JPH02267272A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH02267272A
JPH02267272A JP8854289A JP8854289A JPH02267272A JP H02267272 A JPH02267272 A JP H02267272A JP 8854289 A JP8854289 A JP 8854289A JP 8854289 A JP8854289 A JP 8854289A JP H02267272 A JPH02267272 A JP H02267272A
Authority
JP
Japan
Prior art keywords
sample substrate
electrode
film forming
thin film
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8854289A
Other languages
Japanese (ja)
Other versions
JP2719183B2 (en
Inventor
Tadashi Tomikawa
幸子 岡崎
Nobuhiko Fujita
益弘 小駒
Shoji Nakagama
唯司 富川
Tsunenobu Kimoto
藤田 順彦
詳治 中釜
恒暢 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1088542A priority Critical patent/JP2719183B2/en
Publication of JPH02267272A publication Critical patent/JPH02267272A/en
Application granted granted Critical
Publication of JP2719183B2 publication Critical patent/JP2719183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently apply a gaseous mixture utilized for film formation and to form a thin film at low cost by utilizing both an ungrounded electrode and a grounded electrode which are opposed with each other as the walls of the upper and lower surfaces of a film formation chamber in a plasma CVD method at the atmospheric pressure. CONSTITUTION:A film formation chamber 1 in a plasma CVD method at the atmospheric pressure is constituted of both the upper and lower surface parts which are made of an ungrounded electrode 2 and a grounded electrode 3 which are mutually opposed as a main body and the high resistors electrically insulating both electrodes 2, 3. A base plate A for a sample is placed on the grounded electrode 3 and a high-frequency power source 6 is connected to the ungrounded electrode. The distance (g) between the base plate 4 and the electrode 2 is regulated to 10-0.1mm and the ratio of the flow rate Q of the supplied gaseous mixture to the volume S of the discharge space is regulated to 1-10<2>sec<-1>. In this constitution, when the gaseous mixture wherein a gaseous raw material is diluted by large amounts of gaseous He is supplied to the discharge space through a feed port 5 and discharged through a discharge port 8 and film formation is performed, the gaseous mixture is effectively utilized and a uniform thin film is formed on the base plate A.

Description

【発明の詳細な説明】 (ア)技術分野 この発明は、大気圧近傍の圧力下でプラズマCVD法に
より、アモルファスシリコン(a−S i : amo
rphous 5ilicon)や窒化チタン(TiN
)などの薄膜を形成する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Technical field The present invention relates to the production of amorphous silicon (a-Si: amo
rphous 5ilicon) and titanium nitride (TiN
) and other thin film forming apparatuses.

例えば、通常膜中に数at%〜数十at%(アトミック
パーセント)のHを含んだアモルファスシリコンa−S
i#は、低コスト太陽電池の材料として有望視されてい
る。このほかにイメージセンサ、光センサ、薄膜トラン
ジスタ、複写機の感光材料などの用途もある。単結晶S
iよりも安価で、大面積のものが得やすいという利点が
ある。
For example, amorphous silicon a-S, which normally contains several at% to several tens of at% (atomic percent) of H in its film.
i# is seen as a promising material for low-cost solar cells. Other uses include image sensors, optical sensors, thin film transistors, and photosensitive materials for copying machines. Single crystal S
It has the advantage that it is cheaper than i and it is easier to obtain one with a large area.

また、TiNは耐摩耗性等を有した表面保護膜として重
要である。
Further, TiN is important as a surface protective film having wear resistance and the like.

このような薄膜形成法として、熱CVD法、プラズマC
VD法等が知られている。
As such thin film forming methods, thermal CVD method, plasma C
The VD method and the like are known.

熱CVD法は、基板を加熱しなければならないので、耐
熱性のある材料にしか用いる事ができない。
Since the thermal CVD method requires heating the substrate, it can only be used with heat-resistant materials.

一方、プラズマCVD法は熱CVD法よりも低温で薄膜
を形成することができる。
On the other hand, the plasma CVD method can form a thin film at a lower temperature than the thermal CVD method.

