in a pit that collects wastewater with a pH of 5.0 or less that contains at least water-soluble ferrous ions and organic compounds discharged from steel-related factories, and collect it in a separate pit. The first sludge was placed in the aeration tank of the aerobic activated sludge treatment equipment, and while aeration was performed so that the oxidation-reduction potential of the aeration tank was +700 mV or higher (based on the hydrogen electrode).
A steel that is characterized by passing steel-related wastewater with a pH of 5.0 or lower in which iron ions and organic compounds coexist to oxidize the ferrous ions in the wastewater to ferric ions and simultaneously decompose the coexisting organic compounds. Biochemical treatment methods for associated wastewater.
JP58133882A 1983-07-22 1983-07-22 Biochemical treatment of waste water exhausted from iron and steel plant Granted JPS6025590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133882A JPS6025590A (en) 1983-07-22 1983-07-22 Biochemical treatment of waste water exhausted from iron and steel plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133882A JPS6025590A (en) 1983-07-22 1983-07-22 Biochemical treatment of waste water exhausted from iron and steel plant

Publications (2)

Publication Number Publication Date
JPS6025590A JPS6025590A (en) 1985-02-08
JPS6351076B2 true JPS6351076B2 (en) 1988-10-12

Family

ID=15115290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133882A Granted JPS6025590A (en) 1983-07-22 1983-07-22 Biochemical treatment of waste water exhausted from iron and steel plant

Country Status (1)

Country Link
JP (1) JPS6025590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006118A1 (en) * 2014-07-07 2016-01-14 独立行政法人石油天然ガス・金属鉱物資源機構 Mine water purification method, mine water purification system and mine water purifying agent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673699B2 (en) * 1988-06-20 1997-11-05 コニカ株式会社 Method and apparatus for processing silver halide photographic light-sensitive material and current-carrying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006118A1 (en) * 2014-07-07 2016-01-14 独立行政法人石油天然ガス・金属鉱物資源機構 Mine water purification method, mine water purification system and mine water purifying agent

Also Published As

Publication number Publication date
JPS6025590A (en) 1985-02-08

Similar Documents

Publication Publication Date Title
US5368703A (en) Method for arsenic removal from wastewater
CN111018187A (en) Wastewater treatment process based on Fenton oxidation reaction
JP5579414B2 (en) Treatment method for wastewater containing reducing selenium
JPS62253738A (en) Removal of dangerous metal waste sludge
JPH06315698A (en) Detoxication of sewage sludge
JP4894403B2 (en) Cyanide-containing wastewater treatment method and apparatus
CN106380016A (en) Steel pickling wastewater treatment and reuse method and device
US5326439A (en) In-situ chromate reduction and heavy metal immobilization
US4606829A (en) Removal of complexed zinc-cyanide from wastewater with improved sludge stability
CN111320316A (en) Landfill leachate membrane concentrated solution treatment method
JP3843052B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
CN111153557A (en) Integrated treatment device and treatment process for pickling and phosphating production wastewater
JPS6351076B2 (en)
JP2575886B2 (en) Chemical cleaning waste liquid treatment method
JP5073354B2 (en) Waste liquid treatment method and treatment equipment using iron-oxidizing bacteria
JPS6025589A (en) Biochemical treatment of waste water exhausted from iron and steel plant
JPH09206790A (en) Treatment of waste water of steel product pickling containing nitrate nitrogen
JPH08173990A (en) Treatment method for drainage containing divalent iron
CN1027584C (en) Purification treatment method for copper and zinc complex ion wastewater
JP2721740B2 (en) Chemical cleaning waste liquid treatment method
US20050077251A1 (en) Method for control of wastewater treatment plant odors
JP4041977B2 (en) Method and apparatus for processing solution containing selenium
JPS61161197A (en) Treatment of organic waste water
JP2720096B2 (en) Method for simultaneous removal of BOD, nitrogen compounds and phosphorus compounds in wastewater
JP3227554B2 (en) Treatment of wastewater containing ferrous iron