JP2009025245A - Device for observing optical interference - Google Patents

Device for observing optical interference Download PDF

Info

Publication number
JP2009025245A
JP2009025245A JP2007191190A JP2007191190A JP2009025245A JP 2009025245 A JP2009025245 A JP 2009025245A JP 2007191190 A JP2007191190 A JP 2007191190A JP 2007191190 A JP2007191190 A JP 2007191190A JP 2009025245 A JP2009025245 A JP 2009025245A
Authority
JP
Japan
Prior art keywords
light
optical system
interference
optical
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007191190A
Other languages
Japanese (ja)
Inventor
Motonobu Korogi
元伸 興梠
Kazuhiro Imai
一宏 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Comb Inc
Original Assignee
Optical Comb Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Comb Inc filed Critical Optical Comb Inc
Priority to JP2007191190A priority Critical patent/JP2009025245A/en
Publication of JP2009025245A publication Critical patent/JP2009025245A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • G01B9/02008Two or more frequencies or sources used for interferometric measurement by using a frequency comb

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for observing optical interference capable of detecting frequency axis information. <P>SOLUTION: In an interference optical system 20, an optical frequency comb generated by an optical frequency comb generator 20 from laser light emitted from a laser light source 10 is divided into reference light and measurement light to enter them into a reference optical system 40 and a measurement optical system 50; interference light Pc of reference light Pa and measurement light Pb is generated which are returned respectively from the reference optical system 40 and the measurement optical system 50; light spectrum contained in the interference light Pc generated by the interference optical system 20 is separated by a spectrometer 60 and each the light spectrum is detected by a photodetector array 70; outputs of each the spectrum detected by the photodetector array 70 are supplied to a signal processor 80. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被測定面に照射した測定光の該被測定面による反射光と参照面に照射した参照光の該参照面による反射光との干渉光を検出して上記被測定面を観測する光干渉観測装置に関する。   The present invention observes the surface to be measured by detecting interference light between the reflected light of the measurement light irradiated on the surface to be measured and the reflected light of the reference light irradiated on the reference surface by the reference surface. The present invention relates to an optical interference observation apparatus.

医療分野等で用いられる非破壊断層計測技術の1つとして、時間的に低コヒーレンスな光をプローブ(探針)として用いる光断層画像化法「光コヒーレンストモグラフィー」(OCT:Optical Coherence Tomography)が知られている。OCTは、光を計測プローブとして用いるため、被計測物体の屈折率分布、分光情報、偏光情報(複屈折率分布)等が計測できるという利点がある(例えば、特許文献1参照)。   As one of the non-destructive tomographic techniques used in the medical field, etc., optical coherence tomography (OCT: Optical Coherence Tomography) that uses temporally low coherence light as a probe is known. It has been. Since OCT uses light as a measurement probe, OCT has an advantage that it can measure the refractive index distribution, spectral information, polarization information (birefringence distribution), etc. of the object to be measured (see, for example, Patent Document 1).

OCT800は、マイケルソン干渉計を基本としており、その原理を図12に示す。   The OCT 800 is based on a Michelson interferometer, and its principle is shown in FIG.

光源801から射出された光は、コリメートレンズ802で平行化された後に、ビームスプリッタ803により参照光と物体光に分割される。物体光は、物体アーム内の対物レンズ804によって被計測物体805に集光され、そこで散乱・反射された後に再び対物レンズ804、ビームスプリッタ803に戻る。   The light emitted from the light source 801 is collimated by a collimator lens 802 and then split into reference light and object light by a beam splitter 803. The object light is condensed on the measurement object 805 by the objective lens 804 in the object arm, scattered and reflected there, and then returns to the objective lens 804 and the beam splitter 803 again.

一方、参照光は参照アーム内の対物レンズ806を通過した後に参照鏡807によって反射され、再び対物レンズ806を通してビームスプリッタ803に戻る。このようにビームスプリッタ803に戻った物体光と参照光は、物体光とともに集光レンズ808に入射し光検出器809(フォトダイオード等)に集光される。   On the other hand, the reference light is reflected by the reference mirror 807 after passing through the objective lens 806 in the reference arm, and returns to the beam splitter 803 through the objective lens 806 again. Thus, the object light and the reference light that have returned to the beam splitter 803 are incident on the condenser lens 808 together with the object light, and are collected on the photodetector 809 (a photodiode or the like).

OCT800の光源801は、時間的に低コヒーレンスな光(異なった時刻に光源から出た光同士は極めて干渉しにくい光)の光源を利用する。時間的低コヒーレンス光を光源としたマイケルソン型の干渉計では、参照アームと物体アームの距離がほぼ等しいときにのみ干渉信号が現れる。この結果、参照アームと物体アームの光路長差(τ)を変化させながら、光検出器809で干渉信号の強度を計測すると、光路長差に対する干渉信号(インターフェログラム)が得られる。   The light source 801 of the OCT 800 uses a light source of temporally low coherence light (light emitted from the light source at different times is extremely difficult to interfere). In a Michelson interferometer using temporally low coherence light as a light source, an interference signal appears only when the distance between the reference arm and the object arm is approximately equal. As a result, when the intensity of the interference signal is measured by the photodetector 809 while changing the optical path length difference (τ) between the reference arm and the object arm, an interference signal (interferogram) for the optical path length difference is obtained.

そのインターフェログラムの形状が、被計測物体805の奥行き方向の反射率分布を示しており、1次元の軸方向走査により被計測物体805の奥行き方向の構造を得ることができる。このように、OCT800では、光路長走査により、被計測物体805の奥行き方向の構造を計測できる。   The shape of the interferogram shows the reflectance distribution in the depth direction of the measured object 805, and the structure in the depth direction of the measured object 805 can be obtained by one-dimensional axial scanning. Thus, in the OCT 800, the structure in the depth direction of the measurement object 805 can be measured by optical path length scanning.

このような軸方向の走査のほかに、横方向の機械的走査を加え、2次元の走査を行うことで被計測物体の2次元断面画像が得られる。この横方向の走査を行う走査装置としては、被計測物体を直接移動させる構成、物体は固定したままで対物レンズをシフトさせる構成、被計測物体も対物レンズも固定したままで、対物レンズの瞳面付近においたガルバノミラーの角度を回転させる構成等が用いられている。   In addition to the scanning in the axial direction, a two-dimensional cross-sectional image of the object to be measured can be obtained by performing a two-dimensional scanning by adding a horizontal mechanical scanning. The scanning device that performs the horizontal scanning includes a configuration in which the object to be measured is directly moved, a configuration in which the objective lens is shifted while the object is fixed, and a pupil of the objective lens while the object to be measured and the objective lens are fixed. The structure etc. which rotate the angle of the galvanometer mirror in the surface vicinity are used.

以上の基本的なOCTが発展したものとして、光源の波長を走査してスペクトル干渉信号を得る波長走査型OCTと、分光器を用いてスペクトル信号を得るスペクトルドメインOCTがあり、後者としてフーリエドメインOCTがある。   The basic OCT has been developed as follows: a wavelength scanning type OCT that obtains a spectral interference signal by scanning the wavelength of a light source, and a spectral domain OCT that obtains a spectral signal using a spectroscope. The latter is a Fourier domain OCT. There is.

