JPH0742084Y2 - Surface shape measuring instrument - Google Patents

Surface shape measuring instrument

Info

Publication number
JPH0742084Y2
JPH0742084Y2 JP10005590U JP10005590U JPH0742084Y2 JP H0742084 Y2 JPH0742084 Y2 JP H0742084Y2 JP 10005590 U JP10005590 U JP 10005590U JP 10005590 U JP10005590 U JP 10005590U JP H0742084 Y2 JPH0742084 Y2 JP H0742084Y2
Authority
JP
Japan
Prior art keywords
light
interference
measuring
order diffracted
acousto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10005590U
Other languages
Japanese (ja)
Other versions
JPH0457706U (en
Inventor
克巳 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP10005590U priority Critical patent/JPH0742084Y2/en
Publication of JPH0457706U publication Critical patent/JPH0457706U/ja
Application granted granted Critical
Publication of JPH0742084Y2 publication Critical patent/JPH0742084Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、物体の表面形状を測定する表面形状測定器に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a surface shape measuring instrument for measuring the surface shape of an object.

〈従来の技術〉 このような表面形状測定器の一例として、発光スペクト
ル幅が広く連続的な白色光源と測定用干渉計部および分
光用回折格子とフォトダイオードアレイおよび演算処理
部で構成された装置がある。この装置では、白色光源か
らの幅広なスペクトルに対する測定用干渉計部からの干
渉信号を回折格子で分光して、フォトダイオードアレイ
で検出し、演算処理部で演算することにより、アブソリ
ュートな測定を可能としている。
<Prior Art> As an example of such a surface shape measuring instrument, an apparatus including a continuous white light source having a wide emission spectrum width, a measuring interferometer section, a spectral diffraction grating, a photodiode array, and an arithmetic processing section. There is. In this device, the interference signal from the interferometer unit for measurement with respect to the wide spectrum from the white light source is dispersed by the diffraction grating, detected by the photodiode array, and calculated by the calculation processing unit, which enables absolute measurement. I am trying.

〈考案が解決しようとする課題〉 しかしながら、上記のような表面形状測定器では、スペ
クトラムの利得特性の補正を行うために、次のような課
題がある。
<Problems to be Solved by the Invention> However, the surface profile measuring instrument as described above has the following problems in order to correct the gain characteristic of the spectrum.

・各波長ごとに入力光のパワースペクトラム等を測定し
たり、相互相関を計算する必要があるため、測定時間や
演算時間が長くなり、高速測定が困難である。
-Since it is necessary to measure the power spectrum of the input light for each wavelength and calculate the cross-correlation, the measurement time and calculation time become long, and high-speed measurement is difficult.

・入力光のパワースペクトラム等の測定はシリアルに行
うため、振動や空気屈折率のゆらぎ等の比較的速いノイ
ズ成分をキャンセルすることができず、高精度測定が難
しい。
-Because the power spectrum of the input light is measured serially, relatively fast noise components such as vibration and fluctuations in the air refractive index cannot be canceled, making high-precision measurement difficult.

本考案は上記従来技術の課題を踏まえて成されたもので
あり、高速および高精度測定を可能とし、アブソリュー
ト値の測定が可能な表面形状測定器を提供することを目
的としたものである。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a surface profile measuring instrument capable of high-speed and high-accuracy measurement and capable of measuring an absolute value.