このため、耐熱性の乏しい低コストガラス基板、高分子
フィルムなどの上に薄膜を形成する事ができ、広く使用
されている。
Therefore, thin films can be formed on low-cost glass substrates, polymer films, etc. with poor heat resistance, and they are widely used.

プラズマCVD法では、励起エネルギーが、熱ではなく
、プラズマ中のエレクトロン、イオンの運動エネルギー
、中性のラデイカルの化学エネルギーの形で与えられる
。このため、基板の温度を熱CVD法より低く出来るの
である。
In the plasma CVD method, excitation energy is provided not in the form of heat but in the form of the kinetic energy of electrons and ions in the plasma, and the chemical energy of neutral radicals. Therefore, the temperature of the substrate can be lowered than in thermal CVD.

−例として、アモルファスシリコンa−Siは、5pe
arによりグロー放電による薄膜形成方法が発明され、
膜中に適量のHを取り込む事ができ、膜中欠陥密度を低
減する事ができたので、太陽電池やセンサ等のデバイス
用途に耐えつるものが作られるようになった。
- As an example, amorphous silicon a-Si is 5pe
A thin film forming method using glow discharge was invented by AR.
Since it was possible to incorporate an appropriate amount of H into the film and reduce the defect density in the film, it became possible to create products that could withstand device applications such as solar cells and sensors.

W、B、5pear、  P、  G、  Lecom
ber:5olid  Coswum、、  ILpH
93(1975) これは、平行平板型の電極に、100にHz〜13.5
6M1lzの交流電圧を印加し、0.1〜2↑orrの
低圧でSiL/L、SiH,−SiF4/ Hsなどの
混合ガス中で、グロー放電を起こさせるものである。
W, B, 5pear, P, G, Lecom
ber:5olid Coswum, ILpH
93 (1975) This is a parallel plate type electrode with a frequency of 100 to 13.5 Hz.
An AC voltage of 6M11z is applied to cause glow discharge in a mixed gas such as SiL/L, SiH, -SiF4/Hs, etc. at a low pressure of 0.1 to 2↑orr.

もちろん、ドーパントを入れる事もある。これは、PH
,/It、、B2H,/H,などのガスを混ぜることに
よって行う。
Of course, dopants may also be added. This is PH
This is done by mixing gases such as , /It, , B2H, /H, etc.

(イ)従来技術 5pearの発明以来、a−Siの製造装置は、改良を
重ねているが、基本的には、低圧でグロー放電を行うも
のであった。
(a) Prior Art Since the invention of 5pear, a-Si manufacturing equipment has been improved many times, but basically it performs glow discharge at low pressure.

0.1〜10Torr程度の低圧でなければ、グロー放
電が起こらない。これよりも高い圧力になると、放電が
局所的なアーク放電に移行してしまい、耐熱性の乏しい
基板上への成膜や、大面積への均一な成膜が行えなかっ
た。それで、このような圧力が選ばれる。
Glow discharge does not occur unless the pressure is as low as 0.1 to 10 Torr. When the pressure is higher than this, the discharge shifts to a localized arc discharge, making it impossible to form a film on a substrate with poor heat resistance or to form a film uniformly over a large area. So such pressure is chosen.

従って、容器は高価な真空チャンバを必要とし、また真
空排気装置が設置されていなければならなかった。
Therefore, the container required an expensive vacuum chamber and had to be equipped with a vacuum pump.

特に、a −Siなどを用いた太陽電池等の光電変換材
料や、TiNなどの表面保護膜などの場合、大面積の薄
膜が一挙に形成できる、という事がコスト面から強く要
求される。
In particular, in the case of photoelectric conversion materials such as solar cells using a-Si or the like, or surface protective films such as TiN, it is strongly required from a cost standpoint that a large area thin film can be formed all at once.

ところが、プラズマCVD法は、グロー放電を維持して
プラズマを安定に保つ。グロー放電は、真空中(0,1
〜10Torr程度)でしか安定に維持できない。
However, in the plasma CVD method, glow discharge is maintained to keep plasma stable. Glow discharge occurs in vacuum (0,1
~10 Torr).