波長走査型OCTは、非特許文献1に記されているように、生体に光を照射し、照射光の波長を連続的に変化させ、参照光と生体内の異なる深さから戻ってくる反射光とを干渉計で干渉させ、その干渉信号の周波数成分を分析することによって、断層画像を得るシステムである。この技術は物体内部からの信号の周波数分析から極めて高分解能の断層画像を構築することができるため、高度なシステムとして期待されている。波長走査型OCTは測定感度も高く、動的ノイズに強いという点で内視鏡などの実使用に好適である。ここで照射する光の波長走査の帯域が広いほど周波数分析の帯域が上がるので、深さ方向の分解能が上がる。   As described in Non-Patent Document 1, the wavelength scanning type OCT irradiates a living body with light, continuously changes the wavelength of the irradiation light, and returns from the reference light and a different depth in the living body. This system obtains a tomographic image by causing light to interfere with an interferometer and analyzing the frequency component of the interference signal. This technology is expected as an advanced system because it can construct a tomographic image with extremely high resolution from frequency analysis of signals from inside the object. The wavelength scanning type OCT is suitable for practical use such as an endoscope in that it has high measurement sensitivity and is resistant to dynamic noise. Here, the wider the wavelength scanning band of the irradiated light, the higher the frequency analysis band, so that the resolution in the depth direction increases.

フーリエドメインOCTは、被計測物体からの反射光の波長スペクトルを、スペクトロメーター(スペクトル分光器)で取得し、このスペクトル強度分布に対してフーリエ変換することで、実空間(OCT信号空間)上での信号を取り出すことを特徴とするものであり、このフーリエドメインOCTは、奥行き方向の走査を行う必要がなく、x軸方向の走査を行うことで被計測物体の断面構造を計測可能である。   In the Fourier domain OCT, the wavelength spectrum of the reflected light from the object to be measured is acquired with a spectrometer (spectrum spectrometer), and Fourier transform is performed on this spectrum intensity distribution, so that the real space (OCT signal space) is obtained. This Fourier domain OCT does not need to scan in the depth direction, and can measure the cross-sectional structure of the object to be measured by scanning in the x-axis direction.

偏光感受型OCTは、フーリエドメインOCTと同様に、被計測物体からの反射光の波長スペクトルをスペクトル分光器で取得するものであるが、入射光及び参照光をそれぞれ1/2波長板、1/4波長板等を通して水平直線偏光、垂直直線偏光、45°直線偏光、円偏光として、被計測物体からの反射光と参照光を重ねて1/2波長板、1/4波長板等を通して、例えば水平偏光成分だけをスペクトル分光器に入射させて干渉させ、物体光の特定偏光状態をもつ成分だけを取り出してフーリエ変換するものである。この偏光感受型OCTも、奥行き方向の走査を行う必要がない。   Like the Fourier domain OCT, the polarization-sensitive OCT acquires the wavelength spectrum of the reflected light from the object to be measured with a spectrum spectrometer. For example, horizontal linearly polarized light, vertical linearly polarized light, 45 ° linearly polarized light, and circularly polarized light passed through a four-wavelength plate, etc. Only the horizontally polarized component is incident on the spectrum spectrometer to cause interference, and only the component having a specific polarization state of the object light is extracted and subjected to Fourier transform. This polarization sensitive OCT also does not need to be scanned in the depth direction.

特開2007−101365号公報JP 2007-101365 A Handbook of Optical Coherence Tomography,p41-43, Mercel Dekker, Inc. 2002Handbook of Optical Coherence Tomography, p41-43, Mercel Dekker, Inc. 2002

従来のフーリエドメインOCTは、広帯域光源を用い、その出力光を、分光器において回折格子で分光し受光素子でスペクトル干渉信号を得る構成であるが、発光ダイオードのような白色広帯域光源を用いているので、回折格子で分光し受光素子に入射される光周波数の値は分光器の性能や受光素子の配置に依存していた。周波数軸の情報が不正確となるため、スペクトル強度のフーリエ変換で得られる実空間の距離情報の精度を上げることが困難であった。   The conventional Fourier domain OCT uses a broadband light source, and the output light is split by a diffraction grating in a spectroscope and a spectral interference signal is obtained by a light receiving element. However, a white broadband light source such as a light emitting diode is used. Therefore, the value of the optical frequency that is split by the diffraction grating and incident on the light receiving element depends on the performance of the spectrometer and the arrangement of the light receiving elements. Since the information on the frequency axis is inaccurate, it is difficult to improve the accuracy of the distance information in the real space obtained by Fourier transform of the spectrum intensity.

そこで、本発明の目的は、上述の如き問題点に鑑み、周波数軸上の情報または実空間上の絶対距離情報を高精度に検出できる光干渉観測装置を提供することにある。   Accordingly, an object of the present invention is to provide an optical interference observation apparatus that can detect information on the frequency axis or absolute distance information in real space with high accuracy in view of the above-described problems.

本発明の他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。   Other objects of the present invention and specific advantages obtained by the present invention will become more apparent from the description of embodiments described below.

本発明に係る光干渉観測装置は、光周波数コムを発生して出射する光周波数コム発生器と、上記光周波数コム発生器から出射された光周波数コムを参照光と測定光に分割して参照光学系と測定光学系に入射し、上記参照光学系と測定光学系から戻ってくる参照光と測定光の干渉光を発生する干渉光学系と、上記干渉光学系において分割された参照光が入射され、入射された参照光を上記干渉光学系に戻す参照光学系と、上記干渉光学系において分割された測定光が入射され、入射された測定光を被測定面に照射し、上記被測定面で反射された測定光を上記干渉光学系に戻す測定光学系と、上記干渉光学系により発生された干渉光に含まれる光スペクトルを分離する光スペクトル分離手段と、上記光スペクトル分離手段により分離された各光スペクトルを検出する複数の光検出器からなる光検出手段と、上記光検出手段による各光スペクトルの検出出力が供給される信号処理手段とを備えることを特徴とする。   An optical interference observation apparatus according to the present invention generates an optical frequency comb and emits it, and divides the optical frequency comb emitted from the optical frequency comb generator into reference light and measurement light for reference. An interference optical system that enters the optical system and the measurement optical system, generates interference light between the reference light and the measurement optical system that returns from the reference optical system and the measurement optical system, and the reference light that is split in the interference optical system is incident A reference optical system that returns the incident reference light to the interference optical system, and the measurement light divided in the interference optical system is incident, the incident measurement light is irradiated onto the measurement surface, and the measurement surface Is separated by the measurement optical system for returning the measurement light reflected at the interference optical system, the optical spectrum separation means for separating the optical spectrum contained in the interference light generated by the interference optical system, and the optical spectrum separation means. Each light A light detection means comprising a plurality of light detectors for detecting the vector, the detection output of the optical spectrum by the light detecting means; and a signal processing means supplied.

本発明に係る光干渉観測装置において、上記参照光学系は、例えば、入射された参照光を参照面に照射し、上記参照面で反射された参照光を上記干渉光学系に戻す。   In the optical interference observation apparatus according to the present invention, for example, the reference optical system irradiates the reference surface with the incident reference light, and returns the reference light reflected by the reference surface to the interference optical system.

また、本発明に係る光干渉観測装置は、例えば、上記参照光学系の参照光経路又は上記測定光学系の測定光経路の何れか一方に挿入された周波数シフタを備え、上記参照光又は測定光の何れか一方の周波数を上記周波数シフタによりシフトされて上記干渉光学系に戻される。   Moreover, the optical interference observation apparatus according to the present invention includes, for example, a frequency shifter inserted in either the reference light path of the reference optical system or the measurement light path of the measurement optical system, and the reference light or measurement light Is shifted by the frequency shifter and returned to the interference optical system.