〈課題を解決するための手段〉 上記課題を解決するための本考案の構成は、光の干渉を
利用して物体の表面形状を測定する表面形状測定器であ
って、スペクトル線幅の広い白色光を出射する光源と、
この光源からの出射光が入射される分光用の音響光学素
子と、この音響光学素子により回折された1次回折光お
よび2次回折光が入射するピンホールとから成る波長可
変光源部と、前記ピンホールを通過した1次回折光が入
射される測定用干渉計部と、この測定用干渉計部からの
測定用干渉光を受光する第1の検出部と、前記ピンホー
ルを通過した2次回折光を受光する第2の検出部と、こ
の第2の検出部からの出力信号と前記第1の検出部から
の干渉信号との比をとる割算器と、この割算器の出力を
受けて前記物体の表面形状に対応する干渉位相と形状を
測定する干渉位相測定器とを備え、前記光源からのスペ
クトル線幅の広い白色光を前記音響光学素子で分光し、
1次回折光は測定用干渉光として、また2次回折光はパ
ワーモニタとして使用し、両者の比を前記割算器でとる
ことにより、強度変化の影響を除去するようにしたこと
を特徴とするものである。
<Means for Solving the Problems> The structure of the present invention for solving the above problems is a surface shape measuring instrument that measures the surface shape of an object by utilizing the interference of light, and has a wide spectral line width of white. A light source that emits light,
A wavelength tunable light source unit including a spectroscopic acousto-optic element on which light emitted from the light source is incident, and a pinhole into which the first-order diffracted light and the second-order diffracted light diffracted by the acousto-optic element are incident, and the pinhole. Measuring interferometer section on which the first-order diffracted light that has passed through is incident, a first detecting section that receives the measuring interfering light from the measuring interferometer section, and second-order diffracted light that has passed through the pinhole. And a divider for taking a ratio of the output signal from the second detector and the interference signal from the first detector, and the object receiving the output of the divider. An interference phase measuring device for measuring an interference phase and a shape corresponding to the surface shape of the white light having a wide spectral line width from the light source is dispersed by the acousto-optic device,
The first-order diffracted light is used as a measuring interference light, the second-order diffracted light is used as a power monitor, and the ratio of the two is used by the divider to remove the influence of the intensity change. Is.

〈作用〉 本考案によれば、分光器として音響光学素子を使用し、
1次回折光を測定光に、2次回折光をパワーモニタとし
て使用することにより、実時間でパワー変動の補正を可
能にできる。
<Operation> According to the present invention, an acousto-optic device is used as a spectroscope,
By using the first-order diffracted light as the measurement light and the second-order diffracted light as the power monitor, the power fluctuation can be corrected in real time.

〈実施例〉 以下、本考案を図面に基づいて説明する。<Example> Hereinafter, the present invention will be described with reference to the drawings.

第1図は本考案の表面形状測定器の一実施例を示す構成
図である。第1図において、1は波長可変光源部であ
り、その構成は、スペクトル線幅の広い白色光を出射す
る光源11(例えばLEDやSLDやキセノンランプやハロゲン
ランプ等)と、この光源11の駆動部12と、空間的コヒー
レンスを得るためのファイバ13と、分光用の音響光学素
子14と、この音響光学素子14を駆動し、その駆動周波数
を可変することが可能な駆動部15と、音響光学素子14で
回折された光が通過するピンホール16とで構成される。
2はマイケルソン型の測定用干渉計部であり、ピンホー
ル16を通過した1次回折光を2つに分岐するハーフミラ
ー21と、参照光用ミラー22と、測定光を集光させるため
の集光レンズ23と、測定対称24と、この測定対象24を移
動させるためのステージ25とで構成される。3は測定用
干渉計部2からの測定用干渉光を受光するフォトダイオ
ード(以下、単にPDという)、4はピンホール16を通過
した2次回折光を受光するPD、5はPD3,4からの出力信
号の比をとる割算器、6は割算器5の出力を受けて測定
対称24に対応する干渉位相と形状を測定する干渉位相測
定器である。
FIG. 1 is a block diagram showing an embodiment of the surface profile measuring instrument of the present invention. In FIG. 1, reference numeral 1 denotes a wavelength variable light source unit, and its configuration is a light source 11 (for example, LED, SLD, xenon lamp, halogen lamp, etc.) that emits white light with a wide spectral line width, and driving of this light source 11. Section 12, fiber 13 for obtaining spatial coherence, acousto-optic element 14 for spectroscopy, drive section 15 that can drive this acousto-optic element 14 and change its drive frequency, and acousto-optic A pinhole 16 through which the light diffracted by the element 14 passes.
Reference numeral 2 denotes a Michelson-type measuring interferometer unit, which includes a half mirror 21 that splits the first-order diffracted light that has passed through the pinhole 16 into two, a reference-light mirror 22, and a collector for collecting the measurement light. It is composed of an optical lens 23, a measurement symmetry 24, and a stage 25 for moving the measurement object 24. 3 is a photodiode for receiving the measurement interference light from the measurement interferometer unit 2 (hereinafter, simply referred to as PD), 4 is a PD for receiving the second-order diffracted light that has passed through the pinhole 16, and 5 is a PD 3 or 4 A divider for taking the ratio of the output signals, and 6 is an interference phase measuring instrument for receiving the output of the divider 5 and measuring the interference phase and shape corresponding to the measurement symmetry 24.