真空中でしか成膜出来ないのであるから、大面積のもの
を作ろうとすると、真空容器の全体を大きくしなければ
ならない。
Films can only be formed in a vacuum, so if you want to make a large-area film, you have to make the entire vacuum container larger.

真空排気装置も大出力のものが必要になる。そうすると
、設備が著しく高価なものになってしまう。
A high-output vacuum pump is also required. In this case, the equipment becomes extremely expensive.

(つ)大気圧下プラズマCVD法 大面積向−戊膜、均一処理は、低コスト化の為にぜひと
も必要゛であるが、設備費が高くなれば何にもならない
(1) Atmospheric pressure plasma CVD method Large-area film deposition and uniform processing are absolutely necessary to reduce costs, but if equipment costs increase, nothing will be achieved.

ところが、最近になって、大気圧下で、プラズマCVD
法を可能とするような発明がなされた。
However, recently, plasma CVD under atmospheric pressure
An invention was made that made law possible.

例えば、i 特開昭63−50478号(S、63゜3
.3公開)がある。
For example, i JP-A No. 63-50478 (S, 63°3
.. 3 public).

本発明者らは、 ■ 特願昭63−199647号(S、  63.8.
10出願)■ 特願昭63−199648号(S、 6
3.8.10出1m)iv  特願昭63−19964
9号(S、 63.8.10出願)■ 特願昭63−2
25355号(S、 63.9.8出願)厨 特願昭6
3−227121号(S、63.9.9出願)軸 特願
昭63−230555号(S、 63.9.14出願)
輯 特願昭63−233130号(S、  63.9.
17出願)などの発明をしている。
The present inventors: (1) Japanese Patent Application No. 63-199647 (S, 63.8.
10 applications)■ Patent Application No. 199648 (S, 6
3.8.10 1m) iv Patent application 1986-19964
No. 9 (S, filed on August 10, 1983)■ Patent application 1986-2
No. 25355 (S, filed on September 8, 1989)
Patent Application No. 3-227121 (S, filed on 9/9/63) Patent Application No. 1983-230555 (S, filed on 9/14/63)
輯 Patent Application No. 1983-233130 (S, 63.9.
17 applications) and other inventions.

第2回にiiで示された装置で、電極間の高抵抗体がな
いものを示す。
The second part shows the device indicated by ii, which does not have a high-resistance element between the electrodes.

成膜室1の中には、互いに対向する電極2.3が設けら
れる。一方が接地されており、これを接地電極3と呼ぶ
。他方を非接地電極2といって区別する。
Inside the film forming chamber 1, electrodes 2.3 facing each other are provided. One end is grounded and is called a ground electrode 3. The other electrode is referred to as the non-grounded electrode 2.

電極3の上に試料基板4を置く。対向電極の中間の空間
にガスが供給されるように電極2.3の側方にガス導入
口5とガス排出口8を設ける。原料ガスをHeガスで大
量に希釈した混合ガスはノズル5から導入され、放電空
間に供給され、ガス排出口8より成膜室1の外に排出さ
れる。ここで放電空間の体積Sに対して、放電空間に供
給される混合ガスの流量Qは、Q/Sが、15ec−’
 〜10’5ec−’となるようにするのはプラズマ中
央部でのガス置換を有効に行い、大きな面積で均一な成
膜を得るためである。
A sample substrate 4 is placed on the electrode 3. A gas inlet 5 and a gas outlet 8 are provided on the sides of the electrodes 2.3 so that gas is supplied to the space between the opposing electrodes. A mixed gas obtained by diluting a large amount of raw material gas with He gas is introduced through the nozzle 5, supplied to the discharge space, and exhausted to the outside of the film forming chamber 1 through the gas exhaust port 8. Here, with respect to the volume S of the discharge space, the flow rate Q of the mixed gas supplied to the discharge space is Q/S, which is 15 ec-'
The reason for setting it to 10'5 ec-' is to effectively perform gas replacement at the center of the plasma and to obtain uniform film formation over a large area.

ここで、試料基板4と電極2との距離gは10mm〜0
.1ms+となるようにする。
Here, the distance g between the sample substrate 4 and the electrode 2 is 10 mm to 0
.. Make it 1ms+.

