JPH03241739A - Atmospheric pressure plasma reaction method - Google Patents

Atmospheric pressure plasma reaction method

Info

Publication number
JPH03241739A
JPH03241739A JP63202977A JP20297788A JPH03241739A JP H03241739 A JPH03241739 A JP H03241739A JP 63202977 A JP63202977 A JP 63202977A JP 20297788 A JP20297788 A JP 20297788A JP H03241739 A JPH03241739 A JP H03241739A
Authority
JP
Japan
Prior art keywords
atmospheric pressure
substrate
plasma
glow discharge
upper electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63202977A
Other languages
Japanese (ja)
Other versions
JPH0748480B2 (en
Inventor
Sachiko Okazaki
幸子 岡崎
Masuhiro Kokoma
益弘 小駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP63202977A priority Critical patent/JPH0748480B2/en
Priority to DE68922244T priority patent/DE68922244T2/en
Priority to EP89305671A priority patent/EP0346055B1/en
Priority to US07/522,462 priority patent/US5126164A/en
Priority to US07/774,143 priority patent/US5275665A/en
Publication of JPH03241739A publication Critical patent/JPH03241739A/en
Priority to US08/401,290 priority patent/US5733610A/en
Publication of JPH0748480B2 publication Critical patent/JPH0748480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable the stable glow discharge processing under atmospheric pressure even if the substrate is metal or alloy by disposing a solid dielectric at the surface of an upper electrode. CONSTITUTION:This is equipped with an upper electrode 2 and a lower electrode 3, which apply high voltage to a reactor, and at the surface of the upper electrode 2 is provided a heat-resistant solid dielectric 4 such as glass, ceramic, or plastic. Moreover, at the top of the lower electrode 3 is installed a substrate 5 in the shape of a plate body, or the like. And monomer gas is introduced and plasma is excited under the atmospheric pressure to process the surface of the substrate. Hereby, even in case that the substrate 5 is metal or alloy, the processing by glow discharge plasma highly active and stable under the atmospheric pressure without causing arc discharge becomes possible.

Description

【発明の詳細な説明】 (技術分野) この発明は、大気圧プラズマ反応方法に関するものであ
る。さらに詳しくは、この発明は、大気圧下の高安定性
グロー放電プラズマによる高効率の薄膜形成および/ま
たは表面改質のための改良された処理方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an atmospheric pressure plasma reaction method. More particularly, the present invention relates to an improved processing method for highly efficient thin film formation and/or surface modification by high stability glow discharge plasma under atmospheric pressure.

(背景技術) 従来より、低圧グロー放電プラズマによる製膜法や表面
改質法が広く知られており、産業的にも様々な分野に応
用されてもいる。この低圧グロー放電プラズマによる表
面処理法としては、有機化合物気体のプラズマ化によっ
て薄膜形成および/または表面改質する、いわゆる有機
プラズマ方法があることも知られている。
(Background Art) Film forming methods and surface modification methods using low-pressure glow discharge plasma have been widely known and have been applied to various industrial fields. As a surface treatment method using low-pressure glow discharge plasma, it is also known that there is a so-called organic plasma method in which a thin film is formed and/or the surface is modified by converting an organic compound gas into plasma.

たとえば、真空容器内において炭化水素ガスをプラズマ
励起して、シリコン基板、またはガラス基板上にアモル
ファス炭素膜を析出形成する方法や、エチレンなどの不
飽和炭化水素のプラズマ重合膜を形成する方法などがあ
る。
For example, there are methods to deposit and form an amorphous carbon film on a silicon substrate or glass substrate by plasma excitation of hydrocarbon gas in a vacuum container, and methods to form a plasma polymerized film of unsaturated hydrocarbons such as ethylene. be.

しかしながら、これらの従来より知られている低圧グロ
ー放電プラズマによる表面処理法は、いずれもlXl0
’〜I X 10−3Torr程度の真空下での反応と
なるため、この低圧条件形成の装置および設備が必要で
あり、また大面積基板の処理は難しく、しかも製造コス
トが高価なものとならざるを得ないという欠点があった
However, all of these conventionally known surface treatment methods using low-pressure glow discharge plasma
'~I The drawback was that it did not provide any benefits.

