JPS6350706A - Apparatus for measuring film thickness - Google Patents

Apparatus for measuring film thickness

Info

Publication number
JPS6350706A
JPS6350706A JP19615086A JP19615086A JPS6350706A JP S6350706 A JPS6350706 A JP S6350706A JP 19615086 A JP19615086 A JP 19615086A JP 19615086 A JP19615086 A JP 19615086A JP S6350706 A JPS6350706 A JP S6350706A
Authority
JP
Japan
Prior art keywords
refractive index
measured
film thickness
detector
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19615086A
Other languages
Japanese (ja)
Other versions
JPH0466285B2 (en
Inventor
Isao Hishikari
功 菱刈
Toshihiko Ide
敏彦 井手
Kosei Aikawa
相川 孝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP19615086A priority Critical patent/JPS6350706A/en
Publication of JPS6350706A publication Critical patent/JPS6350706A/en
Publication of JPH0466285B2 publication Critical patent/JPH0466285B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain an apparatus for automatically correcting the refractive index of an object to be measured, by constituting the title apparatus so that beams are projected to the object to be measured at two or more angles and each interference fringe is detected by a detector and the refractive index of the object to be measured in calculated from the max. and min. wavelengths of a measuring section among wavelengths imparting the max. or min. value of said detector and the number of extreme values therebetween. CONSTITUTION:The relation between each element number of an interference fringe pattern detector 11 and a wavelength is preliminarily stored in the memory of an operation means 13. Then, the output of each element of the detector 11 is successively read at the time of measurement and the max. and min. wavelengths are calculated from element numbers imparting extreme values in a measuring range and degree difference is calculated from the numerical difference between extreme values and predetermined operation is performed based on of the refractive index from the memory to calculate the film thickness of an object 4. When the refractive index of the object 4 is unknown, especially, when the kind of the object 4 changes and the refractive index thereof changes, beam sources 1a, 1b are arranged so that the beams therefrom are projected to the object 4 at different angles thetaa, thetab with respect to the normal line of the measuring position of the object 4 and both beams are detected by detectors 14a, 14b. Subsequently, a refractive index is calculated according to a predetermined formula and automatically corrected to calculate the film thickness of the object 4.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光の干渉を利用して膜厚を測定する装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for measuring film thickness using optical interference.

[従来の技術] 光の干渉を利用して被測定対象の膜厚を測定するには、
被測定対象に光源よりの光を投光し、その透過光または
反射光を分光して干渉縞を検出器で検出し、被測定対象
の膜厚を測定している。
[Prior art] To measure the film thickness of a target using optical interference,
Light from a light source is projected onto the object to be measured, the transmitted light or reflected light is separated, and interference fringes are detected by a detector to measure the film thickness of the object to be measured.

[この発明が解決しようとする問題点]しかしながら、
被測定対象の膜厚を測定するには、あらかじめ屈折率が
既知である必要があり、被測定対象の種類が変更となり
屈折率が変わるとこれに応じて測定系の設定値等を変更
する必要があり、非常に不便であった。
[Problems to be solved by this invention] However,
To measure the film thickness of the object to be measured, it is necessary to know the refractive index in advance, and if the type of object to be measured changes and the refractive index changes, it is necessary to change the settings of the measurement system accordingly. It was very inconvenient.

この発明の目的は、以上の点に鑑み、被測定対[問題点
を解決するための手段] この発明は、2個以上の角度で被測定対象に投光を行い
、この各々についての干渉縞を検出器で検出し、極値を
与える波長から被測定対象の屈折率を求め、膜厚を演算
するようにした膜厚測定装置である。
In view of the above points, an object of the present invention is to project light onto an object to be measured at two or more angles, and to obtain interference fringes for each of the objects to be measured. This is a film thickness measuring device that detects the refractive index with a detector, determines the refractive index of the object to be measured from the wavelength that gives the extreme value, and calculates the film thickness.

[実施例] 第1図は、この発明の一実施例を示す構成説明図である
[Embodiment] FIG. 1 is a configuration explanatory diagram showing an embodiment of the present invention.

図において、1は、光源で、光源1からの光は、レンズ
2によりハーフミラ−3を介してフィルムのような被測
定対象4に投光され、被測定対象4を透過または反射し
た光は、この図ではハーフミラ−3、レンズ5、チョッ
パのようなシャッタ手段6、しぼり7、レンズを介して
回折格子等の分光手段9で分光され、レンズ10を介し
てCODのようなイメージセンサの検出器11に入射す
る。
In the figure, 1 is a light source, and the light from the light source 1 is projected by a lens 2 through a half mirror 3 onto an object to be measured 4 such as a film, and the light transmitted or reflected from the object to be measured 4 is as follows. In this figure, the light is separated through a half mirror 3, a lens 5, a shutter means 6 such as a chopper, an aperture 7, a lens, and a spectroscopic means 9 such as a diffraction grating. 11.