非接地電極2には、高周波電源6を接続する。A high frequency power source 6 is connected to the non-grounded electrode 2 .

これは、例えば13.56MHzのRF発振器と増幅器
とを用いることができる。
This can use, for example, a 13.56 MHz RF oscillator and an amplifier.

(1)発明が解決しようとする課題 大気圧下でのプラズマCVD法による薄膜形成は、低コ
スト化にとって極めて有望な方法であるが、プラズマ中
央部でのガス置換を有効に行ない均一な成膜を行なうた
めに、放電空間の体積Sに対して、放電空間に供給する
混合ガスの流量QをQ/Sが1sec−’〜10コ5e
c−’となるようにしている。
(1) Problems to be solved by the invention Thin film formation by plasma CVD under atmospheric pressure is an extremely promising method for cost reduction, but it requires effective gas replacement in the center of the plasma to ensure uniform film formation. In order to perform
c-'.

そのため従来の装置では供給する混合ガスのうち、主成
分であるHeガスが多量に必要となるという問題があっ
た。
Therefore, in the conventional apparatus, there was a problem in that a large amount of He gas, which is the main component, of the mixed gas to be supplied was required.

特に第2図に示す電極2と試料基板40間の距離gが小
さいときには、成膜室に供給された混合ガスが有効に放
電空間に供給されず、膜そのものがつきにくいという問
題があった。
Particularly when the distance g between the electrode 2 and the sample substrate 40 shown in FIG. 2 is small, there is a problem that the mixed gas supplied to the film forming chamber is not effectively supplied to the discharge space, making it difficult for the film itself to adhere.

(オ)目的 本発明の目的は、低コスト化に有望な大気圧下でのプラ
ズマCVD法による薄膜形成法において、成膜に使用す
る混合ガス量を節約し、効率良く成膜に用いることによ
り、より低コストで薄膜を形成する装置を提供する事で
ある。
(E) Purpose The purpose of the present invention is to save the amount of mixed gas used for film formation and to efficiently use it for film formation in a thin film formation method using plasma CVD under atmospheric pressure, which is promising for cost reduction. The purpose of the present invention is to provide an apparatus for forming thin films at a lower cost.

(力)発明の構成 本発明は、成膜に使用する混合ガス量を節約し、効率的
に利用するために、プラズマ形成に用いる互いに対向し
た電極を成膜室に対向する壁とする。
(Force) Structure of the Invention In the present invention, in order to save and efficiently utilize the amount of mixed gas used for film formation, mutually opposing electrodes used for plasma formation are arranged as walls facing the film forming chamber.

第1図は、本発明の一具体例として非接地電極2と、接
地電極3がそれぞれ成膜室1の上面、下面を構成してい
る例を示す。
FIG. 1 shows a specific example of the present invention in which a non-grounded electrode 2 and a grounded electrode 3 constitute the upper and lower surfaces of a film forming chamber 1, respectively.

成膜室1はお互いに対向した非接地電極2と接地電極3
を主体とした上面部、下面部と、お互いに対向した電極
2.3を電気的に絶縁する高抵抗体とにより構成される
A film forming chamber 1 has a non-grounded electrode 2 and a grounded electrode 3 facing each other.
It is composed of an upper surface portion and a lower surface portion mainly composed of , and a high resistance body that electrically insulates the electrodes 2.3 facing each other.

電極3の上に試料基板4を置く。原料ガスをHeガスで
大量に希釈した混合ガスは、成膜室1の側面に設けられ
たガス供給口5から導入され、対向するふたつの電極2
.3の間を通り、ガス供給口50反対側の側面に設けら
れたガス排出口8より成膜室1の外に排出される。
A sample substrate 4 is placed on the electrode 3. A mixed gas obtained by diluting a large amount of raw material gas with He gas is introduced from a gas supply port 5 provided on the side of the film forming chamber 1, and is connected to two opposing electrodes 2.
.. 3 and is discharged to the outside of the film forming chamber 1 from a gas discharge port 8 provided on the side opposite to the gas supply port 50.

