JPS6350478A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS6350478A
JPS6350478A JP19393486A JP19393486A JPS6350478A JP S6350478 A JPS6350478 A JP S6350478A JP 19393486 A JP19393486 A JP 19393486A JP 19393486 A JP19393486 A JP 19393486A JP S6350478 A JPS6350478 A JP S6350478A
Authority
JP
Japan
Prior art keywords
film
gas
substrate
glow discharge
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19393486A
Other languages
Japanese (ja)
Other versions
JPH0660412B2 (en
Inventor
Sachiko Okazaki
幸子 岡崎
Masuhiro Kokoma
益弘 小駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP61193934A priority Critical patent/JPH0660412B2/en
Publication of JPS6350478A publication Critical patent/JPS6350478A/en
Publication of JPH0660412B2 publication Critical patent/JPH0660412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/002Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out in the plasma state

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a uniform thin film at a low cost and a high rate by converting a gaseous mixture prepd. by properly diluting a gas contg. a film forming component with a rare gas into plasma by glow discharge under a pressure close to atmospheric pressure. CONSTITUTION:A substrate 9 such as a metallic plate is placed on a support plate 7 with an insulating plate 8 in-between in a reactor 1. A gaseous mixture 3 consisting of >=about 90% rare gas such as He, a gaseous hydrocarbon contg. a film forming component such as CH4 and a dehydrogenating gas such as a halogenated hydrocarbon is introduced into the reactor 1 from the feed hole 2a of an inner tube 2 through the tube 2 so as to regulate the internal pressure of the reactor 1 to about 200Torr-2 atm, preferably about 1 atm. Glow discharge is then caused between a counter electrode 4 in the lower part of the inner tube 2 and an external electrode 10 with an RF wave generator 6 to convert the gaseous mixture 3 into plasma. The hydrocarbon in the mixture 3 is decomposed and a thin carbon film is formed on the substrate 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素膜やフッ化炭素膜などの薄膜を金属やセラ
ミック上などに形成する薄膜形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film forming method for forming a thin film such as a carbon film or a fluorocarbon film on a metal or ceramic.

(従来技術) 従来、固体材料の表面に薄膜を形成したり、コーティン
グ処理をして材料を保護したり材料表面の接着性や撥水
性を向上させる技術が知られている。
(Prior Art) Conventionally, techniques are known for forming a thin film on the surface of a solid material, applying a coating treatment to protect the material, and improving the adhesiveness and water repellency of the material surface.

たとえば、炭素材料は耐熱性や対摩耗性にすぐれ、高い
熱伝導性を有し、自己潤滑性があることから、薄膜にし
て軸受や工具などの表面を被覆したり、放熱機能を高め
るために電子回路基板表面を被覆したりすることが考え
られている。
For example, carbon materials have excellent heat resistance and wear resistance, high thermal conductivity, and self-lubricating properties, so they can be made into thin films to coat the surfaces of bearings, tools, etc., and can be used to improve heat dissipation. It is being considered to coat the surface of electronic circuit boards.

またフッ化炭素膜はそのすぐれた撥水性や潤滑性が知ら
れており、これらの性質を利用した家庭用品や工業品が
作られている。
Furthermore, fluorocarbon membranes are known for their excellent water repellency and lubricity, and household goods and industrial products are made that take advantage of these properties.

ところで固体材料の表面処理法の一つに低温プラズマを
利用した薄膜形成技術が知られている。
By the way, a thin film forming technique using low-temperature plasma is known as one of the surface treatment methods for solid materials.