本発明では、従来のフーリエドメインOCTにおける広帯域光源に替えて、等間隔のスペクトル分布を持つ光源である光周波数コム発生器を用いたことにより、周波数軸の情報を高精度の検出することができる。   In the present invention, the information on the frequency axis can be detected with high accuracy by using an optical frequency comb generator which is a light source having a spectral distribution of equal intervals instead of the broadband light source in the conventional Fourier domain OCT. .

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Needless to say, the present invention is not limited to the following examples, and can be arbitrarily changed without departing from the gist of the present invention.

本発明に係る光干渉観測装置100は、その基本的な構成を図1に示すように、レーザー光を出射するレーザー光源10と、上記レーザー光源10からレーザー光が入射される光周波数コム発生器20と、上記光周波数コム発生器20から出射された光周波数コムを参照光と測定光に分割して参照光学系40と測定光学系50に入射し、上記参照光学系40と測定光学系50から戻ってくる参照光Paと測定光Pbの干渉光Pcを発生する干渉光学系30と、上記干渉光学系30において分割された参照光が入射され、入射された参照光を上記干渉光学系30に戻す参照光学系40と、上記干渉光学系30において分割された測定光が入射され、入射された測定光を被測定面51に照射し、上記被測定面51で反射された測定光を上記干渉光学系30に戻す測定光系50と、上記干渉光学系30により発生された干渉光Pcに含まれる光スペクトルを分離する分光器60と、上記分光器60により分離された各光スペクトルを検出する複数の光検出器からなる光検出器アレイ70と、光検出器アレイ70の検出出力が供給される信号処理部80を備える。   As shown in FIG. 1, the optical interference observation apparatus 100 according to the present invention has a laser light source 10 that emits laser light and an optical frequency comb generator in which laser light is incident from the laser light source 10. 20 and the optical frequency comb emitted from the optical frequency comb generator 20 is divided into reference light and measurement light, and enters the reference optical system 40 and measurement optical system 50. The reference optical system 40 and measurement optical system 50 The interference optical system 30 that generates the interference light Pc of the reference light Pa and the measurement light Pb that is returned from the laser beam, and the reference light divided by the interference optical system 30 are incident. The incident reference light is converted into the interference optical system 30. The reference optical system 40 to be returned to and the measurement light divided in the interference optical system 30 are incident, the incident measurement light is irradiated onto the measurement surface 51, and the measurement light reflected on the measurement surface 51 is reflected on the measurement light 51 Interference light A measurement light system 50 returned to the system 30, a spectroscope 60 for separating the optical spectrum contained in the interference light Pc generated by the interference optical system 30, and a plurality of light spectra separated by the spectroscope 60. And a signal processing unit 80 to which a detection output of the photodetector array 70 is supplied.

この光干渉観測装置100において、レーザー光源10は、周波数がνのレーザー光を出射する。   In the optical interference observation apparatus 100, the laser light source 10 emits laser light having a frequency ν.

また、光周波数コム発生器20は、等間隔のスペクトル分布を持つ光源である。   The optical frequency comb generator 20 is a light source having a spectral distribution with equal intervals.

この光周波数コム発生器20は、例えばEOM(電気光学変調器)と当該EOMを挟むように対向して配設された反射鏡とからなり、EOMと反射鏡で光発振器を構成してなる外部変調方式の光周波数コム発生器であって、外部発振器21により周波数fmの変調信号が与えられる。この光周波数コム発生器20は、図2に示すように、変調信号の周波数fmに一致する等周波数間隔で発生させた側波帯(サイドバンド)を有する光周波数コムを上記レーザー光源10から出射されたレーザー光に基づいて発生して出射する。また、光周波数コム発生器20が出射する光周波数コムの中心の周波数は、入射レーザー周波数νに一致している。   The optical frequency comb generator 20 is composed of, for example, an EOM (electro-optic modulator) and a reflecting mirror disposed so as to face the EOM, and an optical oscillator is configured by the EOM and the reflecting mirror. This is a modulation type optical frequency comb generator, and a modulation signal having a frequency fm is given by an external oscillator 21. As shown in FIG. 2, the optical frequency comb generator 20 emits from the laser light source 10 an optical frequency comb having sidebands (sidebands) generated at equal frequency intervals that match the frequency fm of the modulation signal. Based on the emitted laser light, the light is emitted. Further, the center frequency of the optical frequency comb emitted from the optical frequency comb generator 20 coincides with the incident laser frequency ν.

この光干渉観測装置100において、レーザー光源10が出射するレーザー光の周波数νと、光周波数コム発生器20の変調信号の周波数fmは独立に調整可能である。   In this optical interference observation apparatus 100, the frequency ν of the laser light emitted from the laser light source 10 and the frequency fm of the modulation signal of the optical frequency comb generator 20 can be adjusted independently.

ここで、光周波数コム発生器20が出射する光周波数コムは、相対的な位相の関係が固定されており、また、その周波数間隔の確度、安定度はマイクロ波周波数fmの確度、安定度に一致する。マイクロ波周波数帯では、スペクトル幅が狭く周波数安定度も高い発振器が容易に入手できるため、光コム発生器が出力する光コムは、きわめて正確な光周波数の目盛りとなる。入射レーザーを安定化レーザーに置き換えれば、すべてのサイドバンドの絶対周波数を固定できる。   Here, the optical frequency comb emitted from the optical frequency comb generator 20 has a fixed relative phase relationship, and the accuracy and stability of the frequency interval are the accuracy and stability of the microwave frequency fm. Match. In the microwave frequency band, an oscillator having a narrow spectrum width and high frequency stability can be easily obtained, so that the optical comb output from the optical comb generator is a very accurate optical frequency scale. If the incident laser is replaced with a stabilizing laser, the absolute frequency of all sidebands can be fixed.

このような構成の光干渉観測装置100では、光周波数コム発生器20から出射される光周波数コムが光パルスとして干渉光学系30の半透鏡31により測定光と参照光に分割されて参照光学系40と測定光学系50に入射される。   In the optical interference observation apparatus 100 having such a configuration, the optical frequency comb emitted from the optical frequency comb generator 20 is divided into measurement light and reference light by the half mirror 31 of the interference optical system 30 as an optical pulse, and the reference optical system. 40 and the measurement optical system 50.

参照光学系40は、上記干渉光学系30から入射された参照光を参照面41に照射し、この参照面41により反射された参照光Paを当該干渉光学系30に戻す。また、測定光学系50は、上記干渉光学系30から入射された測定光を被測定面51に照射し、この被測定面51により反射された測定光Pbを当該干渉光学系30に戻す。   The reference optical system 40 irradiates the reference surface 41 with the reference light incident from the interference optical system 30 and returns the reference light Pa reflected by the reference surface 41 to the interference optical system 30. The measurement optical system 50 irradiates the measurement surface 51 with the measurement light incident from the interference optical system 30, and returns the measurement light Pb reflected by the measurement surface 51 to the interference optical system 30.

そして、干渉光学系30は、上記参照光学系40と測定光学系50から戻ってくる参照光Paと測定光Pbを半透鏡31において重ね合わせることにより上記参照光Paと測定光Pbとの干渉光Pcを発生する。   Then, the interference optical system 30 superimposes the reference light Pa and the measurement light Pb returned from the reference optical system 40 and the measurement optical system 50 on the semi-transparent mirror 31, thereby causing interference light between the reference light Pa and the measurement light Pb. Generate Pc.

