JPS635039B2 - - Google Patents

Info

Publication number
JPS635039B2
JPS635039B2 JP57139948A JP13994882A JPS635039B2 JP S635039 B2 JPS635039 B2 JP S635039B2 JP 57139948 A JP57139948 A JP 57139948A JP 13994882 A JP13994882 A JP 13994882A JP S635039 B2 JPS635039 B2 JP S635039B2
Authority
JP
Japan
Prior art keywords
sam
acid
exchange resin
treatment
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57139948A
Other languages
Japanese (ja)
Other versions
JPS5929700A (en
Inventor
Shozo Shiozaki
Hideaki Yamada
Yoshiki Tani
Akira Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP57139948A priority Critical patent/JPS5929700A/en
Priority to FR8313208A priority patent/FR2531714B1/en
Priority to IT22555/83A priority patent/IT1169764B/en
Priority to DE3329218A priority patent/DE3329218C2/en
Priority to CH4446/83A priority patent/CH653341A5/en
Publication of JPS5929700A publication Critical patent/JPS5929700A/en
Publication of JPS635039B2 publication Critical patent/JPS635039B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Saccharide Compounds (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はS―アデノシル―L―メチオニン(以
下、SAMと略称する)の精製法に関し、さらに
詳しくは、夾雑物を含む粗SAM含有液より高純
度のSAMを効率よく単離精製する方法に関する。 SAMは生体内において脂肪、蛋白質、糖類な
どの代謝に関与する重要な物質である。而して近
時かかるSAMに肝血症、過度脂血症、動脈硬化
症、抑うつ病および神経病形の精神病発現、変性
関接症神経病痛覚、不眠症などに対する治療効果
のあることが見い出されており、その大量生産が
期待されている。 従来、SAMの精製法に関しては数多くの方法
が知られており、その具体例として、例えば強
酸性陽イオン交換樹脂で処理する工程と活性炭で
処理する工程を組合せる方法(特公昭46−13680
号)、弱酸性陽イオン交換樹脂で処理する方法
(Enzymologia第29巻、第283頁)、H+型弱酸性
陽イオン交換樹脂で処理する工程と活性炭で処理
する工程を組合せる方法(特開昭56−145299号)、
キレート樹脂で処理する方法(特公昭53−
20998号など)、SAMとピクリン酸またはピク
ロロン酸との塩を経由する方法(特公昭49−
21079号、同52−35727号)などが知られている。 これらの方法のうちの方法は、や,の
方法に比較して工程が非常に簡便で且つ経済的で
あるという利点を有するが、SAMと夾雑物との
分離が不完全で医薬として使用しうるような高純
度のSAMが得られないという大きな欠点があり、
またその改良法として開発されたの方法の場合
には、純度は向上するが活性炭によるSAMの吸
着が強いためSAMの回収率が低下し、回収率を
上げるため溶出液中の有機溶媒量を多くすると夾
雑物との分離が不充分になるという欠点を有して
いた。 そこで本発明者らは従来技術におけるこれらの
欠点を改良すべく鋭意検討を進めた結果、粗
SAM含有液からSAMを単離精製するにあたり
H+型弱酸性陽イオン交換樹脂による処理と多孔
性合成樹脂吸着剤による処理とを組み合わせるこ
とがきわめて効果的であることを見い出し、本発
明を完成した。 すなわち本発明の目的は、高純度のSAMを効
率よく単離精製する方法を提供することにあり、
かかる本発明の目的は、粗SAM含有液を(A)H+