前述した炭素膜については、たとえば特開昭59−26
906号や特開昭60−210597号に最近の製造技
術が開示されている。前者においては、真空容器内にお
いて炭化水素系物質をRF高周波電界の作用によりプラ
ズマ状とし、シリコン基板およびスライドガラス基板上
にアモルファス炭素膜を析出形成させ、後者においては
C≦20の炭化水素を原料とし、H2ガスとの混合ガス
をlO9〜10 ”Hzのマイクロ波を使用し低圧(1
00〜10−2Torr)下にてプラズマ化し、Siま
たはSi化合物基板上にダイヤモンド薄膜を生成させる
Regarding the carbon film mentioned above, for example, Japanese Patent Laid-Open No. 59-26
Recent manufacturing techniques are disclosed in No. 906 and Japanese Unexamined Patent Publication No. 60-210597. In the former, a hydrocarbon-based substance is turned into a plasma in a vacuum chamber by the action of an RF high-frequency electric field, and an amorphous carbon film is deposited and formed on a silicon substrate and a slide glass substrate, and in the latter, hydrocarbons with C≦20 are used as raw materials. The mixed gas with H2 gas is heated at low pressure (1
00 to 10-2 Torr) to generate a diamond thin film on the Si or Si compound substrate.

いずれの方法においても高度の真空雰囲気が必要であり
、そのための装置か高価となり、特に大面積の表面処理
となると設備が著しく高価となり、実用上問題があった
In either method, a highly vacuum atmosphere is required, and the equipment for that purpose is expensive, and especially when a large area is treated, the equipment becomes extremely expensive, which poses a practical problem.

一方、前述したフッ化炭素膜については、たとえば特公
昭60−32120号に、10−1〜10−2ミリバー
ルの真空雰囲気内で直流または交流の高電圧を印加して
グロー放電させながら加熱蒸発するフッ素樹脂を金属表
面に蒸着させてフッ素樹脂の薄膜を形成する方法が開示
されている。
On the other hand, regarding the above-mentioned fluorocarbon membrane, for example, as disclosed in Japanese Patent Publication No. 60-32120, a high voltage of DC or AC is applied in a vacuum atmosphere of 10-1 to 10-2 mbar to heat and evaporate while causing glow discharge. A method for forming a thin film of fluororesin by vapor depositing fluororesin on a metal surface is disclosed.

この場合も高度の真空雰囲気を必要とするので設備か高
価になるという問題がある。
In this case as well, since a highly vacuum atmosphere is required, there is a problem that the equipment becomes expensive.

(発明の目的および構成) 本発明は上記の点にかんがみてなされたもので、大気圧
に近い圧力下で炭素膜やフッ化炭素膜などの薄膜を形成
することを可能にすることを目的とし、この目的を達成
するために、約200Torrから2気圧の範囲内の圧
力下で、約90%以上の希ガスと膜成分を含む気体との
混合ガスなグロー放電によりプラズマ状となし、基板上
に薄膜として形成するものである。
(Object and Structure of the Invention) The present invention has been made in view of the above points, and an object of the present invention is to make it possible to form thin films such as carbon films and fluorocarbon films under pressure close to atmospheric pressure. In order to achieve this objective, a mixed gas of about 90% or more of a rare gas and a gas containing film components is made into a plasma state by glow discharge under a pressure in the range of about 200 Torr to 2 atmospheres, and a plasma is formed on the substrate. It is formed as a thin film.

(実施例) 以下に本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図は本発明により、炭素膜を形成する装置の概略線
図である。
FIG. 1 is a schematic diagram of an apparatus for forming a carbon film according to the present invention.

1は内部が大気圧に維持された反応容器で、内部中央に
内筒2が伸び内筒2の上部にプラズマ重合に関与する希
ガスと炭化水素などとの混合ガス3が供給される供給口
2aが設けられている。また内筒2の下端近くには対極
(高電圧極)4か設けられ、この対極4には高電圧入力
部5を介してRF発振器6からRF(無線周波)周波数
をもつ電力が供給される0反応容器1の上部には混合ガ
スの排出口1aが設けられている。
Reference numeral 1 denotes a reaction vessel whose interior is maintained at atmospheric pressure, and an inner cylinder 2 extends at the center of the interior, and at the top of the inner cylinder 2 is a supply port through which a mixed gas 3 of rare gas, hydrocarbon, etc. involved in plasma polymerization is supplied. 2a is provided. Further, a counter electrode (high voltage electrode) 4 is provided near the lower end of the inner cylinder 2, and power having an RF (radio frequency) frequency is supplied to the counter electrode 4 from an RF oscillator 6 via a high voltage input section 5. A mixed gas outlet 1a is provided at the top of the 0 reaction vessel 1.