このような構成において、本考案の装置は、基本的には
FM変調方式を利用したアブソリュートな表面形状測定器
であり、光源周波数を連続的に可変した時の干渉位相の
変化を測定し、次式で表される L=(Δθ/2π)(c/Δf) ただし、 c :高速 Δθ :干渉位相 Δf :周波数可変幅 から距離Lを求めて、測定対称24が設置されたステージ
25を走査することで、測定対称24の表面形状を求めてい
る。
In such a configuration, the device of the present invention is basically
This is an absolute surface profile measuring instrument that uses the FM modulation method. It measures the change of the interference phase when the light source frequency is continuously changed, and is expressed by the following formula: L = (Δθ / 2π) (c / Δf ) However, c: High speed Δθ: Interference phase Δf: Frequency L is calculated from the distance L, and the stage where the measurement symmetry 24 is installed
The surface shape of the measurement symmetry 24 is obtained by scanning 25.

光源11から出射された光は、空間的コヒーレンスを得る
ためファイバ13に入射され、分光用の音響光学素子14に
導かれる。この音響光学素子14は駆動部15で駆動され、
その駆動周波数は可変することが可能である。音響光学
素子14で回折された1次回折光は、ピンホール16を通し
て測定用干渉計部2に導かれる。又、音響光学素子14で
回折された2次回折光は、ピンホール16を通してPD4で
パワーモニタとして受光される。測定用干渉計部2に入
射された光は、ハーフミラー21で2つに分岐される。参
照光は参照光用ミラー22で反射され、ハーフミラー21を
通過してPD3へ入射する。測定光は集光レンズ23により
ステージ25上の測定対称24に集光され、その反射光は同
一経路を経てハーフミラー21で反射され、PD3に入射さ
れ、PD3上で参照光と干渉する。PD3で得られた干渉信号
とPD4の出力信号は割算器5に入射されて、両者の比が
とられてパワー変動の影響が排除され、干渉位相測定器
6で測定対称24に対応する干渉位相と形状が測定され
る。
The light emitted from the light source 11 is incident on the fiber 13 in order to obtain spatial coherence, and is guided to the acousto-optic element 14 for spectroscopy. This acousto-optic element 14 is driven by the drive unit 15,
The drive frequency can be changed. The first-order diffracted light diffracted by the acousto-optic element 14 is guided to the measuring interferometer unit 2 through the pinhole 16. The second-order diffracted light diffracted by the acousto-optic element 14 is received by the PD 4 as a power monitor through the pinhole 16. The light incident on the measuring interferometer unit 2 is split into two by the half mirror 21. The reference light is reflected by the reference light mirror 22, passes through the half mirror 21, and enters the PD 3. The measurement light is condensed on the measurement symmetry 24 on the stage 25 by the condenser lens 23, and the reflected light is reflected by the half mirror 21 through the same path and is incident on PD3, and interferes with the reference light on PD3. The interference signal obtained by PD3 and the output signal of PD4 are made incident on the divider 5, the ratio between them is taken out, the influence of power fluctuation is eliminated, and the interference corresponding to the symmetry 24 is measured by the interference phase measuring device 6. Phase and shape are measured.

ここで、本考案の特徴は、スペクトル線幅の広い白色光
を出射する光源11と分光用の音響光学素子14およびピン
ホール16から成る波長可変光源部1と、この波長可変光
源部1のパワー変動の影響を補正できる構成とした点で
ある。以下に、この機能および動作を図面に基づいて説
明する。
Here, the feature of the present invention is that a wavelength tunable light source unit 1 including a light source 11 that emits white light with a wide spectral line width, an acousto-optic device 14 for spectroscopy, and a pinhole 16, and the power of the wavelength tunable light source unit 1 is used. The point is that the influence of fluctuations can be corrected. The function and operation will be described below with reference to the drawings.