弱酸性陽イオン交換樹脂と(B)多孔性合成樹脂吸着
剤による処理工程を任意の順序でそれぞれ一度以
上結合した精製工程に供給し、精製することによ
つて達成される。 本発明において用いられる粗SAM含有液の製
造法は特に限定されるものではなく、例えば
SAM生産能を有するサツカロマイセス
(Saccharomyses)属、キヤンデイダ(Candida)
属、ムコール(Mucor)属などに属する微生物
をメチオニン含有培地で培養し、菌体内および/
または菌体外にSAMを生成蓄積せしめ、過塩素
酸、塩酸、硫酸、犠酸、リン酸などの抽出剤を用
いて抽出する方法、アデノシン三リン酸とメチオ
ニンとをメチオニン―アデノシルトランスフエラ
ーゼの存在下に酵素反応する方法などが例示され
る。 本発明においては、かかる粗SAM含有液を処
理するに際して、(A)H+型弱酸性陽イオン交換樹
脂による処理と(B)多孔性合成樹脂吸着剤による処
理とを任意の組合せにおいてそれぞれ一度以上行
うことが必須の要件である。 ここで、前記(A)の処理は次のようにして行われ
る。すなわち、粗SAM含有液のPHを通常3.5〜
6.5、好ましくは4〜6.5に調整する。この際、粗
SAM含有液のPHが低すぎるとSAMがイオン交換
樹脂に保持吸着され難くなり、PHが高いとSAM
が分解し易くなる。PHの調整法はとくに限定され
るものではないが、水に難溶性または不溶性の沈
殿を形成する酸、アルカリの組み合わせを用いる
か、あるいは陰イオン交換樹脂(OH-型)を用
いる方法が好ましい。 次いで、粗SAM含有液をH+型弱酸性陽イオン
交換樹脂に接触させ陽電荷をもつたSAMを選択
的に吸着させるとともに、中性及び陰電荷をもつ
た夾雑物を除去する。 用いられる弱酸性陽イオン交換樹脂はイオン交
換基としてカルボン酸基を有するものであればよ
く、その具体的な例としてはアンバーライトIRC
―50、IRC―84(ローム・アンド・ハース社製)、
ダイヤイオンWK20(三菱化成社製)などが挙げ
られる。また接触法はバツチ法、カラム法のいず
れでもよいが、操作性、不純物除去の容易さの点
でカラム法がより好ましい。 次いでイオン交換樹脂に吸着されたSAMは通
常PH3.0以下、好ましくは0.2〜2.0の無機酸また有
機酸の水溶液で分別溶出することによつて分離さ
れる。用いられる酸はとくに限定されるものでは
なく、例えば塩酸、硫酸、リン酸、酢酸、P―ト
ルエンスルホン酸などが例示される。また必要に
応じて、SAMの分別溶出に先立つて水または希
薄な酸水溶液(例えばPH3.5以上)で洗浄するこ
とにより微量存在する不純物を除去することもで
きる。 一方、前記(B)の処理は次のようにして行われ
る。すなわち、粗SAM含有液をPH6.5以下に調整
したのち、多孔性合成樹脂吸着剤と接触させる。
この際、PHの調整法や吸着剤との接触法は(A)の場
合と同様の方法を用いることができる。かかる吸
着剤との接触により夾雑物たるアミン類やメチル
チオアデノシン(SAMの分解生成物)、色素など
が選択的に吸着される。またSAMは条件を選択
することにより通過させることも吸着させること
もでき、吸着させた場合にはPH3.5以下、好まし
くは0.2〜3.0の無機酸または有機酸の水溶液で分
別溶出することによりSAMを選択的に分離する
ことができる。 用いられる無機酸及び有機酸は(A)の場合と同一
範ちゆうのものであればいずれでもよく、また均
一な溶液を形成可能な範囲内であれば必要に応じ
てメタノール、エタノール、n―プロパノール、
イソプロパノール、アセトン、メチルエチルケト
ン、蟻酸メチル、酢酸エチル、ジオキサン、トル
エンなどのごとき有機溶剤を併用することができ
る。さらに所望により、(A)の場合と同様に分別溶
出に先立つて水または希薄酸水溶液で洗浄するこ
とによつて微量の不純物を除去することができ
る。 また本発明で用いられる多孔性合成樹脂吸着剤
は水不溶性で巨大網状構造を有するものであり、
その具体例としてスチレン―ジビニルベンゼン共
重合体を母核とする非極性型吸着剤、例えばアン
バーライトXAD―2、XAD―4(ローム・アン
ド・ハース社製)、ダイヤイオンHP―10,HP―
20,HP―30,HP―40,HP―50(三菱化成社製)
などや、アクリル酸エステル及び/またはメタク
リル酸エステルの重合体またはこれらの単量体と
スチレン、ジビニルベンゼンなどのごとき非極性
単量体との共重合体を母核とする中間極性型吸着
剤、例えばアンバーライトXAD―7,XAD―8
(ローム・アンド・ハース社製)、ダイヤイオン
HP―ZMG(三菱化成社製)などがあげられる。
これらは所望により適宜併用することができる。 これらの吸着剤は粗SAM含有液中のアミン類
や色素などの夾雑物を選択的に吸着する点で共通