この発明の発明者らは、このような欠点を克服するため
に、希ガスと混合して導入したモノマー気体を大気圧下
にプラズマ励起させて基体表面を処理するプラズマ反応
法をすでに提案しており、その実施においては、優れた
特性と機能を有する表面を実現してもいる。しかしなが
ら、この方法によっても基体表面の処理には限界があり
、特に基体が金属または合金の場合においては、大気圧
下において、アーク放電が発生して処理が困難であると
いう問題があった。
In order to overcome these drawbacks, the inventors of this invention have already proposed a plasma reaction method in which a monomer gas mixed with a rare gas is excited in plasma under atmospheric pressure to treat the surface of a substrate. In its implementation, surfaces with superior properties and functionality have also been achieved. However, even with this method, there is a limit to the treatment of the surface of the substrate, and particularly when the substrate is made of metal or an alloy, there is a problem in that arc discharge occurs under atmospheric pressure, making treatment difficult.

そこで、この発明の発明者らは、すでに提案した反応方
法をさらに発展させて、基体が金属または合金の場合に
おいても、大気圧下において、反応活性が大きく、しか
も高安定性の反応ガスのプラズマを得ることのできる改
良された大気圧下のグロー放電プラズマによる反応方法
をここに完成した。
Therefore, the inventors of the present invention further developed the reaction method already proposed, and created a plasma of a reactive gas with high reaction activity and high stability under atmospheric pressure even when the substrate is a metal or an alloy. Here, we have completed an improved reaction method using glow discharge plasma under atmospheric pressure that can obtain the following results.

(発明の目的) この発明は、以上の通りの事情に鑑みてなされたもので
あり、上記した通りのこれまでの方法の問題点を解決し
、基体が金属または合金の場合においてもアーク放電を
生じず、大気圧下に高活性で高安定性のグロー放電プラ
ズマによる改良された処理方法を提供することを目的と
している。
(Objective of the Invention) This invention was made in view of the above circumstances, and solves the problems of the conventional methods as described above, and prevents arc discharge even when the base is made of metal or alloy. The object of the present invention is to provide an improved treatment method using a highly active and highly stable glow discharge plasma under atmospheric pressure.

(発明の開示) この発明は、上記の目的を実現するために、上部電極の
表面に固体誘電体を配設してなる誘電体被覆電極を有す
る反応容器内において、モノマー気体を導入し、大気圧
下にプラズマ励起させて基体表面を処理することを特徴
とする大気圧プラズマ反応方法を提供するものである。
(Disclosure of the Invention) In order to achieve the above object, the present invention introduces a monomer gas into a reaction vessel having a dielectric-coated electrode formed by disposing a solid dielectric on the surface of an upper electrode, and The present invention provides an atmospheric pressure plasma reaction method characterized by treating the surface of a substrate by exciting plasma under atmospheric pressure.

この発明におけるプラズマ反応装置の一例を示したもの
が第1図である。
FIG. 1 shows an example of a plasma reactor according to the present invention.

たとえばパイレックス製のペルジャー(1)からなる反
応容器内に高電圧を印加する上部電極(2)と下部電極
(3)とを有している。
For example, it has an upper electrode (2) and a lower electrode (3) for applying a high voltage in a reaction vessel made of Pyrex Pelger (1).

この上部型@(2)の表面には、ガラス、セラミックス
、プラスチック等の耐熱性の固体誘電体(4)を設けて
いる。下部電極(3)の上面には板状体等の形状の基体
(5)を設置する。
A heat-resistant solid dielectric material (4) made of glass, ceramics, plastic, etc. is provided on the surface of this upper mold @ (2). A base (5) in the shape of a plate or the like is placed on the upper surface of the lower electrode (3).

He、Ne、Ar等の希ガスもしくは他の不活性ガスと
モノマー気体とを混合した反応ガスは、反応ガス導入口
(6)より複数の開孔(7)を有する多孔管(8)に導
入し、開孔(7)より基体(5)に対して均一に反応ガ
スが拡散するようにしである。未反応気体、希ガス等は
、反応容器の排出口(9)より排出する。
A reaction gas, which is a mixture of rare gas such as He, Ne, Ar, or other inert gas and monomer gas, is introduced from a reaction gas inlet (6) into a porous tube (8) having a plurality of openings (7). In addition, the reaction gas is uniformly diffused into the substrate (5) through the openings (7). Unreacted gas, rare gas, etc. are discharged from the discharge port (9) of the reaction vessel.