波長可変光源部1について この波長可変光源部1では、音響光学素子14の回折角
は、入射する光の波長λと超音波の周波数faで変化す
る。したがって、音響光学素子14に第2図(イ)に示す
ようなスペクトル線幅の広い白色光を入射すると、波長
によって回折角が異なるため、第2図(ロ)に示すよう
な回折角によって波長の異なる分光出力が得られる。こ
の出力の一部をピンホール16で切り取って使用すれば、
所望の波長の光が得られる。なお、スペクトル線幅はピ
ンホール16の径で決まる。次に、音響光学素子14を駆動
する駆動部15の超音波の周波数を可変すれば、第2図
(ハ)に示すように回折角が変化し、選択する光の波長
が変化する。したがって、駆動部15の超音波の周波数を
可変することにより、光の波長を連続的に広範囲に渡っ
て電気的に可変することができる。
Regarding the wavelength tunable light source unit 1, in the wavelength tunable light source unit 1, the diffraction angle of the acousto-optic element 14 changes depending on the wavelength λ of the incident light and the frequency fa of the ultrasonic wave. Therefore, when white light with a wide spectral line width as shown in FIG. 2 (a) is incident on the acousto-optic element 14, the diffraction angle varies depending on the wavelength. Different spectral outputs of are obtained. If you cut out a part of this output with pinhole 16 and use it,
Light having a desired wavelength is obtained. The spectral line width is determined by the diameter of the pinhole 16. Next, if the frequency of the ultrasonic wave of the drive unit 15 that drives the acousto-optic device 14 is changed, the diffraction angle changes as shown in FIG. 2C, and the wavelength of the selected light changes. Therefore, by changing the frequency of the ultrasonic waves of the drive unit 15, the wavelength of light can be continuously and electrically changed over a wide range.

パワー変動の影響の補正について 白色光の分光強度は、第2図(イ)に示すように、一定
でないため、得られるFM干渉波の振幅は、第3図(イ)
に示すように、変調を受けてしまい、位相を正確に測定
するのはむずかしい。これに対して、第3図(ロ)に示
す2次回折光を出射光強度のモニタとして使用し、干渉
光との比をとることにより、パワー変動の影響を補正し
ている。(第3図(ハ)) このようにして、波長可変光源部1により、広い範囲に
渡って光の波長を電気的に連続的に可変でき、又、分光
器として音響光学素子を使用して、1次回折光を測定
光、2次回折光をパワーモニタとして使用することによ
り、実時間でパワー変動の補正を可能とできるため、高
速で高精度な測定を可能とできる。
Correction of the influence of power fluctuation Since the spectral intensity of white light is not constant as shown in Fig. 2 (a), the amplitude of the obtained FM interference wave is shown in Fig. 3 (a).
As shown in, it is difficult to measure the phase accurately due to the modulation. On the other hand, the influence of the power fluctuation is corrected by using the second-order diffracted light shown in FIG. 3B as a monitor of the intensity of emitted light and taking the ratio with the interference light. (FIG. 3 (c)) In this way, the wavelength variable light source unit 1 can electrically and continuously change the wavelength of light over a wide range, and an acousto-optical element is used as a spectroscope. By using the first-order diffracted light as the measurement light and the second-order diffracted light as the power monitor, it is possible to correct the power fluctuation in real time, so that high-speed and highly accurate measurement can be performed.

第4図は本考案の表面形状測定器の他の実施例を示す構
成図である。なお、第4図において第1図と同一要素に
は同一符号を付して重複する説明は省略する。第4図に
おいて、26は偏光ビームスプリッタ、27,28は1/4波長
板、7は偏光板である。この実施例は、光の偏光を利用
したものであり、光のパワーを有効に利用した偏光干渉
法である。光源から出射されたスペクトル線幅の広い白
色光は、偏光ビームスプリッタ26で各偏光方向に分離さ
れ、一方は参照光用ミラー22で反射され、他方は測定対
称物24で反射されて偏光ビームスプリッタ26に戻るが、
両光路とも1/4波長板27,28を2回通過するため、偏光が
変換されて、全て音響光学素子14に入射されるため、第
1図装置に比べ、よりパワーが有効に使用されることに
なる。
FIG. 4 is a block diagram showing another embodiment of the surface profile measuring instrument of the present invention. Note that in FIG. 4, the same elements as those in FIG. In FIG. 4, 26 is a polarization beam splitter, 27 and 28 are quarter-wave plates, and 7 is a polarizing plate. This embodiment uses the polarization of light and is a polarization interference method that effectively uses the power of light. The white light with a wide spectral line width emitted from the light source is separated by the polarization beam splitter 26 in each polarization direction, one of which is reflected by the reference light mirror 22 and the other of which is reflected by the measurement symmetry object 24 and the polarization beam splitter. Returning to 26,
Since both optical paths pass through the quarter-wave plates 27 and 28 twice, the polarized light is converted and all incident on the acousto-optic element 14, so that the power is used more effectively than the device in FIG. It will be.