反応容器1の底には試料極(低電圧極)として作用する
たとえばステンレスのような導電性支持基板7か設けら
れ、その上にカプトンなどの絶縁材料から成る絶縁板8
が置かれ、その上に炭素膜を形成すべき基板9が置かれ
る。支持基板7は通常はアースされている。10は反応
容器の外側に巻いた銅箔の外部電極を示すが、この外部
電極lOがあれば支持基板7は導電性である必要はない
At the bottom of the reaction vessel 1, there is provided a conductive support substrate 7 made of stainless steel, for example, which acts as a sample electrode (low voltage electrode), and on top of that is an insulating plate 8 made of an insulating material such as Kapton.
is placed thereon, and a substrate 9 on which a carbon film is to be formed is placed. The support substrate 7 is normally grounded. Reference numeral 10 indicates an external electrode made of copper foil wrapped around the outside of the reaction vessel, but as long as this external electrode IO exists, the support substrate 7 does not need to be conductive.

第2図は反応容器lの底部に置かれる基板9の様子を示
したものである。
FIG. 2 shows the state of the substrate 9 placed at the bottom of the reaction vessel l.

反応容器lの内部圧力は従来のこの種の装置よりはるか
に高い約200 Torrから2気圧の範囲内で用いる
ことかできるが大気圧で利用することが最も好ましい。
The internal pressure of the reaction vessel 1 can range from about 200 Torr to 2 atmospheres, which is much higher than conventional devices of this type, but atmospheric pressure is most preferred.

反応に用いられる混合ガスは、ヘリウム、ネオン、アル
ゴンなどの希ガスと、メタン、エタン、プロパン、ブタ
ンなどの炭化水素ガスと、反応の初期において炭素膜中
に侵入する水素を引抜くためのハロゲン化炭化水素、ハ
ロゲン、酸素、水素、NF:l 、SFa 、CF4な
どの水素引抜きガスとから成り、成分比率は希ガスが約
90%以上、その他のガスが約10%以下である。希ガ
スは1種類だけでなく他の希ガスとの混合気体で・らよ
い。
The mixed gas used in the reaction is a rare gas such as helium, neon, or argon, a hydrocarbon gas such as methane, ethane, propane, or butane, and a halogen to extract hydrogen that enters the carbon film at the beginning of the reaction. It consists of carbonized hydrocarbons, halogens, oxygen, hydrogen, and hydrogen extraction gases such as NF:l, SFa, and CF4, and the component ratio is about 90% or more of rare gases and about 10% or less of other gases. The rare gas can be used not only as a single type but also as a mixture with other rare gases.

この種の薄膜形成に利用されるプラズマはグロー放電、
コロナ放電、無声放電、アーク放電など各種の放電によ
り形成されるが、グロー放電を除く他の放電はストリー
マと呼ばれる火花柱が形成されやすく電流が局部的に流
れ、結果的に一方の電極を構成する固体材料(本発明に
おける基板9に相当する)の特定場所にエネルギーか集
中して材料表面に多数のピンホールを生じ膜質な著しく
低下せしめる。そこでこのような欠陥を伴わないグロー
放電が望まれるが、通常グロー放電は大気圧に近い圧力
下では容易に生じない。
The plasma used to form this type of thin film is a glow discharge,
It is formed by various discharges such as corona discharge, silent discharge, and arc discharge, but with the exception of glow discharge, spark columns called streamers tend to form, and the current flows locally, forming one electrode. The energy is concentrated at a specific location on the solid material (corresponding to the substrate 9 in the present invention), producing a large number of pinholes on the material surface and significantly deteriorating the film quality. Therefore, glow discharge without such defects is desired, but normally glow discharge does not easily occur under pressure close to atmospheric pressure.