下部電極(3)には、温度センサ(10)および加熱し
−タ(11)を配置し、かつアースしてもいる。また、
冷却装置を備えることもできる。
The lower electrode (3) is provided with a temperature sensor (10) and a heating element (11), and is also grounded. Also,
A cooling device may also be provided.

この例においては、ペルジャー(1)内の反応域は大気
圧に保たれている。
In this example, the reaction zone within the Pelger (1) is maintained at atmospheric pressure.

一般的には、大気圧下のグロー放電は容易に生じず、ま
た基体(5)が金属または合金の場合には、高電圧を印
加することによりアーク放電が発生して基体(5)の表
面処理は困難となる。しかしながら、この発明において
は、第1図に示したように上部電極(2)の表面に固体
誘電体(4)を配設することにより、基体(5)が金属
または合金であっても、大気圧下での安定なグロー放電
が可能となる。もちろん、基体(5)がセラミックス、
ガラス、プラスチック等においても、高安定性のグロー
放電を得ることができる。
Generally, glow discharge under atmospheric pressure does not occur easily, and if the substrate (5) is made of metal or alloy, arc discharge is generated by applying a high voltage to the surface of the substrate (5). Processing becomes difficult. However, in this invention, by disposing the solid dielectric (4) on the surface of the upper electrode (2) as shown in FIG. Stable glow discharge is possible under atmospheric pressure. Of course, the base (5) is made of ceramics,
Highly stable glow discharge can be obtained even in glass, plastic, etc.

反応ガスのプラズマ励起については、このグロー放電に
より反応ガスを励起し、高エネルギーのプラズマを形成
する。このプラズマの形成は、高電圧の印加により行う
が、この際に印加する電圧は、被処理表面の性状や表面
処理の時間に応じて決めることができる。安定したグロ
ー放電を得るためには放電電流を徐々に上昇させること
や、金属基体の場合には下部電極(3)とアースとの間
にコンデンサーを介在させること、パルス電源の一使用
などの適宜な手段を採用することができる。
Regarding plasma excitation of the reactive gas, the reactive gas is excited by this glow discharge to form high-energy plasma. This plasma is formed by applying a high voltage, and the voltage applied at this time can be determined depending on the properties of the surface to be treated and the time of surface treatment. In order to obtain a stable glow discharge, it is necessary to gradually increase the discharge current, to interpose a capacitor between the lower electrode (3) and the earth in the case of a metal substrate, to use a pulsed power source, etc. methods can be adopted.

反応ガスについては、特に制限はないが、使用する希ガ
スあるいは不活性ガスとしては、He。
There are no particular restrictions on the reaction gas, but the rare gas or inert gas used is He.

Ne、Ar、N2等の単体または混合物を適宜用いるこ
とができる。形成した薄膜に対するスパッタリングを最
小とするためには、質量の軽いHeを用いるのが好まし
い。また、混合して導入するモノマー気体は、エチレン
、プロピレン等の不飽和炭化水素、または、CF4,0
2F6゜CHF  またはSF6等のハロゲン化炭化水
素や他の官能基を有するあるいは有しない炭化水素類等
の任意のものを用いることができる。希ガスもしくは不
活性ガスとモノマー気体との混合比は、これも特には限
定はないが、希ガスもしくは不活性ガス濃度を約65%
以上、特に約90%以上とするとこが好ましい。また、
導入する反応ガスは、複数種の気体を用いることもでき
る。
A single substance or a mixture of Ne, Ar, N2, etc. can be used as appropriate. In order to minimize sputtering on the formed thin film, it is preferable to use He, which has a light mass. In addition, the monomer gas to be mixed and introduced is unsaturated hydrocarbon such as ethylene or propylene, or CF4,0
Any hydrocarbons such as halogenated hydrocarbons such as 2F6°CHF or SF6 and hydrocarbons with or without other functional groups can be used. The mixing ratio of the rare gas or inert gas and the monomer gas is not particularly limited, but the rare gas or inert gas concentration is approximately 65%.
Above, it is particularly preferable to set it to about 90% or more. Also,
As the reactive gas to be introduced, multiple types of gases can also be used.