性を有するが、SAMの吸着能に関しては種類に
よつて選択性があり、非極性型吸着剤の場合には
SAMは吸着されず、中間極性型吸着剤の場合に
はPHの領域によつて異なり、比較的弱酸性の領域
では吸着が起こり、比較的強酸性の領域では吸着
が生じない。 本発明においては、かかる(A),(B)の処理がそれ
ぞれ一度以上実施される。処理の順序は適宜組み
合せればよく、その具体例として(A)―(B),(B)
―(A),(A)―(B)―(A),(B)―(A)―(B)などが挙げ

れ、さらに必要に応じて前記(A),(B)の処理工程を
付加することができる。しかし、処理工程が増す
につれて工程が複雑化し経済性が低下するので、
通常は前記4種の組合せが選択される。 また(A)の処理に先立つて(B)の処理を行う場合に
は、合成樹脂吸着剤にSAMを吸着させることな
く不純物のみを選択的に吸着させるような条件を
設定することが操作上有利であり、その具体的な
手法として、例えば無極性型吸着剤を使用する方
法、中間極性型吸着剤を用いてPH3.5以下、好ま
しくは0.2〜3.0の酸性領域で接触させる方法など
が挙げられる。 さらに精製工程の最後の段階で(B)の処理を行う
場合には、SAMを合成樹脂吸着剤に一旦吸着さ
せた後分離しても、また吸着させずに通過させて
もよい。 本発明においては、かかる精製工程から溶出す
るSAM溶出画分を、必要に応じて減圧濃縮した
のち、メタノール、エタノール、n―プロパノー
ル、イソプロパノール、n―ブタノール、イソブ
タノール、メトキシエタノール、アセトン、メチ
ルエチルケトン、酸メチル、酸エチル、酢酸メチ
ル、酢酸エチル、酢酸ブチル、ジオキサンなどの
ごとき有機溶剤と接触させることによつて、
SAMと無機酸または有機酸より成る塩の沈殿が
得られる。また、SAM溶出液を有機溶媒を用い
ず、陰イオン交換樹脂(OH-型)あるいはSAM
の分別溶出に用いた酸と水に不溶性の塩を形成さ
せるアルカリ類を用いて過剰の酸をを除去した
後、減圧下に溶媒を蒸発乾固せしめてもSAMの
無機または有機酸との塩の粉末得ることができ
る。 また本発明で用いるH+型弱酸性イオン交換樹
脂はSAMを溶出した段階でH+型に再生されてい
るので特別の再生処理は必ずしも必要でなく、水
洗するだけでくり返し使用することができる。さ
らに合成吸着剤の再生は、例えば50%メタノール
水溶液で洗浄したのち水洗を施すだけで容易に実
施することができる。 かくして本発明によれば、再生の容易な処理手
段によつて簡単な操作できわめて高純度のSAM
を効率よく取得することができる。 以下に実施例を挙げて本発明をさらに具体的に
説明する。 実施例 1 シユレンク(Schlenk.F.)らの培地〔ジヤーナ
ル・オブ・バイオロジカル・ケミストリー(J.
Biol.chem.)229巻、1037頁(1957)参照〕でサ
ツカロマイセス(Saccharomyces・Cerevisiae
1FO2044を培養してSAMを蓄積させた菌体210g
を1.5N過塩素酸1000mlに懸濁し、室温で1時間、
振とう抽出を行なつた。次いで、遠心分離により
菌体残渣を除去した抽出液に、炭酸水素カリウム
を加えてPH5.0に調整し、生じた過塩素酸カリウ
ムの沈殿を吸引過により除去し、SAM1.15g
を含む抽出液1080mlを得た。この抽出液を弱酸性
陽イオン交換樹脂アンバーライトIRC―50(H+
型)(商品名、ローム・アンド・ハース社製)200
mlを詰めたカラムに通しSAMを保持吸着させた。
カラムを0.0001N酢酸400mlで洗浄した後、0.1N
硫酸でSAMを分別溶出させSAM溶出画分630ml
を得た。このSAM溶出画分を弱塩基性陰イオン
交換樹脂アンバーライトIRA―45(OH-型)(商
品名、ローム・アンド・ハース社製)でPH4.5に
調整した後、アクリル酸エステル系合成樹脂吸着
剤アンバーライトXAD―7(商品名、ローム・ア
ンド・ハース社製)1.5を詰めたカラムに通し
てSAMを保持吸着させた。カラムを0.0001N酢
酸2で洗浄した後、0.1N硫酸でSAMを分別溶
出させSAM溶出画分1440mlを得た。このSAM溶
出画分を全容200mlになるまで減圧濃縮した後、
アセトン800mlを添加してSAM硫酸塩の沈殿を得
た。遠心分離により沈殿を取得し少量の水に溶解
した後、凍結乾燥してペーパークロマトグラフイ
ー、シリカゲル薄層クロマトグラフイーで均一で
ある白色粉末のSAM硫酸塩174gを得た。SAM
の回収率及び純度を第1表に示した。 実施例 2 実施例1と同様にして得たSAM1.06gを含む
抽出液1000mlを得た。この抽出液を弱酸性陽イオ
ン交換樹脂アンバーライトIRC―84(H+型)(商
品名、ローム・アンド・ハース社製)200mlを詰