このイメージセンサ11の各素子には分光手段9で分光
された各波長に対応した光が入射し、干渉′・\ 縞パターンの強度が検出される。イメージセンサ11の
出力は増幅器12で増幅され、演算手段13で所定の演
算がなされ、被測定対象4の膜厚dが演算される。
Light corresponding to each wavelength separated by the spectroscopic means 9 is incident on each element of the image sensor 11, and the intensity of the interference '·\ stripe pattern is detected. The output of the image sensor 11 is amplified by an amplifier 12, and a predetermined calculation is performed by a calculation means 13, whereby the film thickness d of the object to be measured 4 is calculated.

第2図で示すように、光源からの平行光線L1、L2は
、膜厚く厚さ)d1屈折率nの被測定対象4の表面およ
び裏面で反射し、両光線L+ 、L2は、光学的光路差
2nd/cosθ′をもち、この光路差が光の波長の整
数倍のとき干渉して第3図のような干渉縞を形成する。
As shown in FIG. 2, parallel rays L1 and L2 from the light source are reflected on the front and back surfaces of the object to be measured 4 having a thickness (thickness) d1 and a refractive index n, and both rays L+ and L2 are reflected on the optical path. They have a difference of 2nd/cos θ', and when this optical path difference is an integral multiple of the wavelength of light, they interfere to form interference fringes as shown in FIG.

第3図で示すような干渉縞パターンが19られたとし、
測定領域の極値を与える最小波長λ1、最大波長λ2に
ついて、干渉の各次数をm +N、 mとし次式が成り
立つ。
Assuming that an interference fringe pattern as shown in FIG. 3 is created,
Regarding the minimum wavelength λ1 and maximum wavelength λ2 that give the extreme values of the measurement region, the following equation holds true, assuming that the respective orders of interference are m + N and m.

(m+N)λ+ = 2 nd/ cosθ′   (
1)mλ2 = 2 nd/cosθ′   (2)(
2)式よりmを求め(1)式に代入して整理すると となる。このように波長λ1、λ2、(産額の次数差N
、あらかじめ求めた屈折率nから、被測定対象4の膜厚
が(3)、(4)式より求まる。
(m+N)λ+ = 2 nd/ cosθ' (
1) mλ2 = 2 nd/cosθ' (2) (
Find m from equation 2), substitute it into equation (1), and rearrange it as follows. In this way, wavelengths λ1, λ2, (order difference in production value N
, from the refractive index n determined in advance, the film thickness of the object to be measured 4 is determined from equations (3) and (4).

つまり、あらかじめ、分光手段9により検出器11の各
素子に入射する波長は決まっているので、検出器11の
各素子番号と波長との関係を演算手段13のメモリに記
憶しておく。
That is, since the wavelength incident on each element of the detector 11 is determined in advance by the spectroscopy means 9, the relationship between each element number of the detector 11 and the wavelength is stored in the memory of the calculation means 13.

そして、測定時、検出器11の各素子の出力を順次読み
出し、第3図で示すように、測定範囲内で極値を与える
素子番号からメモリを利用して波長λ1、λ2を求め、
極値の数の差から次数差Nを求め、メモリ等に格納され
た屈折率nを用い、(3)、(4)式のような演算を行
って被測定対象4の膜厚dを求める。
Then, during measurement, the output of each element of the detector 11 is sequentially read out, and as shown in FIG. 3, the wavelengths λ1 and λ2 are determined using memory from the element number that gives the extreme value within the measurement range.
Find the order difference N from the difference in the number of extreme values, use the refractive index n stored in a memory, etc., and calculate the film thickness d of the object to be measured 4 by performing calculations such as equations (3) and (4). .

ところで、被測定対象4の屈折率nが未知の場を求め、
自動的に補正する。
By the way, find a field where the refractive index n of the object to be measured 4 is unknown,
Correct automatically.

第4図で示すように、光源1a、1bを被測定対象4の
測定位置の法線に対し、異なる角度θa、θbで投光し
、検出部14a、14bで被測定対象を反射または透過
した光を検出し、第1図と同様な検出系で干渉縞を検出
する。
As shown in FIG. 4, light sources 1a and 1b project light at different angles θa and θb with respect to the normal to the measurement position of the object to be measured 4, and the light is reflected or transmitted through the object to be measured by the detection units 14a and 14b. The light is detected, and interference fringes are detected using a detection system similar to that shown in FIG.