使用するモノマー気体の種類と反応条件によってプラズ
マ重合膜、プラズマ改質膜、プラズマエツチング表面等
を得ることができる。
Depending on the type of monomer gas used and reaction conditions, plasma polymerized films, plasma modified films, plasma etched surfaces, etc. can be obtained.

また、大気圧下において、より安定なプラズマを得るた
めに、第2図に示したように、上部電極(2)の下面に
複数の溝部(12)を形成することが有効でもある。
Furthermore, in order to obtain more stable plasma under atmospheric pressure, it is also effective to form a plurality of grooves (12) on the lower surface of the upper electrode (2), as shown in FIG.

溝部(12)は、上部電極(2)の端部付近に集中しや
すいグロー放電を上部電極(2)の表面全体に均一に拡
散させるためのものであり、この溝部(12)によって
、グロー放電の局在化を抑止し、均一に拡散した安定な
グロー放電が生じ、基体(5)に均一な膜厚の薄膜形成
、あるいは、均一な表面処理を行うことができる。この
溝部(12)の形状は複数の穴溝でもよいし、同心円形
の円形溝でもよい。その他の適宜な形とすることができ
きる。また、その深さは限定的ではないが、1〜b また、上部電極(2)は、第1図に示したような平板型
に限定されることはなく、基体(5)の性状、形状等に
応じて、均一な表面処理を行えるように、曲面型にする
こともできる。
The groove (12) is for uniformly diffusing glow discharge, which tends to concentrate near the end of the upper electrode (2), over the entire surface of the upper electrode (2). This suppresses the localization of the glow discharge and generates a uniformly diffused and stable glow discharge, making it possible to form a thin film with a uniform thickness on the substrate (5) or to perform a uniform surface treatment. The shape of this groove (12) may be a plurality of hole grooves or a concentric circular groove. Other suitable shapes may be used. Although the depth is not limited to 1 to 1b, the upper electrode (2) is not limited to the flat type shown in FIG. Depending on the situation, it can also be made into a curved shape so that uniform surface treatment can be performed.

反応ガスをプラズマ域に拡散供給する手段についても多
孔管(8)に限定せず、その他の適当な手段を選択する
ことも可能である。
The means for diffusing and supplying the reaction gas to the plasma region is not limited to the porous tube (8), and other suitable means may also be selected.

なお、使用するモノマー気体によっては、反応促進用の
ハロゲン、酸素、水素などをさらに混入してもよい。
In addition, depending on the monomer gas used, halogen, oxygen, hydrogen, etc. for reaction promotion may be further mixed.

次に実施例を示し、さらに詳しくこの発明について説明
する。
Next, examples will be shown to explain the present invention in more detail.

実施例1 電極直径301nIn巾、電極間距離10n+mの耐熱
性カプトン被覆電極用いた第1図の装置において、次の
条件によりエチレンモノマーからポリエチレン膜を形成
した。
Example 1 A polyethylene film was formed from ethylene monomer under the following conditions in the apparatus shown in FIG. 1 using heat-resistant Kapton coated electrodes with an electrode diameter of 301 nIn width and a distance between electrodes of 10 n+m.

(a)反応ガス流量 CH:  3.68CCH 4 He   :  4500SCCH (b)放電 大気圧、常温 3000Hz、 1.OKV 。(a) Reaction gas flow rate CH: 3.68CCH 4 He: 4500SCCH (b) Discharge Atmospheric pressure, room temperature 3000Hz, 1. OKV.

1〜5IIIA(徐々に上昇させる) (C)基体 シリコン基板 シリコン基板に膜生成速度10000〜20000A 
/h「のポリエチレン膜を得た。透明で、付着強度も良
好であり、膜厚も均一であった。
1-5IIIA (gradually increase) (C) Base silicon substrate Film formation rate on silicon substrate 10,000-20,000A
A polyethylene film of 1/h was obtained. It was transparent, had good adhesion strength, and had a uniform thickness.