ところが希ガスは放電により励起され易く、多くの準安
定状態を有していて励起状態の活性粒子を多く作ること
ができる。高い励起状態の活性粒子が高密度に存在する
と炭化水素やハロゲン化炭化水素の解離度をあげること
か容易になる。また希ガス中ではイオンが拡散し易くな
るために放電を広げる機部もある。本発明は希ガスのこ
のような性質に着目して大気圧に近い圧力下でのグロー
放電を可能にしている。
However, rare gases are easily excited by electric discharge, have many metastable states, and can produce many active particles in excited states. The presence of highly excited active particles at a high density makes it easy to increase the degree of dissociation of hydrocarbons and halogenated hydrocarbons. There are also parts that spread the discharge because ions can easily diffuse in rare gases. The present invention focuses on such properties of rare gases and enables glow discharge under pressure close to atmospheric pressure.

本発明で炭素膜を形成する基板9としては金属材料、セ
ラミックスまたはガラスなどの無機材料、あるいは高分
子材料などの有機材料であり、金属材料を試料とび導電
性の支持基板7を用いる場合は放電の局所化を防ぐため
に絶縁板8が必要であるが、非導電性材料の場合は絶縁
板8は不要である。
The substrate 9 on which the carbon film is formed in the present invention is a metal material, an inorganic material such as ceramics or glass, or an organic material such as a polymer material. An insulating plate 8 is necessary to prevent localization of the insulating plate 8, but in the case of a non-conductive material, the insulating plate 8 is not necessary.

次に本発明により炭素膜を形成した実施例を示す。Next, an example in which a carbon film was formed according to the present invention will be shown.

HeとCH,を99:1の割合で混合して成る混合ガス
を毎分4.000 cm″′の流速で1気圧(760T
orr)の反応容器内に通しガラス基板(常温)上に炭
素膜を形成した0反応時間は10分であり、膜成長速度
は0.7ミクロン/10分てあった。反応中は資料表面
全体にグロー放電か認められ、ガラス基板上に形成され
た膜は褐色、均一てあった。
A mixed gas consisting of He and CH mixed at a ratio of 99:1 was heated to 1 atm (760 T) at a flow rate of 4.000 cm'' per minute.
The reaction time for forming a carbon film on a glass substrate (at room temperature) was 10 minutes, and the film growth rate was 0.7 microns/10 minutes. During the reaction, glow discharge was observed over the entire surface of the specimen, and the film formed on the glass substrate was brown and uniform.

一方、混合ガス中の希ガスの成分割合を変えて反応容器
内のプラズマの状況を観測したところ次のような結果が
認められた。He:CH4の割合が、9’7 : 3.
95:5では広がりのあるグロー放電か生ずるか、92
:8になるとクロー放電の広がりが狭くなり、90:1
0になるとグロー放電に代ってコロナ放電が観測された
。成分割合が89.5:10.5になると火花放電が観
測された。
On the other hand, when the plasma situation inside the reaction vessel was observed by changing the component ratio of rare gas in the mixed gas, the following results were observed. The ratio of He:CH4 is 9'7:3.
At 95:5, a wide glow discharge occurs, or at 92
:8, the spread of claw discharge becomes narrower and becomes 90:1.
When the temperature reached 0, corona discharge was observed instead of glow discharge. Spark discharge was observed when the component ratio was 89.5:10.5.

次に本発明によりフッ化炭素膜を形成する場合について
説明する。
Next, the case of forming a fluorocarbon film according to the present invention will be described.