ここで、上記干渉光学系30において、半透鏡31による重ね合わされる被測定面51による反射された測定光(遅延パルス)Pbと参照面31により反射された参照光(参照パルス)Paは、図3に示すように、半透鏡31から被測定面40と参照面31までの差距離差、すなわち、光路長の差に対応した時間差tを有している。そして、フーリエ変換の性質から、被測定面40により反射された測定光(遅延パルス)Pbのスペクトルは、図4に示すように、参照面31により反射された参照光(参照パルス)Paのスペクトルに対して周波数に比例した位相特性を持つ。 Here, in the interference optical system 30, the measurement light (delayed pulse) Pb reflected by the measurement target surface 51 superimposed by the semi-transparent mirror 31 and the reference light (reference pulse) Pa reflected by the reference surface 31 are shown in FIG. As shown in FIG. 3, there is a time difference t 0 corresponding to a difference in distance from the half mirror 31 to the measured surface 40 and the reference surface 31, that is, a difference in optical path length. Due to the nature of the Fourier transform, the spectrum of the measurement light (delayed pulse) Pb reflected by the surface to be measured 40 is the spectrum of the reference light (reference pulse) Pa reflected by the reference surface 31, as shown in FIG. Has a phase characteristic proportional to the frequency.

そして、被測定面40により反射された測定光(遅延パルス)Pbと参照面31により反射された参照光(参照パルス)Paを干渉光学系30において半透鏡31により重ねることにより発生される干渉光Pcは、図5に示すように、分光器60により各光スペクトル成分に分解すると光検出器アレイ70により検出される各光スペクトル成分の強度に周波数特性があらわれる。   Then, interference light generated by superimposing the measurement light (delayed pulse) Pb reflected by the surface to be measured 40 and the reference light (reference pulse) Pa reflected by the reference surface 31 by the half mirror 31 in the interference optical system 30. As shown in FIG. 5, when Pc is decomposed into optical spectrum components by the spectroscope 60, frequency characteristics appear in the intensity of each optical spectrum component detected by the photodetector array 70.

ここで、分光器60によりに分解された各光スペクトル成分は、コリメータレンズ61を介して光検出器アレイ70の1素子毎に1本のサイドバンドが入射されるようになっている。   Here, each side of the optical spectrum component decomposed by the spectroscope 60 is incident on each element of the photodetector array 70 via the collimator lens 61.

分光器60には、周波数に応じて光路を分離する機能を持つ回折格子やプリズムなど光学素子が用いられる。また、光検出器アレイ70に替えて単独の光検出器を複数用いることもできる。   The spectroscope 60 uses an optical element such as a diffraction grating or a prism having a function of separating an optical path according to a frequency. A plurality of single photodetectors can be used in place of the photodetector array 70.

信号処理部80では、光検出器アレイ70により検出される各光スペクトル成分の強度の周波数特性から、上記半透鏡31から参照面41と被測定面51までの距離差に対応した時間差tを求め、求めた時間差tから上記距離差を求めることができる。 In the signal processing unit 80, the time difference t 0 corresponding to the distance difference from the semi-transparent mirror 31 to the reference surface 41 and the measured surface 51 is calculated from the frequency characteristics of the intensity of each optical spectral component detected by the photodetector array 70. calculated from the time difference t 0 obtained can be determined the distance difference.

すなわち、上述の如く、被測定面51により反射された測定光(遅延パルス)Pbのスペクトルは、図4に示すように、参照面41により反射された参照光(参照パルス)Paのスペクトルに対して周波数に比例した位相特性を持つので、上記光検出器アレイ70により検出出力に基づき、上記参照パルスPaに対する遅延パルスPbの相対位相の傾き2πftから上記時間差tを求め、求めた時間差tから上記距離差を求めることができる。 That is, as described above, the spectrum of the measurement light (delayed pulse) Pb reflected by the surface to be measured 51 corresponds to the spectrum of the reference light (reference pulse) Pa reflected by the reference surface 41 as shown in FIG. Therefore, the time difference t 0 is obtained from the relative phase gradient 2πft 0 of the delayed pulse Pb with respect to the reference pulse Pa based on the detection output by the photodetector array 70, and the obtained time difference t 0 is obtained. The distance difference can be obtained from zero .

なお、途中の経路に群遅延分散があると、周波数と位相の関係は直線から外れる。この場合、群遅延分散の補償素子を挿入するか、信号処理で直線成分のみ推定することによって時間差tを求める。 Note that if there is group delay dispersion in the middle path, the relationship between frequency and phase deviates from a straight line. In this case, the time difference t 0 is obtained by inserting a compensation element for group delay dispersion or estimating only a linear component by signal processing.

ここで、図6に示す光干渉観測装置110のように、干渉光学系30から参照光が入射される参照光学系40において、入射された参照光の周波数を周波数シフタ42によりシフトして、周波数をシフトした参照光Paを上記干渉光学系30に戻すようにしてもよい。なお、この光干渉観測装置110において、上記光干渉観測装置100と同一の構成要素については、図6中に同一参照符号を付して、その詳細な説明を省略する。   Here, in the reference optical system 40 in which the reference light is incident from the interference optical system 30 as in the optical interference observation apparatus 110 illustrated in FIG. 6, the frequency of the incident reference light is shifted by the frequency shifter 42, and the frequency The reference light Pa that has been shifted may be returned to the interference optical system 30. In this optical interference observation apparatus 110, the same components as those in the optical interference observation apparatus 100 are denoted by the same reference numerals in FIG. 6, and detailed description thereof is omitted.

この光干渉観測装置110において、干渉光学系30は、光周波数コム発生器20から入射される光周波数コムを参照光と測定光に分離する第1の半透鏡31Aと、参照光学系40と測定光学系50から戻されて参照光Paと測定光Pbを重ね合わせて、参照光Paと測定光Pbとの干渉光Pcを発生する第2の半透鏡31Bとを備える。そして、上記第1の半透鏡31Aにより分離した参照光は参照光学系40を入射され、また、測定光は、第2の半透鏡31Bを介して測定光学系50に入射されるようになっている。   In this optical interference observation apparatus 110, the interference optical system 30 includes a first semi-transparent mirror 31A that separates the optical frequency comb incident from the optical frequency comb generator 20 into reference light and measurement light, the reference optical system 40, and measurement. There is provided a second semi-transparent mirror 31B that returns from the optical system 50 and superimposes the reference light Pa and the measurement light Pb to generate an interference light Pc between the reference light Pa and the measurement light Pb. The reference light separated by the first half mirror 31A is incident on the reference optical system 40, and the measurement light is incident on the measurement optical system 50 via the second half mirror 31B. Yes.

また、参照光学40は、上記干渉光学系30の第1の半透鏡31Aにより分離された参照光が入射され、発振器43の出力により動作して、入射された参照光の周波数をfaだけシフトする周波数シフタ42を備え、この周波数シフタ42により周波数がシフトされた参照光Paを第1の反射鏡41A及び第2の反射鏡41Bを介して上記干渉光学系30の第2の半透鏡31Bに戻すようになっている。   Further, the reference optical 40 receives the reference light separated by the first semi-transparent mirror 31A of the interference optical system 30, operates by the output of the oscillator 43, and shifts the frequency of the incident reference light by fa. A frequency shifter 42 is provided, and the reference light Pa whose frequency is shifted by the frequency shifter 42 is returned to the second semi-transparent mirror 31B of the interference optical system 30 via the first reflecting mirror 41A and the second reflecting mirror 41B. It is like that.