また、この例においては、アーク放電を生ずることなく
、均一に拡散した高安定なグロー放電が発生し、高活性
、高安定性のプラズマを得ることができた。
Furthermore, in this example, a uniformly diffused and highly stable glow discharge was generated without causing arc discharge, and a highly active and highly stable plasma could be obtained.

実施例2 実施例1と同様にして、次の条件でポリエチレンテレフ
タレート膜を処理し、その表面を疎水化しな。
Example 2 In the same manner as in Example 1, a polyethylene terephthalate film was treated under the following conditions to make its surface hydrophobic.

(a)反応ガス流量 CF  :  25SCCH He  : 210SCCH (b)放電 大気圧 3000Hz、  3.5KV。(a) Reaction gas flow rate CF: 25SCCH He: 210SCCH (b) Discharge Atmospheric pressure 3000Hz, 3.5KV.

2〜8mA(徐々に上昇させる) 処理開始から5分後の接触角を測定した。接触角は、9
8.0°であった。未処理の場合の接触角は64°であ
った。表面の疎水化が確認された。また、処理状態は均
一であった。
2 to 8 mA (gradually increased) The contact angle was measured 5 minutes after the start of the treatment. The contact angle is 9
It was 8.0°. The contact angle in the untreated case was 64°. Hydrophobicization of the surface was confirmed. Furthermore, the processing conditions were uniform.

実施例3 電導体グラファイト(ラッピング済み)を基体として、
実施例2と同様にして処理した。
Example 3 Using conductor graphite (wrapped) as a base,
It was treated in the same manner as in Example 2.

(a)反応ガス流量 CF  :  968CCH He  :22O3CCH (b)放電 大気圧 3000Hz、  2.8KV。(a) Reaction gas flow rate CF: 968CCH He:22O3CCH (b) Discharge Atmospheric pressure 3000Hz, 2.8KV.

3〜5mA(徐々に上昇させる) 処理開始から15分後の接触角を測定した。接触角は、
131°であった。未処理の場合の接触角は68°であ
った。表面の疎水化が確認された。
3 to 5 mA (gradually increased) The contact angle was measured 15 minutes after the start of the treatment. The contact angle is
It was 131°. The contact angle in the untreated case was 68°. Hydrophobicization of the surface was confirmed.

また、処理状態は均一であった。この例においても、実
施例1と同様にアーク放電を生ずることなく、均一に拡
散した高安定なグロー放電が発生し、高活性、高安定性
のプラズマを得ることができた。
Furthermore, the processing conditions were uniform. In this example as well, as in Example 1, a uniformly diffused and highly stable glow discharge was generated without causing arc discharge, and a highly active and highly stable plasma could be obtained.

もちろん、以上の例により、この発明は限定されるもの
ではない。反応容器の大きさおよび形状、電極の構造、
構成および形状、上部電極下面の溝部の形状およびその
数、反応ガス供給部の構造および構成等の細部について
は、様々な態様が可能であることはいうまでもない。
Of course, the invention is not limited to the above examples. The size and shape of the reaction vessel, the structure of the electrodes,
It goes without saying that various aspects are possible with respect to details such as the structure and shape, the shape and number of grooves on the lower surface of the upper electrode, and the structure and structure of the reaction gas supply section.

(発明の効果) 以上詳しく説明した通り、この発明によって、従来から
の低圧グロー放電プラズマ反応に比べて、真空系の形成
のための装置および設備が必要でなく、コスト低減を可
能とし、しかも大気圧下での1 薄膜形成および/または表面処理を行うことができる。
(Effects of the Invention) As explained in detail above, this invention eliminates the need for equipment and equipment for forming a vacuum system compared to the conventional low-pressure glow discharge plasma reaction, making it possible to reduce costs and increase the cost. 1 Thin film formation and/or surface treatment can be performed under atmospheric pressure.

また、装置の構造および構成が簡単であり、基体を下部
電極上面に直接設置することができるため、大面積基板
の処理も容易である。
Furthermore, the structure and configuration of the device is simple, and the substrate can be placed directly on the upper surface of the lower electrode, making it easy to process large-area substrates.