第1図の装置を用い、混合ガスとして次の(イ)〜(ニ
)のいずれかを用いる。ただし、希ガスはヘリウム、ネ
オン、アルゴンの単体または混合体であるが、膜に対す
るスパッタリングを最小とするため質量の軽いヘリウム
が望ましい。
Using the apparatus shown in FIG. 1, one of the following (a) to (d) is used as a mixed gas. However, the rare gas may be helium, neon, or argon alone or in a mixture, but helium, which has a light mass, is preferable in order to minimize sputtering on the film.

(イ)希ガスと炭化水素ガスとフッ素の混合ガス(フッ
素に代えてNF、またはSF6でもよい) (ロ)上記(イ)に膜中の水素引抜き用のフッ素以外の
ハロゲンまたは水素を加えた混合ガス(ハ)希ガスとフ
ッ化炭化水素(CF、を含む)と炭化水素の混合ガス (ニ)上記(ハ)に膜中の水素引抜きの用のフッ素以外
のハロゲンまたは水素を加えた混合ガス次に本発明に従
ってフッ化炭素膜を形成した実施例を説明する。
(a) Mixed gas of rare gas, hydrocarbon gas, and fluorine (NF or SF6 may be used instead of fluorine) (b) Addition of halogen or hydrogen other than fluorine to the above (a) for hydrogen extraction from the membrane Mixed gas (c) Mixed gas of rare gas, fluorinated hydrocarbon (CF), and hydrocarbon (d) Mixture of the above (c) with halogen other than fluorine or hydrogen for extracting hydrogen from the membrane Gas Next, an example in which a fluorocarbon film was formed according to the present invention will be described.

CH,とCF、とHeとを1:1:98の割合で混合し
て成る混合ガスを毎分4,000cm’の流速で1気圧
(760Torr)の反応容器内に通しステンレス薄板
(常温)上にフッ化炭素膜を形成した。反応時間は2分
てあり、形成された膜は褐色てあった。この実験で混合
ガスの成分中CF、の割合を増していくと、グロー放電
の広がりが次第に狭くなっていき、CH4:CF4 :
 Heか1:9:90になると、グロー放電がコロナ放
電に変ってしまうことが確認された。
A mixed gas consisting of a mixture of CH, CF, and He in a ratio of 1:1:98 was passed through a reaction vessel at 1 atm (760 Torr) at a flow rate of 4,000 cm' per minute onto a thin stainless steel plate (at room temperature). A fluorocarbon film was formed on the surface. The reaction time was 2 minutes, and the film formed was brown in color. In this experiment, as the proportion of CF in the mixed gas component increased, the spread of glow discharge gradually became narrower, and CH4:CF4:
It was confirmed that when the ratio of He was 1:9:90, glow discharge changed to corona discharge.

第1の実施例に従って作った炭素膜(厚さ7437人)
および第2の実施例に従って作ったフッ化炭素膜(厚さ
約100人)について赤外分光分析器を用いて赤外光の
透過度を測定した結果は第3図(イ)および(ロ)に示
すようになる。
Carbon membrane made according to the first example (thickness: 7437 mm)
The results of measuring the transmittance of infrared light using an infrared spectrometer for the fluorocarbon film (approximately 100 mm thick) made according to the second example are shown in Figures 3 (a) and (b). It becomes as shown in .

この分析結果から、炭化水素(CH)の赤外吸収波長で
ある 3001.0cm’−”(33,898人)とフッ化炭
素の赤外吸収波長である1 199.1 cm−”(8
3,395人)に透過度の落込みが認められ、炭素膜と
フッ化炭素膜の存在が確認できる。
From this analysis result, the infrared absorption wavelength of hydrocarbons (CH) is 3001.0 cm'-'' (33,898 people), and the infrared absorption wavelength of fluorocarbon is 1199.1 cm-'' (8
(3,395 people), a drop in permeability was observed, confirming the presence of a carbon film and a fluorocarbon film.