めたカラムに通し、SAMを保持吸着させた。カ
ラムを0.0001N塩酸400mlで洗浄した後、0.2N塩
酸でSAMを分別溶出させSAM溶出画分640mlを
得た。このSAM溶出画分を弱塩基性陰イオン交
換樹脂アンバーライトIRA―45(OH-型)でPH4.8
に調整した後、合成吸着剤アンバーライトXAD
―7(商品名、ローム・アンド・ハース社製)1.5
を詰めたカラムに通してSAMを保持吸着させ
た。カラムを0.0001N酢酸2で洗浄した後、
0.1N塩酸:アセトン(1:0.1容量比)の混合溶
媒を通してSAMを分別溶出させ、SAM溶出画分
1120mlを得た。 このSAM溶出画分を全溶200mlになるまで減圧
濃縮した後、弱塩基性陰イオン交換樹脂アンバー
ライトIRA―45(OH-型)を加えてPH2.0にし、吸
引過により樹脂を除いた液を減圧濃縮した。
この濃縮液を凍結乾燥して、ペーパークロマトグ
ラフイー、シリカゲル薄層クロマトグラフイーで
均一である白色粉末のSAM塩酸塩1.19gを得た。
SAM回収率及び純度を第1表に示した。 実施例 3 実施例1と同様にしてSAM0.98gを含む抽出
液950mlを得た。この抽出液をスチレン―ジビニ
ルベンゼン系合成樹脂吸着剤アンバーライト
XAD―2(商品名、ローム・アンド・ハース社
製)200mlを詰めたカラムに通し、SAMを吸着さ
せることなく通過させた。SAMを含む画分を集
め炭酸水素カリウムを加えてPH5.0に調整し、生
じた過塩素酸カリウムの沈殿を吸引過により除
去しSAM含有液を得た。 次いで、このSAM含有液を弱酸性陽イオン交
換樹脂アンバーライトIRC―50(H+型)200mlを
詰めたカラムに通しSAMを保持吸着させた。カ
ラムを0.0001N酢酸400mlで洗浄した後、0.1N硫
酸でSAMを分別溶出させSAM溶出画分630mlを
得た。このSAM溶出画分を全容200mlになるまで
減圧濃縮した後、アセトン800mlを添加してSAM
硫酸塩の沈殿を得た。遠心分離により沈殿を取得
し少量の水に溶解した後、凍結乾燥してペーパー
クロマトグラフイー、シリカゲル薄層クロマトグ
ラフイーで均一である白色粉末のSAM硫酸塩
1.50gを得た。SAMの回収率及び純度を第1表
に示した。 実施例 4 実施例3と同様にしてSAMを蓄積せしめた菌
体200gを0.1N蟻酸1000mlに懸濁し60℃で10分間
加熱したのち直ちに冷却した。遠心分離によつて
菌体を除去して得たSAM0.91gを含有する抽出
液1020mlをアクリル酸エステル系合成樹脂吸着剤
アンバーライトXAD―8(商品名、ローム・アン
ド・ハース社製)200mlを詰めたカラムに通し、
SAMを樹脂に吸着させることなくカラムを通過
させた。SAMを含む画分を集め弱塩基性陰イオ
ン交換樹脂アンバーライトIRA―45(OH-型)で
PH5.0に調整した後、弱酸性陽イオン交換樹脂ア
ンバーライトIRC―84(H+型)200mlを詰めたカ
ラムに通し、SAMを保持吸着させた。カラムを
0.0001N塩酸400mlで洗浄した後、0.2N塩酸で
SAMを分別溶出させ、SAM溶出画分710mlを得
た。このSAM抽出画分に弱塩基性陰イオン交換
樹脂アンバーライトIRA―45(OH-型)を加えて
PH2.0にし、吸引過により樹脂を除いた液を
減圧濃縮した。この濃縮液を凍結乾燥して、ペー
パークロマトグラフイー、シリカゲル薄層クロマ
トグラフイーで均一である白色粉末のSAM塩酸
塩1.01gを得た。SAMの回収率及び純度を第1
表に示した。 実施例 5 実施例3と同様にしてスチレン―ジビニルベン
ゼン系合成樹脂吸着剤及びH+型弱酸性陽イオン
交換樹脂による処理を行つて得たSAM溶出画分
630mlを、さらにアクリル酸エステル系合成樹脂
吸着剤アンバーライトXAD―7 200mlを詰めた
カラムに通し、SAMを樹脂に吸着させることな
くカラムを通過させた。SAMを含む画分を集め、
全容200mlになるまで減圧濃縮した後、アセトン
800mlを添加してSAM硫酸塩の沈殿を得た。遠心
分離により沈殿を取得し、少量の水に溶解した
後、凍結乾燥してペーパークロマトグラフイーで
均一である白色粉末のSAM硫酸塩1.46gを得た。
SAMの回収率及び純度を第1表に示した。 比較例 1 実施例1と同様にして得られたSAM0.98gを
含む抽出液950mlに、炭酸水素カリウムを加えて
PH5.0に調整し、生じた過塩素酸カリウムの沈殿
を吸引過により除去することによりSAM含有
液を得た。このSAM含有液を弱酸性陽イオン交
換樹脂アンバーライトIRC―50(H+型)200mlを
詰めたカラムに通しSAMを保持吸着させた。カ
ラムを0.0001N酢酸400mlで洗浄した後、0.1N硫
酸でSAMを分別溶出させるSAM溶出画分610ml