さらに、基体の材質、形状、性状等を限定することなく
、薄膜形成および/または表面処理を行うことができ、
得られた薄膜の膜厚、表面状態も均一なものとすること
ができる。
Furthermore, thin film formation and/or surface treatment can be performed without limiting the material, shape, properties, etc. of the substrate.
The thickness and surface condition of the obtained thin film can also be made uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明における反応装置の一例を示した断
面図である。 第2図は、この発明における反応装置の別の例を示した
断面図である。 1・・・ペルジャー 2・・・上部電極 3・・・下部電極 4・・・固体誘電体 5・・・基   体 6・・・反応ガス導入口 ア・・・開   孔 2 8・・・多孔管 9・・・排 出 口 10・・・温度センサ 11・・・加熱ヒータ 12・・・溝   部
FIG. 1 is a sectional view showing an example of a reaction apparatus according to the present invention. FIG. 2 is a sectional view showing another example of the reactor according to the present invention. 1... Pelger 2... Upper electrode 3... Lower electrode 4... Solid dielectric 5... Substrate 6... Reactive gas inlet a... Open hole 2 8... Porous Pipe 9...Exhaust port 10...Temperature sensor 11...Heater 12...Groove

Claims (1)

【特許請求の範囲】[Claims] (1)上部電極の表面に固体誘電体を配設してなる誘電
体被覆電極を有する反応容器内において、モノマー気体
を導入して大気圧下にプラズマ励起させて基体表面を処
理することを特徴とする大気圧プラズマ反応方法。
(1) The substrate surface is treated by introducing monomer gas into a reaction vessel having a dielectric-coated electrode formed by disposing a solid dielectric on the surface of the upper electrode and excitation of plasma under atmospheric pressure. Atmospheric pressure plasma reaction method.
JP63202977A 1988-06-06 1988-08-15 Atmospheric pressure plasma reaction method Expired - Lifetime JPH0748480B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63202977A JPH0748480B2 (en) 1988-08-15 1988-08-15 Atmospheric pressure plasma reaction method
DE68922244T DE68922244T2 (en) 1988-06-06 1989-06-06 Process for performing a plasma reaction at atmospheric pressure.
EP89305671A EP0346055B1 (en) 1988-06-06 1989-06-06 Method for causing plasma reaction under atmospheric pressure
US07/522,462 US5126164A (en) 1988-06-06 1990-05-14 Method of forming a thin polymeric film by plasma reaction under atmospheric pressure
US07/774,143 US5275665A (en) 1988-06-06 1991-10-15 Method and apparatus for causing plasma reaction under atmospheric pressure
US08/401,290 US5733610A (en) 1988-06-06 1995-03-09 Atmospheric pressure plasma reaction method of forming a hydrophobic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63202977A JPH0748480B2 (en) 1988-08-15 1988-08-15 Atmospheric pressure plasma reaction method

Publications (2)

Publication Number Publication Date
JPH03241739A true JPH03241739A (en) 1991-10-28
JPH0748480B2 JPH0748480B2 (en) 1995-05-24

Family

ID=16466285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63202977A Expired - Lifetime JPH0748480B2 (en) 1988-06-06 1988-08-15 Atmospheric pressure plasma reaction method

Country Status (1)