上記周波数シフタ42は、例えば内部に発生した超音波により音響光学相互作用で参照光の位相を変化させる音響光学変調器(AOM:acoustooptic modulator)からなる。   The frequency shifter 42 includes, for example, an acoustooptic modulator (AOM) that changes the phase of the reference light by an acoustooptic interaction using ultrasonic waves generated inside.

そして、上記干渉光学系30は、上記参照光学系40と測定光学系50から戻されて参照光Paと測定光Pbを第2の半透鏡31Bにおいて重ね合わせることにより上記参照光Paと測定光Pbとの干渉光Pcを発生する。上記干渉光学系30により発生された干渉光Pcは、分光器60により各光スペクトル成分に分解され、光検出器アレイ70により検出される。   The interference optical system 30 is returned from the reference optical system 40 and the measurement optical system 50, and the reference light Pa and the measurement light Pb are superimposed on the reference beam Pa and the measurement light Pb in the second half mirror 31B. Interference light Pc is generated. The interference light Pc generated by the interference optical system 30 is decomposed into optical spectrum components by the spectroscope 60 and detected by the photodetector array 70.

このような構成の光干渉観測装置110では、レーザー光源10から出射されるレーザー子の周波数をν、光周波数コム発生器20に外部発振器21から与えられる変調信号の周波数をfmとすると、図7の(A)に示すように、中心(0次)周波数がνで、n次コムモード周波数がν+nfmの測定光Pbが上記測定光学系50を介して上記干渉光学系30に戻され、図7の(B)に示すように、中心(0次)周波数がν+faで、n次コムモード周波数がν+fa+nfmの参照Paが上記参照系40を介して上記干渉光学系30に戻される。   In the optical interference observation apparatus 110 having such a configuration, assuming that the frequency of the laser element emitted from the laser light source 10 is ν and the frequency of the modulation signal supplied from the external oscillator 21 to the optical frequency comb generator 20 is fm, FIG. 7A, the measurement light Pb having the center (0th order) frequency of ν and the nth order comb mode frequency of ν + nfm is returned to the interference optical system 30 via the measurement optical system 50, and FIG. (B), a reference Pa having a center (0th order) frequency of ν + fa and an nth-order comb mode frequency of ν + fa + nfm is returned to the interference optical system 30 via the reference system 40.

したがって、上記干渉光学系30において発生される干渉光Pcのビート周波数は、0次の周波数が(ν+fa)−ν=faで、n次周波数が{ν+fa+nfm}−(ν+nfm)=fa(ここで、n=0,±1,±2,…..)、すなわち、すべてfaになる。   Therefore, the beat frequency of the interference light Pc generated in the interference optical system 30 is that the zero-order frequency is (ν + fa) −ν = fa, and the n-order frequency is {ν + fa + nfm} − (ν + nfm) = fa (where, n = 0, ± 1, ± 2,...), that is, all are fa.

すなわち、光検出器アレイ70の各素子では、すべてビート周波数がfaの各光スペクトル成分が検出される。   That is, each element of the photodetector array 70 detects each optical spectrum component having a beat frequency fa.

ここで、n次モードの干渉波の電界e(t)は、次の(1)式にて示される。 Here, the electric field e n (t) of the interference wave of the n-th mode is expressed by the following equation (1).

Figure 2009025245
Figure 2009025245

この(1)式において、νはレーザー周波数、faはシフト周波数、nはコムモード次数、fmは変調周波数、ETnは測定光の電界、ERnは参照光の電界である。さらに、θnは、参照光パルスのn次モードの位相に対する測定光パルスの相対位相である。   In this equation (1), ν is a laser frequency, fa is a shift frequency, n is a comb mode order, fm is a modulation frequency, ETn is an electric field of measurement light, and ERn is an electric field of reference light. Furthermore, θn is the relative phase of the measurement light pulse with respect to the phase of the nth mode of the reference light pulse.

そして、光検出器アレイ70による検出出力電流i(t)は、次の(2)式にて示される。 The detection output current i n (t) by the photodetector array 70 is expressed by the following equation (2).

Figure 2009025245
Figure 2009025245

この(2)式において、aは比例定数である。   In the formula (2), a is a proportionality constant.

したがって、信号処理部80では、光検出器アレイ70で同時に検出された交流信号i(t)の位相と振幅を比較することによりサイドバンド間の相対位相・振幅をリアルタイムに知ることができる。 Therefore, the signal processing unit 80 can know the relative phase / amplitude between the sidebands in real time by comparing the phase and amplitude of the AC signals i n (t) simultaneously detected by the photodetector array 70.

干渉信号の直流成分を測る場合、測定された電圧値から測定光の振幅と隣接サイドバンド間の位相差を求めることは容易でないが、この光干渉観測装置110のように参照光の経路に周波数シフタ42を挿入することにより、光検出器アレイ70で観測される信号がシフト周波数faになるため、信号処理部80における信号処理による位相比較が行いやすくなり、また、交流成分を観測しているので1モードあたり1個の検出器で干渉信号の位相と振幅を知ることができる。   When measuring the DC component of the interference signal, it is not easy to obtain the amplitude of the measurement light and the phase difference between adjacent sidebands from the measured voltage value, but the frequency in the reference light path as in the optical interference observation device 110 is not easy. By inserting the shifter 42, the signal observed by the photodetector array 70 becomes the shift frequency fa, so that phase comparison by signal processing in the signal processing unit 80 can be easily performed, and an AC component is observed. Therefore, the phase and amplitude of the interference signal can be known with one detector per mode.

なお、この光干渉観測装置110では、参照光学系40の参照光経路の時間遅延に対する測定光学系50の測定光経路の時間遅延を測定する。   The optical interference observation apparatus 110 measures the time delay of the measurement light path of the measurement optical system 50 with respect to the time delay of the reference light path of the reference optical system 40.

ここで、上記参照光学系40の参照光経路中に周波数シフタ42を挿入する代わりに、上記測定光学系50の測定光経路中に周波数シフタ42を挿入するようにしてもよい。   Here, instead of inserting the frequency shifter 42 into the reference light path of the reference optical system 40, the frequency shifter 42 may be inserted into the measurement light path of the measurement optical system 50.

また、図8に示す光干渉観測装置120のように、測定光学系50の測定光経路中に半透鏡を用いた参照面41を設け、参照光学系40の参照光経路の時間遅延に対する測定光学系50の測定光経路の時間遅延を参照面41と被測定面51の2枚の反射面に対してそれぞれ測定して、距離の差を求めることによって、参照面41と被測定面51の間隔を測定することができる。   Further, like the optical interference observation apparatus 120 shown in FIG. 8, a reference surface 41 using a semi-transparent mirror is provided in the measurement light path of the measurement optical system 50, and the measurement optical for the time delay of the reference light path of the reference optical system 40 The distance between the reference surface 41 and the measured surface 51 is determined by measuring the time delay of the measurement light path of the system 50 with respect to the two reflecting surfaces of the reference surface 41 and the measured surface 51 and calculating the difference in distance. Can be measured.

なお、この光干渉観測装置120は、測定光学系50以外の構成は上記光干渉観測装置110と同一であるので、同一構成要素を図8中に同一参照符号を付して示し、その詳細な説明を省略する。   Since this optical interference observation apparatus 120 has the same configuration as the optical interference observation apparatus 110 except for the measurement optical system 50, the same components are denoted by the same reference numerals in FIG. Description is omitted.