又、干渉光強度を検出するPD3の代りにPDアレイやCCDカ
メラを用いた構成とすることにより、2次元情報も取り
込めるため、ステージ25が不要となり、機械的な可動部
が無くなるため、さらに高速測定を可能にできる。
In addition, by using a PD array or CCD camera instead of PD3 that detects the intensity of coherent light, two-dimensional information can be captured, so stage 25 is not required, and mechanical moving parts are eliminated. Can enable measurement.

〈考案の効果〉 以上、実施例と共に具体的に説明したように、本考案に
よれば、音響光学素子と白色光からなる光源を使用して
いるため、数百ナノメートルという広い範囲にわたって
光の波長を連続的に可変でき、高精度なアブソリュート
測定を可能とした。又、電気的に可変ができるため、高
速測定も可能である等の効果を有する表面形状測定器を
実現できる。
<Effects of the Invention> As described above in detail with the embodiments, according to the present invention, since the light source composed of the acousto-optic device and the white light is used, the light of a wide range of several hundreds of nanometers is used. The wavelength can be changed continuously, enabling highly accurate absolute measurement. Further, since it can be electrically changed, it is possible to realize a surface shape measuring instrument having effects such as high-speed measurement.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の表面形状測定器の一実施例を示す構成
図、第2図は第1図装置に用いられる光源の分光特性お
よび音響光学素子の出力を示す図、第3図はパワー変動
の影響の補正動作を示す図、第4図は本考案の表面形状
測定器の他の実施例を示す図である。 1……波長可変光源部、2……測定用干渉計部、3,4…
…検出部、5……割算器、6……干渉位相測定器、11…
…スペクトル線幅の広い白色光を出射する光源、12……
光源11の駆動部、13……ファイバ、14……分光用音響光
学素子、15……音響光学素子14の駆動部、16……ピンホ
ール、21……ハーフミラー、22……参照光用ミラー、23
……集光レンズ、24……測定対称、25……ステージ。
FIG. 1 is a block diagram showing an embodiment of the surface shape measuring instrument of the present invention, FIG. 2 is a diagram showing the spectral characteristics of a light source and the output of an acousto-optic device used in the apparatus of FIG. 1, and FIG. FIG. 4 is a diagram showing a correcting operation for the influence of fluctuation, and FIG. 4 is a diagram showing another embodiment of the surface profile measuring instrument of the present invention. 1 ... Wavelength variable light source section, 2 ... Measurement interferometer section, 3, 4 ...
… Detector, 5 …… Divider, 6 …… Interference phase measurer, 11…
… A light source that emits white light with a wide spectral line, 12 ……
Driving part of light source 11, 13 ... Fiber, 14 ... Acousto-optic element for spectroscopy, 15 ... Driving part of acousto-optic element 16, 16 ... Pinhole, 21 ... Half mirror, 22 ... Reference light mirror ,twenty three
...... Condensing lens, 24 …… Measurement symmetry, 25 …… Stage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】光の干渉を利用して物体の表面形状を測定
する表面形状測定器であって、 スペクトル線幅の広い白色光を出射する光源と、この光
源からの出射光が入射される分光用の音響光学素子と、
この音響光学素子により回折された1次回折光および2
次回折光が入射するピンホールとから成る波長可変光源
部と、 前記ピンホールを通過した1次回折光が入射される測定
用干渉計部と、 この測定用干渉計部からの測定用干渉光を受光する第1
の検出部と、 前記ピンホールを通過した2次回折光を受光する第2の
検出部と、 この第2の検出部からの出力信号と前記第1の検出部か
らの干渉信号との比をとる割算器と、 この割算器の出力を受けて前記物体の表面形状に対応す
る干渉位相と形状を測定する干渉位相測定器とを備え、 前記光源からのスペクトル線幅の広い白色光を前記音響
光学素子で分光し、1次回折光は測定用干渉光として、
また2次回折光はパワーモニタとして使用し、両者の比
を前記割算器でとることにより、強度変化の影響を除去
するようにしたことを特徴とする表面形状測定器。
1. A surface shape measuring instrument for measuring the surface shape of an object by utilizing the interference of light, comprising a light source for emitting white light having a wide spectral line width, and light emitted from this light source. An acousto-optic element for spectroscopy,
1st-order diffracted light and 2 diffracted by this acousto-optic element
A variable wavelength light source unit including a pinhole into which the secondary diffracted light enters, a measuring interferometer unit into which the first-order diffracted light passing through the pinhole enters, and the measuring interference light from the measuring interferometer unit are received. First to do
Detection unit, a second detection unit that receives the second-order diffracted light that has passed through the pinhole, and a ratio of the output signal from the second detection unit and the interference signal from the first detection unit. A divider and an interference phase measuring device that receives an output of the divider and measures an interference phase and a shape corresponding to the surface shape of the object, and obtains white light with a wide spectral line width from the light source. The light is split by an acousto-optic device, and the first-order diffracted light is measured as interference light
The surface shape measuring instrument is characterized in that the second-order diffracted light is used as a power monitor and the ratio of the two is taken by the divider to eliminate the influence of the intensity change.
JP10005590U 1990-09-25 1990-09-25 Surface shape measuring instrument Expired - Fee Related JPH0742084Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10005590U JPH0742084Y2 (en) 1990-09-25 1990-09-25 Surface shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10005590U JPH0742084Y2 (en) 1990-09-25 1990-09-25 Surface shape measuring instrument