本発明により形成される薄膜の1つであるフッ化炭素膜
はすぐれた撥水性を有することが従来から知られている
ので、凝縮型熱交換器のフィンに本発明の方法でフッ化
炭素膜を形成すれば撥水性のすぐれた滴状凝縮面が得ら
れフィンに水滴が付着しにくくなり、熱交換部力の低下
を防止することができる。
It has been known that the fluorocarbon film, which is one of the thin films formed by the present invention, has excellent water repellency. By forming the fins, a droplet-like condensation surface with excellent water repellency can be obtained, making it difficult for water droplets to adhere to the fins, thereby preventing a decrease in the power of the heat exchanger.

以上本発明を炭素膜とフッ化炭素膜について例示したが
、本発明はたとえば窒化けい素膜、アモルファスシリコ
ン、炭化けい素膜などその他の薄膜の形成にも同様に適
用することができることはもちろんである。
Although the present invention has been exemplified above with respect to a carbon film and a carbon fluoride film, it goes without saying that the present invention can be similarly applied to the formation of other thin films such as silicon nitride films, amorphous silicon, and silicon carbide films. be.

(発明の効果) 以上説明したように、本発明においては、約200 T
orrから2気圧の範囲内の圧力下で、約90%の以上
の希ガスと膜成分を含む気体との混合ガスをグロー放電
によりプラズマ状となし、基板上に薄膜として形成する
ようにしたので、真空雰囲気を形成するための真空ポン
プ、真空バルブ、特殊な溶接を要するペルジャーなどの
真空設備が不要となり、設備コストを大幅に低くできる
。さらに薄膜を形成する基板の面積が大きくても大気圧
下の設備で間に合うのでコスト上有利である。また圧力
が高いので従来法より膜成長速度も大きくなる。
(Effect of the invention) As explained above, in the present invention, approximately 200 T
A mixture of about 90% or more rare gas and gas containing film components is made into a plasma by glow discharge under a pressure within the range of 2 atm from orr to 2 atm, and is formed as a thin film on the substrate. This eliminates the need for vacuum equipment such as vacuum pumps, vacuum valves, and pelgers that require special welding to create a vacuum atmosphere, significantly reducing equipment costs. Furthermore, even if the area of the substrate on which the thin film is to be formed is large, it can be done with equipment under atmospheric pressure, which is advantageous in terms of cost. Furthermore, since the pressure is high, the film growth rate is also faster than in the conventional method.

なお、本発明によればグロー放電によるプラズマを利用
した方法であるから熱交換器の放熱フィンのような複雑
な形状の基板面にも低コストで薄膜を均一にコーティン
グすることができる。
According to the present invention, since the method utilizes plasma generated by glow discharge, it is possible to uniformly coat a thin film even on the surface of a substrate having a complicated shape, such as a radiation fin of a heat exchanger, at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による薄膜形成法を実施する装置の概略
線図、第2図は第1図に示した装置の部分拡大斜視図、
第3図は本発明により形成した薄膜の赤外分光分析の結
果を示すグラフである。 l・・・反応容器、2・・・内筒、2a・・・混合ガス
供給口、3・・・混合ガス、4・・・対極、6・−RF
発振器、7・・・支持基板(試料極)、8・・・絶縁板
、9・・・基板、10・・・外部電極 特許出願人  東京瓦斯株式会社 代理人  弁理士  鈴 木 弘 男 鵠−、: 4.、 c榴曹憾 @壊−(癖噴藝
FIG. 1 is a schematic diagram of an apparatus for carrying out the thin film forming method according to the present invention, FIG. 2 is a partially enlarged perspective view of the apparatus shown in FIG. 1,
FIG. 3 is a graph showing the results of infrared spectroscopic analysis of a thin film formed according to the present invention. l...Reaction container, 2...Inner cylinder, 2a...Mixed gas supply port, 3...Mixed gas, 4...Counter electrode, 6...-RF
Oscillator, 7...Support substrate (sample pole), 8...Insulating plate, 9...Substrate, 10...External electrode Patent applicant Tokyo Gas Co., Ltd. Agent Patent attorney Hiroshi Suzuki, : 4. , C Cao Hui @ Breaking