を得た。このSAM溶出画分をクロマトグラフ用
活性炭200mlを詰めたカラムに通してSAMを吸着
させた。0.2N硫酸600mlでカラムを洗浄した後、
1.0N硫酸:メタノール(1:1容量比)の混合
溶媒を通してSAMを分別溶出させ、SAM溶出画
分を得た。 このSAM溶出画分を全容200mlになるまで減圧
濃縮した後、アセトン800mlを添加してSAM硫酸
塩の沈殿を得た。遠心分離により沈殿を取得し少
量の水に溶解した後、凍結乾燥してペーパークロ
マトグラフイー、シリカゲル薄層クロマトグラフ
イーで均一である白色粉末のSAM硫酸塩1.28g
を得た。SAMの回収率及び純度を第1表に示し
た。 比較例 2 弱酸性陽イオン交換樹脂アンバーライトIRC―
50(H+型)による処理のみにとどめること以外は
実施例1と同様にして実験を行つた。結果を第1
表に示した。
The present invention relates to a method for purifying S-adenosyl-L-methionine (hereinafter abbreviated as SAM), and more specifically, to a method for efficiently isolating and purifying highly purified SAM from a crude SAM-containing solution containing impurities. SAM is an important substance involved in the metabolism of fats, proteins, sugars, etc. in vivo. Recently, it has been discovered that SAM has a therapeutic effect on hepatemia, hyperlipidemia, arteriosclerosis, depression and neurological manifestations of psychosis, degenerative joint disease, neurological pain sensation, insomnia, etc. mass production is expected. Conventionally, many methods have been known for purifying SAM, including a method that combines a process of treatment with a strongly acidic cation exchange resin and a process of treatment with activated carbon (Japanese Patent Publication No. 46-13680).
), a method of treatment with a weakly acidic cation exchange resin (Enzymologia Vol. 29, p. 283), a method of combining a process of treatment with an H + type weakly acidic cation exchange resin and a process of treatment with activated carbon (Unexamined Japanese Patent Publication No. (Sho 56-145299),
Method of treatment with chelate resin (Special Publication 1973-
20998, etc.), a method via a salt of SAM and picric acid or picroronic acid (Special Publication No. 1973-
No. 21079, No. 52-35727) are known. Among these methods, the process has the advantage of being very simple and economical compared to the method described above, but the separation of SAM and impurities is incomplete and it cannot be used as a medicine. The major drawback is that high purity SAM cannot be obtained.