上記光干渉観測装置110や光干渉観測装置120では、往復で使用することのできる周波数シフタ42を用いることもでき、例えば、図9に示す光干渉観測装置130のように、参照光学系40において、周波数シフタ42を往復で使用する構成とすることにより、往路と復路それぞれfa/2の周波数シフトを与えるようにしてもよい。   In the optical interference observation apparatus 110 and the optical interference observation apparatus 120, a frequency shifter 42 that can be used in a reciprocating manner can be used. For example, in the optical interference observation apparatus 130 shown in FIG. The frequency shifter 42 may be used in a reciprocating manner so that a frequency shift of fa / 2 is given for each of the forward path and the return path.

なお、この光干渉観測装置130は、参照光学系50以外の構成は上記光干渉観測装置110と同一であるので、同一構成要素を図9中に同一参照符号を付して示し、その詳細な説明を省略する。   Since this optical interference observation apparatus 130 has the same configuration as the optical interference observation apparatus 110 except for the reference optical system 50, the same components are shown with the same reference numerals in FIG. Description is omitted.

以上の説明では、参照面と被測定面と間の経路差や距離を測定する場合について説明したが、測定光学系50において測定光による被測定面を走査して、光検出器アレイ70により得られる検出出力に基づいて、信号処理部80において被測定面51の断層画像を生成するなど、本発明に係る光干渉観測装置は、光コヒーレンストモグラフィー装置に応用することもできる。   In the above description, the case where the path difference or distance between the reference surface and the surface to be measured is measured has been described. However, the measurement optical system 50 scans the surface to be measured with the measuring light and is obtained by the photodetector array 70. The optical interference observation apparatus according to the present invention can be applied to an optical coherence tomography apparatus, such as generating a tomographic image of the measurement target surface 51 in the signal processing unit 80 based on the detected output.

なお、直流的な位相比較を行う構成の場合、例えば図10に示す光干渉観測装置140のように、それぞれ2個の分光器60A,60B、光検出器アレイ70A,760B、信号処理部80A,80Bを備える構成とし、干渉信号のsin成分とcos成分の電圧を計測することにより、位相と振幅を測定することができる。   In the case of a configuration that performs DC phase comparison, for example, two spectrometers 60A and 60B, photodetector arrays 70A and 760B, and a signal processing unit 80A, as in the optical interference observation apparatus 140 shown in FIG. The phase and amplitude can be measured by measuring the voltages of the sin component and the cos component of the interference signal with the configuration including 80B.

この光干渉観測装置140では、参照光学系40の参照光経路中に1/8波長板44を備え、光周波数コム発生器20は、光周波数コム出力の偏光を上記1/8波長板44の結晶軸に一致した成分と直交した成分を持つように調整しておく。   This optical interference observation apparatus 140 includes a 8 wavelength plate 44 in the reference light path of the reference optical system 40, and the optical frequency comb generator 20 converts the polarization of the optical frequency comb output of the 8 wavelength plate 44. Adjustment is made so as to have a component orthogonal to the component coincident with the crystal axis.

参照光学系40の参照光経路中に設けられた1/8波長板44は、干渉光学系30から入射された参照光の一方の偏光成分に往復で1/4波長の位相シフトを与える。   The 1/8 wavelength plate 44 provided in the reference light path of the reference optical system 40 reciprocally applies a phase shift of 1/4 wavelength to one polarization component of the reference light incident from the interference optical system 30.

干渉光学系30は、上記1/8波長板44により1/4波長の位相シフトされた成分の干渉光を分離する偏光ビームスプリッタ32を備え、この偏光ビームスプリッタ32により分離した干渉光Pca,Pcbを第1の分光器60Aと第2の分光器60Bに入射するようになっている。この偏光ビームスプリッタ32により分離された一方の干渉光Pcbは、反射鏡33により反射して第2の分光器60Bに入射される。   The interference optical system 30 includes a polarization beam splitter 32 that separates a 1/4 wavelength phase-shifted interference light by the 8 wavelength plate 44, and the interference lights Pca and Pcb separated by the polarization beam splitter 32. Are incident on the first spectroscope 60A and the second spectroscope 60B. One interference light Pcb separated by the polarization beam splitter 32 is reflected by the reflecting mirror 33 and is incident on the second spectroscope 60B.

そして、上記第1の分光器60Aにより干渉光Pcaに含まれる光スペクトルを分離して第1の光検出器アレイ70Aで検出するとともに、上記第2の分光器60Bにより干渉光Pcbに含まれる光スペクトルを分離して第2の光検出器アレイ70Bで検出する。信号処理部80では、第1の信号処理部80Aにより上記第1の光検出器アレイ70Aによる検出出力に基づいて、干渉光Pcaのacosθ成分の電圧を算出するとともに、第2の信号処理部80Bにより上記第2の光検出器アレイ70Bによる検出出力に基づいて、干渉光Pcbのasinθ成分の電圧を算出し、算出した干渉信号のsin成分とcos成分の電圧から位相と振幅を求めることができる。 Then, the light spectrum included in the interference light Pca is separated by the first spectroscope 60A and detected by the first photodetector array 70A, and the light included in the interference light Pcb by the second spectroscope 60B. The spectrum is separated and detected by the second photodetector array 70B. The signal processing unit 80, together with the first signal processing unit 80A based on the detection output of the first photodetector array 70A, to calculate the voltage of a n cos [theta] n component of the interference light Pca, the second signal Based on the detection output from the second photodetector array 70B by the processing unit 80B, the voltage of the an n sin θ n component of the interference light Pcb is calculated, and the phase and the phase are determined from the calculated sin component and cos component voltages of the interference signal. The amplitude can be determined.

ここで、上述の如き構成の光干渉観測装置100,110,120,130,140において、レーザー光源10とEOMを用いる光周波数コム発生器20にかえてモード同期レーザーを用いてもよい。この場合、用いるモード同期レーザーの中心周波数と光コム周波数間隔に合わせて、1素子に1本の周波数成分が入力されるよう分光器60の特性と光検出器アレイ70の配置を調整する。   Here, in the optical interference observation apparatuses 100, 110, 120, 130, and 140 having the above-described configuration, a mode-locked laser may be used instead of the optical frequency comb generator 20 using the laser light source 10 and the EOM. In this case, the characteristics of the spectrometer 60 and the arrangement of the photodetector array 70 are adjusted so that one frequency component is input to one element in accordance with the center frequency of the mode-locked laser to be used and the optical comb frequency interval.

また、分光器60によりに分解された各光スペクトル成分は、図5に示したように、コリメータレンズ61を介して光検出器アレイ70の1素子毎に1本のサイドバンドが入射され、全て光スペクトル成分が光検出器アレイ70で検出されるものとしたが、図11に示す光干渉観測装置150のように、光コムの多数のモードの中で必要なモードの光スペクトル成分を選択的に検出するように、光検出器アレイ70に替えて、検出すべき光スペクトルに対応した数の光検出器70A,70B,70Cを備える構成とし、光検出器70A,70B,70Cによる検出出力について、信号処理部にて、それらの位相・振幅情報を求めるようにしても良い。この場合にも、光検出器70A,70B,70Cには、1素子毎に1本のサイドバンドが入射されるようになっている。   Further, as shown in FIG. 5, each of the optical spectrum components decomposed by the spectroscope 60 is incident on one sideband for each element of the photodetector array 70 via the collimator lens 61. It is assumed that the optical spectral components are detected by the photodetector array 70. However, as in the optical interference observation device 150 shown in FIG. In place of the photodetector array 70, the number of photodetectors 70A, 70B, and 70C corresponding to the optical spectrum to be detected is provided, and the detection outputs by the photodetectors 70A, 70B, and 70C are detected. The signal processing unit may obtain the phase / amplitude information. Also in this case, one side band is incident on each of the photodetectors 70A, 70B, and 70C.