Claims (1)

【特許請求の範囲】[Claims] 約200Torrから2気圧の範囲内の圧力下で、約9
0%以上の希ガスと膜成分を含む気体との混合ガスをグ
ロー放電によりプラズマ状となし、基板上に薄膜として
形成することを特徴とする薄膜形成法。
Under a pressure in the range of about 200 Torr to 2 atmospheres, about 9
A thin film forming method characterized by forming a mixed gas of 0% or more of a rare gas and a gas containing film components into a plasma state by glow discharge, and forming the mixture as a thin film on a substrate.
JP61193934A 1986-08-21 1986-08-21 Thin film formation method Expired - Lifetime JPH0660412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193934A JPH0660412B2 (en) 1986-08-21 1986-08-21 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193934A JPH0660412B2 (en) 1986-08-21 1986-08-21 Thin film formation method

Publications (2)

Publication Number Publication Date
JPS6350478A true JPS6350478A (en) 1988-03-03
JPH0660412B2 JPH0660412B2 (en) 1994-08-10

Family

ID=16316173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193934A Expired - Lifetime JPH0660412B2 (en) 1986-08-21 1986-08-21 Thin film formation method

Country Status (1)

Country Link
JP (1) JPH0660412B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187697A (en) * 1983-04-01 1984-10-24 株式会社クラレ Filler fixing agent for paper
JPH0215171A (en) * 1988-07-04 1990-01-18 Res Dev Corp Of Japan Method and device for atmospheric plasma reaction
JPH02267273A (en) * 1989-04-06 1990-11-01 Sumitomo Electric Ind Ltd Formation of thin film
JPH02267272A (en) * 1989-04-06 1990-11-01 Sumitomo Electric Ind Ltd Thin film forming device
JPH02281734A (en) * 1989-04-24 1990-11-19 Sumitomo Electric Ind Ltd Treating method of surface by plasma
JPH03241739A (en) * 1988-08-15 1991-10-28 Res Dev Corp Of Japan Atmospheric pressure plasma reaction method
JPH04337076A (en) * 1991-05-14 1992-11-25 Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk High-speed film formation by plasma and radical cvd method under high pressure
WO1994014303A1 (en) * 1992-12-09 1994-06-23 Satiko Okazaki Method and apparatus for atmospheric pressure glow discharge plasma treatment
EP0743375A2 (en) * 1995-03-31 1996-11-20 CeramOptec GmbH Method of producing diamond-like-carbon coatings
JP2003527748A (en) * 2000-03-15 2003-09-16 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード A method and apparatus for performing a chemical reaction, and a surface treatment method using the method and apparatus.
US6835523B1 (en) 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
US6936310B1 (en) 1999-04-02 2005-08-30 Sharp Kabushiki Kaisha Plasma processing method
US7164095B2 (en) 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
US7189939B2 (en) 2004-09-01 2007-03-13 Noritsu Koki Co., Ltd. Portable microwave plasma discharge unit
US7271363B2 (en) 2004-09-01 2007-09-18 Noritsu Koki Co., Ltd. Portable microwave plasma systems including a supply line for gas and microwaves
US7806077B2 (en) 2004-07-30 2010-10-05 Amarante Technologies, Inc. Plasma nozzle array for providing uniform scalable microwave plasma generation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107767A (en) * 1975-03-19 1976-09-24 Hitachi Ltd HANDOTAIEPITAKISHARUSONO SEIZOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107767A (en) * 1975-03-19 1976-09-24 Hitachi Ltd HANDOTAIEPITAKISHARUSONO SEIZOHOHO