Publications (2)

Publication Number Publication Date
JPH0457706U JPH0457706U (en) 1992-05-18
JPH0742084Y2 true JPH0742084Y2 (en) 1995-09-27

Family

ID=31842414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10005590U Expired - Fee Related JPH0742084Y2 (en) 1990-09-25 1990-09-25 Surface shape measuring instrument

Country Status (1)

Country Link
JP (1) JPH0742084Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5924166B2 (en) * 2012-07-09 2016-05-25 株式会社島津製作所 Tunable monochromatic light source

Also Published As

Publication number Publication date
JPH0457706U (en) 1992-05-18

Similar Documents

Publication Publication Date Title
JP2553276B2 (en) Three-wavelength optical measuring device and method
JP5265918B2 (en) Optical feedback from mode select tuner
JPH0198902A (en) Light wave interference length measuring instrument
JPS63502778A (en) Optoelectronic detection device for remote detection of physical quantities
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
JPS61202128A (en) Semiconductor laser heterodyne interferometer
JP2009025245A (en) Device for observing optical interference
KR20130039005A (en) Three dimensional depth and shape measuring device
JP2004144581A (en) Displacement detecting apparatus
US20170241766A1 (en) System for analyzing optical properties of an object
KR101987402B1 (en) Optical measuring system for thicknesses of thin and thick films and 3D surface profile using a polarized pixel array
KR101251292B1 (en) Three dimensional shape and depth measuring device using polarized light
JP2732849B2 (en) Interferometer
US20140160490A1 (en) Interference measuring apparatus and interference measuring method
JP2007132727A (en) Interference measuring apparatus
JP2002333371A (en) Wavemeter
JPH0742084Y2 (en) Surface shape measuring instrument
CN113804646B (en) Near infrared Fourier transform polarization spectrometer
JPH07190712A (en) Interferometer
US6816264B1 (en) Systems and methods for amplified optical metrology
RU2085843C1 (en) Optical roughness indicator
JP3634327B2 (en) Optical chromatic dispersion spatial coherence tomographic imaging system
RU2085840C1 (en) Optical roughness indicator
JPS61501876A (en) Sample signal generator and method for interferogram
JPS6350703A (en) Apparatus for measuring film thickness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370