Country Link
JP (1) JPH0748480B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286532A (en) * 1991-08-20 1994-02-15 Bridgestone Corporation Method for producing golf balls
US6424091B1 (en) 1998-10-26 2002-07-23 Matsushita Electric Works, Ltd. Plasma treatment apparatus and plasma treatment method performed by use of the same apparatus
US6429400B1 (en) 1997-12-03 2002-08-06 Matsushita Electric Works Ltd. Plasma processing apparatus and method
US6465964B1 (en) 1999-10-25 2002-10-15 Matsushita Electric Works, Ltd. Plasma treatment apparatus and plasma generation method using the apparatus
US7164095B2 (en) 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
US7189939B2 (en) 2004-09-01 2007-03-13 Noritsu Koki Co., Ltd. Portable microwave plasma discharge unit
US7264850B1 (en) 1992-12-28 2007-09-04 Semiconductor Energy Laboratory Co., Ltd. Process for treating a substrate with a plasma
US7271363B2 (en) 2004-09-01 2007-09-18 Noritsu Koki Co., Ltd. Portable microwave plasma systems including a supply line for gas and microwaves
JP2009516031A (en) * 2005-11-14 2009-04-16 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク (ヴイアイティーオー) Method for atmospheric pressure plasma deposition of conjugated polymer coatings
US7806077B2 (en) 2004-07-30 2010-10-05 Amarante Technologies, Inc. Plasma nozzle array for providing uniform scalable microwave plasma generation
JP2010253775A (en) * 2009-04-23 2010-11-11 Towa Corp Molding equipment and molding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622544A (en) * 1985-06-28 1987-01-08 Toshiba Corp Noiseless discharge type gas plasma treating device
JPS6350478A (en) * 1986-08-21 1988-03-03 Tokyo Gas Co Ltd Formation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622544A (en) * 1985-06-28 1987-01-08 Toshiba Corp Noiseless discharge type gas plasma treating device
JPS6350478A (en) * 1986-08-21 1988-03-03 Tokyo Gas Co Ltd Formation of thin film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286532A (en) * 1991-08-20 1994-02-15 Bridgestone Corporation Method for producing golf balls
US7264850B1 (en) 1992-12-28 2007-09-04 Semiconductor Energy Laboratory Co., Ltd. Process for treating a substrate with a plasma
US6429400B1 (en) 1997-12-03 2002-08-06 Matsushita Electric Works Ltd. Plasma processing apparatus and method
US6424091B1 (en) 1998-10-26 2002-07-23 Matsushita Electric Works, Ltd. Plasma treatment apparatus and plasma treatment method performed by use of the same apparatus
US6465964B1 (en) 1999-10-25 2002-10-15 Matsushita Electric Works, Ltd. Plasma treatment apparatus and plasma generation method using the apparatus
US7164095B2 (en) 2004-07-07 2007-01-16 Noritsu Koki Co., Ltd. Microwave plasma nozzle with enhanced plume stability and heating efficiency
US7806077B2 (en) 2004-07-30 2010-10-05 Amarante Technologies, Inc. Plasma nozzle array for providing uniform scalable microwave plasma generation
US7189939B2 (en) 2004-09-01 2007-03-13 Noritsu Koki Co., Ltd. Portable microwave plasma discharge unit
US7271363B2 (en) 2004-09-01 2007-09-18 Noritsu Koki Co., Ltd. Portable microwave plasma systems including a supply line for gas and microwaves
JP2009516031A (en) * 2005-11-14 2009-04-16 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク (ヴイアイティーオー) Method for atmospheric pressure plasma deposition of conjugated polymer coatings
JP2010253775A (en) * 2009-04-23 2010-11-11 Towa Corp Molding equipment and molding method

Also Published As

Publication number Publication date
JPH0748480B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US5185132A (en) Atomspheric plasma reaction method and apparatus therefor
EP0346055B1 (en) Method for causing plasma reaction under atmospheric pressure
JP2537304B2 (en) Atmospheric pressure plasma reaction method and apparatus
US4282267A (en) Methods and apparatus for generating plasmas
JP2589599B2 (en) Blow-out type surface treatment device
US20020129902A1 (en) Low-temperature compatible wide-pressure-range plasma flow device
JPH0773994A (en) Hollow cathode array and surface treatment using it
JPH01100265A (en) Apparatus suitable for plasma surface treatment and production of film layer
JPH03241739A (en) Atmospheric pressure plasma reaction method
JPH0215171A (en) Method and device for atmospheric plasma reaction
JPS5915982B2 (en) Electric discharge chemical reaction device
US20030012890A1 (en) Method for producing a plasma by microwave irradiation
JPH02281734A (en) Treating method of surface by plasma
JPH03229886A (en) Atmospheric glow etching method
JPH06108257A (en) Atmospheric pressure blow-off plasma reaction device
KR100519873B1 (en) Dual face shower head electrode for a magnetron plasma-generating apparatus
JPH04334543A (en) Method and apparatus for atmospheric in-pipe pressure glow plasma reaction
JPS61238962A (en) Method and apparatus for forming film
JPH0248626B2 (en) HAKUMAKUKEISEIHOHOTOSONOSOCHI
JP2957068B2 (en) Substrate surface treatment method
JPS61136678A (en) Formation of high-hardness carbon film
JP3173754B2 (en) Plasma generator
JPH0418456B2 (en)
JPH0111721Y2 (en)
GB2244721A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14