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541753B2 (en) * 1983-04-01 1993-06-24 Kuraray Co
JPS59187697A (en) * 1983-04-01 1984-10-24 株式会社クラレ Filler fixing agent for paper
JPH0672308B2 (en) * 1988-07-04 1994-09-14 新技術事業団 Atmospheric pressure plasma reaction method
JPH0215171A (en) * 1988-07-04 1990-01-18 Res Dev Corp Of Japan Method and device for atmospheric plasma reaction
JPH03241739A (en) * 1988-08-15 1991-10-28 Res Dev Corp Of Japan Atmospheric pressure plasma reaction method
JPH02267273A (en) * 1989-04-06 1990-11-01 Sumitomo Electric Ind Ltd Formation of thin film
JPH02267272A (en) * 1989-04-06 1990-11-01 Sumitomo Electric Ind Ltd Thin film forming device
JPH02281734A (en) * 1989-04-24 1990-11-19 Sumitomo Electric Ind Ltd Treating method of surface by plasma
JPH04337076A (en) * 1991-05-14 1992-11-25 Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk High-speed film formation by plasma and radical cvd method under high pressure
WO1994014303A1 (en) * 1992-12-09 1994-06-23 Satiko Okazaki Method and apparatus for atmospheric pressure glow discharge plasma treatment
US6835523B1 (en) 1993-05-09 2004-12-28 Semiconductor Energy Laboratory Co., Ltd. Apparatus for fabricating coating and method of fabricating the coating
EP0743375A2 (en) * 1995-03-31 1996-11-20 CeramOptec GmbH Method of producing diamond-like-carbon coatings
EP0743375A3 (en) * 1995-03-31 1997-05-21 Ceramoptec Gmbh Method of producing diamond-like-carbon coatings
US6936310B1 (en) 1999-04-02 2005-08-30 Sharp Kabushiki Kaisha Plasma processing method
JP2003527748A (en) * 2000-03-15 2003-09-16 レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード A method and apparatus for performing a chemical reaction, and a surface treatment method using the method and apparatus.
US7164095B2 (en) 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
US7806077B2 (en) 2004-07-30 2010-10-05 Amarante Technologies, Inc. Plasma nozzle array for providing uniform scalable microwave plasma generation
US7189939B2 (en) 2004-09-01 2007-03-13 Noritsu Koki Co., Ltd. Portable microwave plasma discharge unit
US7271363B2 (en) 2004-09-01 2007-09-18 Noritsu Koki Co., Ltd. Portable microwave plasma systems including a supply line for gas and microwaves

Also Published As

Publication number Publication date
JPH0660412B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
JPS6350478A (en) Formation of thin film
US5627435A (en) Hollow cathode array and method of cleaning sheet stock therewith
Belkind et al. Plasma cleaning of surfaces
US6765216B2 (en) Method and apparatus for producing atomic flows of molecular gases
WO2004086483A1 (en) Plasma film-forming method and plasma film-forming apparatus
JPH1112735A (en) Production of diamond-like thin carbon film
JP3649650B2 (en) Substrate etching method and semiconductor device manufacturing method
JP2004217975A (en) Carbon thin film and manufacturing method therefor
EP1035569A1 (en) Method for forming plasma films
JP2957068B2 (en) Substrate surface treatment method
JPS61136678A (en) Formation of high-hardness carbon film
GB2260340A (en) Forming electrodes on diamond by plasma treating the diamond with inert gases
WO1994014303A1 (en) Method and apparatus for atmospheric pressure glow discharge plasma treatment
JP6996522B2 (en) Manufacturing method of covering member
JPH11162960A (en) Plasma film forming method
JPS63109162A (en) Ion plating method and its device
JP4566119B2 (en) Thin film manufacturing method
JPS63475A (en) Hybrid ion plating device
JPH06158323A (en) Method for synthesizing hard carbon coating film in vapor phase
JPH08217897A (en) Method for plasma surface treatment and device for plastic surface treatment
JPH08134666A (en) Dry etching method
JP2002110671A (en) Method for manufacturing semiconductor element
JPH0860372A (en) Surface treatment of substrate
JPH07206414A (en) Method for synthesizing c60 using plasma
JP2002110672A (en) Method for manufacturing semiconductor element

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term