なお、この光干渉観測装置150において、上記光干渉観測装置100と同一の構成要素については、図11中に同一参照符号を付して、その詳細な説明を省略する。   In this optical interference observation apparatus 150, the same constituent elements as those of the optical interference observation apparatus 100 are denoted by the same reference numerals in FIG. 11, and detailed description thereof is omitted.

本発明に係る光干渉観測装置の基本的な構成を示すブロック図である。It is a block diagram which shows the basic composition of the optical interference observation apparatus which concerns on this invention. 上記光干渉観測装置の光周波数コム発生器から出力される光周波数コムを周波数軸上で模式的に示した図である。It is the figure which showed typically the optical frequency comb output from the optical frequency comb generator of the said optical interference observation apparatus on a frequency axis. 上記光干渉観測装置の干渉光学系において重ね合わされた測定光(遅延パルス)と参照光(参照パルス)を時間軸上で模式的に示した図である。It is the figure which showed typically the measurement light (delay pulse) and the reference light (reference pulse) which were superimposed in the interference optical system of the said optical interference observation apparatus on a time axis. 上記観測上記測定光(遅延パルス)のスペクトルの参照光(参照パルス)のスペクトルに対する位相特性を周波数軸上で模式的に示した図である。It is the figure which showed typically the phase characteristic with respect to the spectrum of the reference light (reference pulse) of the spectrum of the said measurement light (delayed pulse) on the frequency axis. 上記光干渉観測装置の干渉光学系において発生された干渉光を分光器により各光スペクトル成分に分解して光検出器アレイで検出する様子を模式的に示した図である。It is the figure which showed typically a mode that the interference light generate | occur | produced in the interference optical system of the said optical interference observation apparatus was decomposed | disassembled into each optical spectrum component with a spectrometer, and it detected with a photodetector array. 本発明に係る光干渉観測装置の他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of the optical interference observation apparatus which concerns on this invention. 上記光干渉観測装置おいて干渉光学系に戻される測定光と参照光を周波数軸上で模式的に示した図である。It is the figure which showed typically the measurement light and reference light which are returned to the interference optical system in the said optical interference observation apparatus on a frequency axis. 本発明に係る光干渉観測装置のさらに他の構成例を示すブロック図である。It is a block diagram which shows the further another structural example of the optical interference observation apparatus which concerns on this invention. 本発明に係る光干渉観測装置のさらに他の構成例を示すブロック図である。It is a block diagram which shows the further another structural example of the optical interference observation apparatus which concerns on this invention. 本発明に係る光干渉観測装置のさらに他の構成例を示すブロック図である。It is a block diagram which shows the further another structural example of the optical interference observation apparatus which concerns on this invention. 本発明に係る光干渉観測装置のさらに他の構成例を示すブロック図である。It is a block diagram which shows the further another structural example of the optical interference observation apparatus which concerns on this invention. 光コヒーレンストモグラフィー装置の原理を示す図である。It is a figure which shows the principle of an optical coherence tomography apparatus.

符号の説明Explanation of symbols

10 レーザー光源、20 光周波数コム発生器、21 外部発振器、30 干渉光学系、31,31A,31B 半透鏡、32 偏光ビームスプリッタ、33 反射鏡40 参照光学系、41 参照面、41A,41B 反射鏡、42 周波数シフタ、43 発振器、44 1/8波長板、50 測定光学系、51 被測定面、60,60A,60B 分光器、61 コリメータレンズ、70,70A,70B 光検出器アレイ、80,80A,80B 信号処理部、100〜150 光干渉観測装置   DESCRIPTION OF SYMBOLS 10 Laser light source, 20 Optical frequency comb generator, 21 External oscillator, 30 Interference optical system, 31, 31A, 31B Semi-transparent mirror, 32 Polarization beam splitter, 33 Reflective mirror 40 Reference optical system, 41 Reference surface, 41A, 41B Reflective mirror , 42 Frequency shifter, 43 Oscillator, 44 1/8 wavelength plate, 50 measurement optical system, 51 surface to be measured, 60, 60A, 60B spectrometer, 61 collimator lens, 70, 70A, 70B photodetector array, 80, 80A , 80B Signal processor, 100-150 Optical interference observation device

Claims (3)

光周波数コムを発生して出射する光周波数コム発生器と、
上記光周波数コム発生器から出射された光周波数コムを参照光と測定光に分割して参照光学系と測定光学系に入射し、上記参照光学系と測定光学系から戻ってくる参照光と測定光の干渉光を発生する干渉光学系と、
上記干渉光学系において分割された参照光が入射され、入射された参照光を上記干渉光学系に戻す参照光学系と、
上記干渉光学系において分割された測定光が入射され、入射された測定光を被測定面に照射し、上記被測定面で反射された測定光を上記干渉光学系に戻す測定光学系と、
上記干渉光学系により発生された干渉光に含まれる光スペクトルを分離する光スペクトル分離手段と、
上記光スペクトル分離手段により分離された各光スペクトルを検出する複数の光検出器からなる光検出手段と、
上記光検出手段による各光スペクトルの検出出力が供給される信号処理手段と
を備えることを特徴とする光干渉観測装置。
An optical frequency comb generator for generating and emitting an optical frequency comb;
The optical frequency comb emitted from the optical frequency comb generator is divided into reference light and measurement light, incident on the reference optical system and measurement optical system, and the reference light returned from the reference optical system and measurement optical system and measurement. An interference optical system that generates interference light, and
A reference optical system that receives the reference light split in the interference optical system and returns the incident reference light to the interference optical system;
A measurement optical system that receives the measurement light split in the interference optical system, irradiates the measurement light incident on the surface to be measured, and returns the measurement light reflected by the surface to be measured to the interference optical system;
An optical spectrum separating means for separating an optical spectrum included in the interference light generated by the interference optical system;
A light detection means comprising a plurality of light detectors for detecting each light spectrum separated by the light spectrum separation means;
An optical interference observation apparatus comprising: signal processing means to which detection output of each optical spectrum by the light detection means is supplied.
上記参照光学系は、入射された参照光を参照面に照射し、上記参照面で反射された参照光を上記干渉光学系に戻すことを特徴とする請求項1記載の光干渉観測装置。   2. The optical interference observation apparatus according to claim 1, wherein the reference optical system irradiates the reference surface with the incident reference light and returns the reference light reflected by the reference surface to the interference optical system. 上記参照光学系の参照光経路又は上記測定光学系の測定光経路の何れか一方に挿入された周波数シフタを備え、
上記参照光又は測定光の何れか一方の周波数を上記周波数シフタによりシフトされて上記干渉光学系に戻されることを特徴とする請求項1又は請求項2の何れか1項に記載の光干渉観測装置。
A frequency shifter inserted into either the reference light path of the reference optical system or the measurement light path of the measurement optical system;
3. The optical interference observation according to claim 1, wherein the frequency of one of the reference light and the measurement light is shifted by the frequency shifter and returned to the interference optical system. 4. apparatus.
JP2007191190A 2007-07-23 2007-07-23 Device for observing optical interference Pending JP2009025245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191190A JP2009025245A (en) 2007-07-23 2007-07-23 Device for observing optical interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191190A JP2009025245A (en) 2007-07-23 2007-07-23 Device for observing optical interference

Publications (1)

Publication Number Publication Date
JP2009025245A true JP2009025245A (en) 2009-02-05