λ1 :角度θaで投受光したときの干渉縞パターンの
極値を与える最小波長 λ2:同上最大波長 λ1′ 二角度θbで投受光したときの干渉糸島ノ(タ
ーンの極値を与える最小波長 λ2′ 二同上最大波長 m 1  : 角a e aで投光したときの最小波長
λ1での干渉の次数 m2 :角度θaで投光したときの最大波長λ2での干
渉の次数 22′での干渉の次数 n  :屈折率、 d:膜厚 N=m+m2、 N ’=ITl+’  m2’とし、
n =sinθa /sinθa ’ 、sinθl)
 /sinθb′を利用して次式が成り立つ。
λ1: Minimum wavelength that gives the extreme value of the interference fringe pattern when light is projected and received at angle θa λ2: Maximum wavelength λ1' same as above Minimum wavelength that gives the extreme value of interference pattern (turn) when light is projected and received at two angles θb 2 Same as above Maximum wavelength m 1 : Order of interference at minimum wavelength λ1 when light is projected at angle a e a m2 : Order of interference at maximum wavelength λ2 when light is projected at angle θa Order of interference at 22' n: refractive index, d: film thickness N=m+m2, N'=ITl+'m2',
n = sinθa /sinθa', sinθl)
The following equation holds true using /sin θb'.

m1λ’2 = 2 nd/cosθa′= 2 nd
/ r丁7訂了71丁7 =2nd/   −5in 2 &aフn2  (5)
m2λ2=2nd/   −s+n2  a/nz(6
)m +’λ+’=2nd/v  −3ln2  b/
n2  (7)m 2′λ2’=2nd/   −5i
n 2   /n 2  (8)N=lIl+m2 (9)、(10)式より次式となる。
m1λ'2 = 2 nd/cosθa' = 2 nd
/ rcho7revised71cho7 =2nd/ -5in 2 &afu n2 (5)
m2λ2=2nd/-s+n2 a/nz(6
)m +'λ+'=2nd/v -3ln2 b/
n2 (7) m 2'λ2'=2nd/-5i
n 2 /n 2 (8) N=lIl+m2 From equations (9) and (10), the following equation is obtained.

(11)式よりn以外は既知であるので、nが求まる。From equation (11), since everything other than n is known, n can be found.

今、簡単のためθa=Qのときを考えると、となる。右
辺は測定等で求まるので、これより屈折率nの値を求め
、(3)、(4)式等より膜厚dが求まる。
Now, for the sake of simplicity, consider the case when θa=Q. Since the right side can be determined by measurement or the like, the value of the refractive index n is determined from this, and the film thickness d is determined from equations (3), (4), etc.

このように、被測定対象4の屈折率nが不明でおっても
容易にその屈折率nを求めることができ、膜厚dの測定
が可能となる。
In this way, even if the refractive index n of the object to be measured 4 is unknown, the refractive index n can be easily determined, and the film thickness d can be measured.

また、光源1a、1b、検出部14a 、14bとして
、各々の同一のものを用い、あらかじめ測定前に適当な
移動手段で角度を変えて測定し、実際の測定時は、たと
えば垂直方法から測定するようにしてもよい。
In addition, the same light sources 1a and 1b and the detection units 14a and 14b are used, and the measurement is performed by changing the angle using an appropriate moving means before measurement, and during actual measurement, for example, the measurement is performed from a vertical method. You can do it like this.

なお、第3図A、Bで示すように、被測定対象避けるた
め、極大値と極小(直との差が所定の(直以上のときの
極値についての出力から上記のように膜厚を測定するよ
うにする。このことにより、不確実で、弱い干渉縞を拾
うことなく、強い確実な干渉縞から被測定対象4の膜厚
dを測定できる。
In addition, as shown in Figure 3A and B, in order to avoid measuring objects, the film thickness is calculated as described above from the output for the extreme value when the difference between the maximum value and the minimum value is greater than or equal to a predetermined value. Thereby, the film thickness d of the object to be measured 4 can be measured from strong and reliable interference fringes without picking up uncertain and weak interference fringes.

また、検出器11に電荷蓄積型躍像素子CCDのような
イメージセンサを用いると、被測定対象4が移動してい
て、その厚さ等がずれると、やや異った干渉縞パターン
が検出器11の各素子に一走査周期内に入射して合成さ
れ、全体としてコントラストが悪くなる。
Furthermore, if an image sensor such as a charge storage type dynamic image sensor CCD is used as the detector 11, if the object to be measured 4 moves and its thickness etc. deviate, a slightly different interference fringe pattern will appear on the detector. The light enters each of the 11 elements within one scanning period and is synthesized, resulting in poor contrast as a whole.

このため、モータによりセクタが回転するチョッパのよ
うなシャッタ手段7により入射光を断続して1回の測定
時間を制限し、検出器11への入射光の変動の影響を少
くし、干渉縞のコントラストが悪くなるのを防止し、測
定を確実なものとする。
For this reason, the incident light is intermittent by a shutter means 7 such as a chopper whose sectors are rotated by a motor to limit the time for one measurement, thereby reducing the influence of fluctuations in the incident light on the detector 11 and reducing interference fringes. To prevent deterioration of contrast and ensure reliable measurement.