ここで放電空間の体積Sに対して、放電空間に供給され
る混合ガスの流量Qは、Q/Sが1sec””〜10’
5ec−’となるようにするのは、プラズマ中央部での
ガス置換を有効に行ない、大きな面積で均一な成膜を得
るためである。
Here, with respect to the volume S of the discharge space, the flow rate Q of the mixed gas supplied to the discharge space is such that Q/S is 1 sec"" to 10'
The reason for setting it to 5 ec-' is to effectively perform gas replacement at the center of the plasma and to obtain uniform film formation over a large area.

また、試料基板4と電極2との距離gは10IIlff
i〜0.1mmとなるようにする。
Also, the distance g between the sample substrate 4 and the electrode 2 is 10IIlff
i~0.1mm.

非接地電極2には、高周波電源6を接続する。A high frequency power source 6 is connected to the non-grounded electrode 2 .

これは例えば13.56MHzのRF発振器と増幅器と
を用いることができる。
This can use, for example, a 13.56 MHz RF oscillator and an amplifier.

第1図に示したように、本発明ではプラズマ形成用の電
極を成膜室の壁としている。そのため成膜室に供給され
る混合ガスは、放電空間以外に回り込むことなく、有効
に放電に寄与するため、均一成膜のために必要なQ /
 S = 1〜10’5ac−’を維持するために余分
な混合ガスを必要とせず、混合ガス量の節約ができる。
As shown in FIG. 1, in the present invention, the electrode for plasma formation is used as the wall of the film forming chamber. Therefore, the mixed gas supplied to the film forming chamber effectively contributes to the discharge without going around to areas other than the discharge space, so the Q /
No extra mixed gas is required to maintain S=1 to 10'5ac-', and the amount of mixed gas can be saved.

特に電極2と試料基板4との間の距離gが小さい場合に
、その効果が大き〈従来の装置ではなかなか放電空間の
ガス置換を行なうことはむずかしかったのに対し、強制
的にガス置換を行なうことができる。
This effect is particularly large when the distance g between the electrode 2 and the sample substrate 4 is small (it was difficult to perform gas replacement in the discharge space with conventional devices, but this method performs forced gas replacement). be able to.

また、電極が成膜室の外壁となっているため装置自体も
非常にコンパクトにすることができ、装置コストを低減
することができる。
Furthermore, since the electrodes form the outer wall of the film-forming chamber, the apparatus itself can be made very compact, and the apparatus cost can be reduced.

実施例 第1図及び第2図に示す装置を用いて、本発明の装置と
従来の装置で電極2と試料基板4との間の距離gを変化
させて、a−Si膜を形成し、その時成膜速度を比較し
た。
Example Using the apparatus shown in FIGS. 1 and 2, an a-Si film was formed by changing the distance g between the electrode 2 and the sample substrate 4 between the apparatus of the present invention and the conventional apparatus, At that time, the film formation speed was compared.

成膜条件を第1表に、結果を第2表に示す。The film forming conditions are shown in Table 1, and the results are shown in Table 2.

第1表 成膜条件 原料ガス流量  5 sccm Heガス流量   2500scca 基板温度    250℃ 成膜圧力    大気圧 電極面積    40X 40as’ RF周波数   13.56M七 RFパワー   30W 電極、基板間距Mg  10am。5a+a、 law
基 板     石英ガラス(4011*X 40m5
)本発明の装置では、ガス供給口5に導入された混合ガ
スが全て電極2と試料基板40間の放電空間に供給でき
るため、従来例に比べ成膜速度が速く、効率よく混合ガ
スを使用することができる。
Table 1 Film forming conditions Raw material gas flow rate 5 sccm He gas flow rate 2500 scca Substrate temperature 250°C Film forming pressure Atmospheric pressure Electrode area 40X 40as' RF frequency 13.56M7 RF power 30W Distance between electrode and substrate Mg 10am. 5a+a, law
Substrate quartz glass (4011*X 40m5
) In the apparatus of the present invention, all the mixed gas introduced into the gas supply port 5 can be supplied to the discharge space between the electrode 2 and the sample substrate 40, so the film formation speed is faster than in the conventional example, and the mixed gas can be used efficiently. can do.