Family

ID=40397173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191190A Pending JP2009025245A (en) 2007-07-23 2007-07-23 Device for observing optical interference

Country Status (1)

Country Link
JP (1) JP2009025245A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228621A2 (en) 2009-03-03 2010-09-15 Canon Kabushiki Kaisha Optical interference measuring apparatus
JP2010203860A (en) * 2009-03-02 2010-09-16 Optical Comb Inc Vibration measuring device and vibration measuring method
JP2010261776A (en) * 2009-05-01 2010-11-18 Canon Inc Device for measuring optical interference
JP2010261911A (en) * 2009-05-11 2010-11-18 Optical Comb Inc Vibration measuring instrument and vibration measuring method
JP2010261890A (en) * 2009-05-11 2010-11-18 Canon Inc Light wave interference measuring device
JP2011007571A (en) * 2009-06-24 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Multi-wavelength simultaneous absorption spectroscopic device, and multi-wavelength simultaneous absorption spectroscopic method
JP2011027648A (en) * 2009-07-28 2011-02-10 Optical Comb Inc Apparatus and method for measuring vibration
JP2011059011A (en) * 2009-09-11 2011-03-24 Fukuoka Univ Mems measuring device
JP2012533746A (en) * 2009-07-23 2012-12-27 ラフバロー ユニバーシティ Equipment for absolute measurement of two-dimensional optical path distribution by interferometry
WO2019017392A1 (en) * 2017-07-19 2019-01-24 宏 小川 Tomographic image imaging device
JP2022504605A (en) * 2018-10-12 2022-01-13 イムラ アメリカ インコーポレイテッド Small microcavity frequency comb
JP2022108730A (en) * 2021-01-13 2022-07-26 オプトス ピーエルシー Optical coherence tomography instrument and optical coherence tomography method
WO2024172654A1 (en) 2023-02-17 2024-08-22 Technische Universiteit Delft Optical detection
JP7540441B2 (en) 2019-08-30 2024-08-27 株式会社ニコン Processing System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082045A (en) * 2000-09-08 2002-03-22 Japan Science & Technology Corp Photometric system
WO2006019181A1 (en) * 2004-08-18 2006-02-23 National University Corporation Tokyo University Of Agriculture And Technology Shape measurement method, shape measurement device, and frequency comb light generation device
JP2006266861A (en) * 2005-03-24 2006-10-05 Topcon Corp Optical image measuring apparatus
JP2007101365A (en) * 2005-10-04 2007-04-19 Univ Of Tsukuba Calibration method of constituent device of optical coherence tomography

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082045A (en) * 2000-09-08 2002-03-22 Japan Science & Technology Corp Photometric system
WO2006019181A1 (en) * 2004-08-18 2006-02-23 National University Corporation Tokyo University Of Agriculture And Technology Shape measurement method, shape measurement device, and frequency comb light generation device
JP2006266861A (en) * 2005-03-24 2006-10-05 Topcon Corp Optical image measuring apparatus
JP2007101365A (en) * 2005-10-04 2007-04-19 Univ Of Tsukuba Calibration method of constituent device of optical coherence tomography

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010203860A (en) * 2009-03-02 2010-09-16 Optical Comb Inc Vibration measuring device and vibration measuring method
US8363226B2 (en) 2009-03-03 2013-01-29 Canon Kabushiki Kaisha Optical interference measuring apparatus
EP2228621A3 (en) * 2009-03-03 2011-01-26 Canon Kabushiki Kaisha Optical interference measuring apparatus
EP2228621A2 (en) 2009-03-03 2010-09-15 Canon Kabushiki Kaisha Optical interference measuring apparatus
JP2010261776A (en) * 2009-05-01 2010-11-18 Canon Inc Device for measuring optical interference
JP2010261911A (en) * 2009-05-11 2010-11-18 Optical Comb Inc Vibration measuring instrument and vibration measuring method
JP2010261890A (en) * 2009-05-11 2010-11-18 Canon Inc Light wave interference measuring device
JP2011007571A (en) * 2009-06-24 2011-01-13 Nippon Telegr & Teleph Corp <Ntt> Multi-wavelength simultaneous absorption spectroscopic device, and multi-wavelength simultaneous absorption spectroscopic method
JP2012533746A (en) * 2009-07-23 2012-12-27 ラフバロー ユニバーシティ Equipment for absolute measurement of two-dimensional optical path distribution by interferometry
JP2011027648A (en) * 2009-07-28 2011-02-10 Optical Comb Inc Apparatus and method for measuring vibration
JP2011059011A (en) * 2009-09-11 2011-03-24 Fukuoka Univ Mems measuring device
WO2019017392A1 (en) * 2017-07-19 2019-01-24 宏 小川 Tomographic image imaging device
JPWO2019017392A1 (en) * 2017-07-19 2020-05-28 宏 小川 Tomographic imager
JP2022504605A (en) * 2018-10-12 2022-01-13 イムラ アメリカ インコーポレイテッド Small microcavity frequency comb
US11409185B2 (en) 2018-10-12 2022-08-09 Imra America, Inc. Compact microresonator frequency comb
JP7248370B2 (en) 2018-10-12 2023-03-29 イムラ アメリカ インコーポレイテッド Small microresonator frequency comb
JP7540441B2 (en) 2019-08-30 2024-08-27 株式会社ニコン Processing System
JP2022108730A (en) * 2021-01-13 2022-07-26 オプトス ピーエルシー Optical coherence tomography instrument and optical coherence tomography method
WO2024172654A1 (en) 2023-02-17 2024-08-22 Technische Universiteit Delft Optical detection

Similar Documents

Publication Publication Date Title
JP2009025245A (en) Device for observing optical interference
JP4378533B2 (en) Calibration method for components of optical coherence tomography
JP4344829B2 (en) Polarized light receiving image measuring device
US8879070B2 (en) Two beams formed by Wollaston prism in sample arm in an optical coherence tomography apparatus
CN103344569B (en) Polarization complex frequency domain optical coherence tomography imaging method and system
JP6125981B2 (en) Sample clock generator for optical tomographic imaging apparatus, and optical tomographic imaging apparatus
JP2008157710A (en) Optical coherence tomography system
WO2013047698A1 (en) Optical interferometer, information acquisition apparatus, and information acquisition method
JP6188521B2 (en) Optical measuring device
JP2007101268A (en) Optical tomographic imaging device
JP4602372B2 (en) Optical image measuring device and optical image measuring method
JP2007240453A (en) Spectroscopic coherence tomography device
JP3619113B2 (en) Angular dispersive optical spatial coherence tomographic imaging system
JP2013152191A (en) Multi-wavelength interferometer
JP4852651B2 (en) Multiplexed spectral interferometric optical coherence tomography
JP2010151684A (en) Polarization sensitive optical image measuring instrument for extracting local double refraction information
JP6887350B2 (en) Optical image measuring device
JP2013096877A (en) Measuring device
JP5173305B2 (en) Measurement signal noise processing method
TW200928301A (en) Apparatus for measuring displacement by using wavelength-modulated heterodyne grating interferometer
JP6720051B2 (en) Optical image measuring device and optical image measuring method
CN107894204B (en) Interferometer and imaging method thereof
Salido-Monzú et al. An instrumental basis for multispectral LiDAR with spectrally-resolved distance measurements
KR101263326B1 (en) Heterodyne Optical Coherence Tomography using an AOTF
JP2010261776A (en) Device for measuring optical interference

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100713

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20110711

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Effective date: 20120306

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703