[発明の効果] いるので、屈折率の補正を自動的に行うことができ、被
測定対象の種類、屈折率が変わっても常に正確な膜厚測
定が可能となる。特に干渉の次数については任意にとる
ことができるので、屈折率の算出が確実となる。
[Effects of the Invention] Since the refractive index can be corrected automatically, accurate film thickness measurement is always possible even if the type of the object to be measured or the refractive index changes. In particular, since the order of interference can be set arbitrarily, the refractive index can be calculated reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第4図は、この発明の一実施例を示す
考成説明図、第3図は、干渉縞の説明図である。
FIG. 1, FIG. 2, and FIG. 4 are explanatory views showing an embodiment of the present invention, and FIG. 3 is an explanatory view of interference fringes.

Claims (1)

【特許請求の範囲】[Claims] 1、被測定対象の測定位置の法線に対し少くとも2個以
上の角度で投光する光源と、この光源の2個以上の角度
の投光についての測定対象からの透過光または反射光を
分光手段で分光し、干渉縞を検出する検出器と、この検
出器の2個以上の角度についての各干渉縞パターンの最
大値または最小値を与える波長のうち測定領域の最大波
長および最小波長とそれらの間の極値の数から所定の演
算を行って被測定対象の屈折率を求め、この屈折率から
被測定対象の膜厚を求める演算手段とを備えたことを特
徴とする膜厚測定装置。
1. A light source that emits light at at least two or more angles with respect to the normal to the measurement position of the object to be measured, and the transmitted or reflected light from the object to be measured for the light emitted from this light source at two or more angles. A detector that performs spectroscopy using a spectroscopic means and detects interference fringes; Film thickness measurement characterized by comprising: calculation means for calculating the refractive index of the object to be measured by performing a predetermined calculation from the number of extreme values between them, and calculating the film thickness of the object to be measured from this refractive index. Device.
JP19615086A 1986-08-21 1986-08-21 Apparatus for measuring film thickness Granted JPS6350706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19615086A JPS6350706A (en) 1986-08-21 1986-08-21 Apparatus for measuring film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19615086A JPS6350706A (en) 1986-08-21 1986-08-21 Apparatus for measuring film thickness

Publications (2)

Publication Number Publication Date
JPS6350706A true JPS6350706A (en) 1988-03-03
JPH0466285B2 JPH0466285B2 (en) 1992-10-22

Family

ID=16353041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19615086A Granted JPS6350706A (en) 1986-08-21 1986-08-21 Apparatus for measuring film thickness

Country Status (1)

Country Link
JP (1) JPS6350706A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838169A (en) * 1971-09-16 1973-06-05
JPS6176905A (en) * 1984-09-21 1986-04-19 Oak Seisakusho:Kk Method for measuring film thickness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838169A (en) * 1971-09-16 1973-06-05
JPS6176905A (en) * 1984-09-21 1986-04-19 Oak Seisakusho:Kk Method for measuring film thickness

Also Published As

Publication number Publication date
JPH0466285B2 (en) 1992-10-22

Similar Documents

Publication Publication Date Title
AU2014202103B2 (en) Apparatus For Detecting A 3D Structure Of An Object
JPS6021783Y2 (en) Light wavelength measuring device
US5193120A (en) Machine vision three dimensional profiling system
US7787132B2 (en) Method and arrangement for a rapid and robust chromatic confocal 3D measurement technique
JPH0330802B2 (en)
GB2033079A (en) Infrared interference type film thickness measuring method and instrument
KR940016660A (en) Thin Film Thickness Measurement Apparatus and Method
JPH10325874A (en) Speed measuring method based on laser doppler principle
US20040190001A1 (en) Three dimensional imaging by projecting interference fringes and evaluating absolute phase mapping
CN107942339B (en) Photon counting laser interference distance measuring method
JPS6350706A (en) Apparatus for measuring film thickness
JPS6350703A (en) Apparatus for measuring film thickness
JPS6350704A (en) Apparatus for measuring film thickness
JPS6350705A (en) Apparatus for measuring film thickness
JPH0429364Y2 (en)
JP2595050B2 (en) Small angle measuring device
JP5208681B2 (en) Calibration method of measurement sensitivity in oblique incidence interferometer
JPS63109304A (en) Apparatus for measuring thickness of film
JP3192461B2 (en) Optical measuring device
JP2022112872A (en) Distance measuring device and method
JPS63163104A (en) Apparatus for measuring thickness of film
JPS63305228A (en) Radiation thermometer
JPH0742084Y2 (en) Surface shape measuring instrument
JPS63309804A (en) Laser interference measuring method
SU808835A1 (en) Interferential transducer for measuring rotation angle of an object