特にgが小さい場合には本発明の効果が大きい。The effect of the present invention is particularly great when g is small.

これは従来例ではガス供給口5から導入された混合ガス
が、本発明に比べ放電空間に入りにくくなっているため
である。
This is because in the conventional example, the mixed gas introduced from the gas supply port 5 is less likely to enter the discharge space than in the present invention.

また、本発明法の装置は、従来法の装置に比べてコンパ
クトであり装置コストも低減できることは明らかである
Furthermore, it is clear that the apparatus of the present invention is more compact than the conventional apparatus, and the cost of the apparatus can be reduced.

(キ)発明の効果 本発明の装置によれば、設備コストの低減が期待できる
大気圧プラズマCVD法において、成膜に使用する混合
ガスを効率的に用いることができるので、より低コスト
で薄膜を形成することができる。
(G) Effects of the Invention According to the apparatus of the present invention, in the atmospheric pressure plasma CVD method, which is expected to reduce equipment costs, the mixed gas used for film formation can be used efficiently, so thin films can be formed at lower costs. can be formed.

また、成膜装置自体もコンパクトにできるのでより低コ
スト化が可能である。
Furthermore, since the film forming apparatus itself can be made compact, costs can be further reduced.

特に広い面積の成膜を必要とする太陽電池や薄膜デイス
プレィ用TPTなどの作製に用いると効果的である。
It is particularly effective when used in the production of solar cells, TPT for thin film displays, etc., which require film formation over a wide area.

なお、放電空間の体積Sというのは、電極の面積へと電
極2と試料基板4の距離gとをかけたものである。つま
り S=A−g  である。
Note that the volume S of the discharge space is the product of the area of the electrode and the distance g between the electrode 2 and the sample substrate 4. In other words, S=A-g.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜形成装置の概略断面図の1例。第
2図は特願昭63−199647号で開示された薄膜形
成法に用いられる装置を、特願昭63−230555号
で開示された薄膜形成法に基づいて修正を加えた装置の
概略断面図。 1・・・・成膜室 2・・・・非接地電極 3・・・・接地電極 4・・・・試料基板 5・・・・ガス導入口 6・・・・’f7 F電源 7・・・・ヒータ 8・・・・ガス排出口
FIG. 1 is an example of a schematic cross-sectional view of the thin film forming apparatus of the present invention. Figure 2 is a schematic cross-sectional view of an apparatus used in the thin film forming method disclosed in Japanese Patent Application No. 199647/1980, which has been modified based on the thin film forming method disclosed in Japanese Patent Application No. 63/230555. . 1...Film forming chamber 2...Non-grounded electrode 3...Grounded electrode 4...Sample substrate 5...Gas inlet 6...'f7 F power source 7... ...Heater 8...Gas exhaust port

Claims (1)

【特許請求の範囲】[Claims] (1)互いに対向したふたつの電極の対向面の少なくと
も一方に試料基板を設置し、上記試料基板とその試料基
板と対向する電極との間の距離もしくは、上記試料基板
とその試料基板と対向する別の試料基板との間の距離を
10mm以下、0.1mm以上とし、膜形成用ガスとH
eからなる混合ガスを、放電空間に供給するガス流量Q
を放電空間の体積Sで割った値Q/Sが1〜10^2s
ec^−^1になるように、試料基板上の放電空間に供
給し、大気圧近傍の圧力下で、対向電極に与えた高周波
電圧により、試料基板とその試料基板に対向する電極と
の間、もしくは試料基板とその試料基板に対向する別の
試料基板との間にグロー放電を起こさせ、試料基板上に
薄膜を形成する薄膜形成装置において、上記電極を成膜
室の対向する壁とすることを特徴とする薄膜形成装置。
(1) A sample substrate is installed on at least one of the opposing surfaces of two electrodes facing each other, and the distance between the sample substrate and the electrode facing the sample substrate or the distance between the sample substrate and the electrode facing the sample substrate is determined. The distance between the sample substrate and another sample substrate is 10 mm or less and 0.1 mm or more, and the film forming gas and H
Gas flow rate Q that supplies the mixed gas consisting of e to the discharge space
The value Q/S divided by the volume S of the discharge space is 1 to 10^2 s
ec^-^1 between the sample substrate and the electrode facing the sample substrate by supplying it to the discharge space on the sample substrate and applying a high-frequency voltage to the counter electrode under pressure near atmospheric pressure. Alternatively, in a thin film forming apparatus that forms a thin film on a sample substrate by causing glow discharge between a sample substrate and another sample substrate facing the sample substrate, the electrodes are used as opposing walls of a film forming chamber. A thin film forming apparatus characterized by:
JP1088542A 1989-04-06 1989-04-06 Thin film forming equipment Expired - Lifetime JP2719183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1088542A JP2719183B2 (en) 1989-04-06 1989-04-06 Thin film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1088542A JP2719183B2 (en) 1989-04-06 1989-04-06 Thin film forming equipment

Publications (2)

Publication Number Publication Date
JPH02267272A true JPH02267272A (en) 1990-11-01
JP2719183B2 JP2719183B2 (en) 1998-02-25

Family

ID=13945740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088542A Expired - Lifetime JP2719183B2 (en) 1989-04-06 1989-04-06 Thin film forming equipment

Country Status (1)

Country Link
JP (1) JP2719183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691322A (en) * 1988-08-29 1997-11-25 E.R. Squibb & Sons, Inc. Quinoline and pyridine anchors for HMG-CoA reductase inhibitors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778546A (en) * 1980-11-05 1982-05-17 Stanley Electric Co Ltd Production of photoconductive silicon layer
JPS5811781A (en) * 1981-07-15 1983-01-22 Nippon Denso Co Ltd Plasma cvd device
JPS60204880A (en) * 1984-03-27 1985-10-16 Matsushita Electric Ind Co Ltd Production of insulating film
JPS6350478A (en) * 1986-08-21 1988-03-03 Tokyo Gas Co Ltd Formation of thin film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778546A (en) * 1980-11-05 1982-05-17 Stanley Electric Co Ltd Production of photoconductive silicon layer
JPS5811781A (en) * 1981-07-15 1983-01-22 Nippon Denso Co Ltd Plasma cvd device
JPS60204880A (en) * 1984-03-27 1985-10-16 Matsushita Electric Ind Co Ltd Production of insulating film
JPS6350478A (en) * 1986-08-21 1988-03-03 Tokyo Gas Co Ltd Formation of thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691322A (en) * 1988-08-29 1997-11-25 E.R. Squibb & Sons, Inc. Quinoline and pyridine anchors for HMG-CoA reductase inhibitors

Also Published As

Publication number Publication date
JP2719183B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
TW438901B (en) Apparatus for depositing a film with a four-corners grounded susceptor
JP4018625B2 (en) Multi-stage CVD method for thin film transistors
JP2588388B2 (en) Coating method
JP2001523038A (en) Annealing method of amorphous film using microwave energy
JP3146112B2 (en) Plasma CVD equipment
JPH09129555A (en) Plasma chemical deposition device
JP2700208B2 (en) Thin film formation method
JPH02267272A (en) Thin film forming device
JP2730693B2 (en) Thin film formation method
JPH11121381A (en) Plasma chemical vapor depositing device
JP2652676B2 (en) Thin film forming equipment
JP4890313B2 (en) Plasma CVD equipment
JP2700177B2 (en) Thin film forming method and apparatus
JPH02248038A (en) Manufacture of polycrystalline semiconductor substance layer
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JP2650046B2 (en) Thin film forming equipment
JPH05335244A (en) Forming method for amorphous silicon thin film
JPS60128612A (en) Plasma cvd apparatus
JP2670560B2 (en) Plasma processing equipment
JPH06283436A (en) Method and apparatus for plasma cvd
JP2723112B2 (en) Thin film formation method
JPH0273979A (en) Formation of thin film
JPS6299463A (en) Deposited film formation
JPH0645258A (en) Manufacture of amorphous semiconductor thin film
JPH04266015A (en) Preparation of hydrogenated amorphous silicon film