In addition, in the case of the method developed as an improved method, although the purity is improved, the recovery rate of SAM decreases due to the strong adsorption of SAM by activated carbon, and in order to increase the recovery rate, the amount of organic solvent in the eluate is increased. This has the disadvantage that separation from impurities is insufficient. Therefore, the present inventors conducted intensive studies to improve these shortcomings in the conventional technology, and as a result, the rough
When isolating and purifying SAM from a SAM-containing solution
The inventors have discovered that it is extremely effective to combine treatment with an H + -type weakly acidic cation exchange resin and treatment with a porous synthetic resin adsorbent, and have completed the present invention. That is, an object of the present invention is to provide a method for efficiently isolating and purifying highly pure SAM,
The object of the present invention is to process a crude SAM-containing liquid through a purification process in which a treatment process using (A) an H + -type weakly acidic cation exchange resin and (B) a porous synthetic resin adsorbent are combined at least once in any order. This is achieved by supplying and refining. The method for producing the crude SAM-containing liquid used in the present invention is not particularly limited, and for example,
Candida, a genus of Saccharomyses with SAM-producing ability
Microorganisms belonging to the genus Mucor, etc. are cultured in a methionine-containing medium, and the intracellular and/or
Alternatively, a method in which SAM is generated and accumulated outside the bacterial body and extracted using an extractant such as perchloric acid, hydrochloric acid, sulfuric acid, sacrificial acid, or phosphoric acid, or adenosine triphosphate and methionine are extracted using methionine-adenosyltransferase. An example is a method of carrying out an enzymatic reaction in the presence of. In the present invention, when treating such a crude SAM-containing liquid, (A) treatment with an H + type weakly acidic cation exchange resin and (B) treatment with a porous synthetic resin adsorbent are carried out at least once each in an arbitrary combination. It is an essential requirement to do so. Here, the process (A) is performed as follows. In other words, the pH of the crude SAM-containing liquid is usually 3.5 ~
Adjust to 6.5, preferably 4 to 6.5. At this time, roughly
If the pH of the SAM-containing solution is too low, it will be difficult for SAM to be retained and adsorbed by the ion exchange resin, and if the pH is high, SAM
becomes easier to decompose. The method for adjusting the pH is not particularly limited, but it is preferable to use a combination of acid and alkali that forms precipitates that are poorly soluble or insoluble in water, or to use an anion exchange resin (OH - type). Next, the crude SAM-containing solution is brought into contact with an H + -type weakly acidic cation exchange resin to selectively adsorb positively charged SAM and remove neutral and negatively charged impurities. The weakly acidic cation exchange resin used may be one having a carboxylic acid group as an ion exchange group, and a specific example is Amberlite IRC.
-50, IRC-84 (manufactured by Rohm and Haas),
Examples include Diaion WK20 (manufactured by Mitsubishi Kasei Corporation). The contact method may be either a batch method or a column method, but the column method is more preferred in terms of operability and ease of removing impurities. Next, the SAM adsorbed on the ion exchange resin is separated by fractional elution with an aqueous solution of an inorganic or organic acid having a pH of usually 3.0 or less, preferably 0.2 to 2.0. The acid used is not particularly limited, and examples include hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, and P-toluenesulfonic acid. Further, if necessary, trace amounts of impurities can be removed by washing with water or a dilute acid aqueous solution (for example, pH 3.5 or higher) prior to the fractional elution of SAM. On the other hand, the process (B) above is performed as follows. That is, after adjusting the pH of the crude SAM-containing liquid to 6.5 or lower, it is brought into contact with a porous synthetic resin adsorbent.
At this time, the same methods as in (A) can be used for adjusting the pH and contacting with the adsorbent. By contact with such an adsorbent, impurities such as amines, methylthioadenosine (a decomposition product of SAM), and pigments are selectively adsorbed. In addition, SAM can be allowed to pass through or be adsorbed by selecting conditions, and when adsorbed, SAM can be fractionated and eluted with an aqueous solution of an inorganic or organic acid with a pH of 3.5 or less, preferably 0.2 to 3.0. can be selectively separated. The inorganic acids and organic acids used may be any of those in the same range as in the case of (A), and methanol, ethanol, n-propanol may be used as necessary as long as a uniform solution can be formed. ,
Organic solvents such as isopropanol, acetone, methyl ethyl ketone, methyl formate, ethyl acetate, dioxane, toluene, etc. can be used in combination. Furthermore, if desired, trace amounts of impurities can be removed by washing with water or a dilute acid aqueous solution prior to fractional elution, as in the case of (A). Furthermore, the porous synthetic resin adsorbent used in the present invention is water-insoluble and has a giant network structure.
Specific examples include non-polar adsorbents that have a styrene-divinylbenzene copolymer as a core, such as Amberlite XAD-2, XAD-4 (manufactured by Rohm and Haas), Diaion HP-10, HP-
20, HP-30, HP-40, HP-50 (manufactured by Mitsubishi Chemical Corporation)
Intermediate polar adsorbents whose core is a polymer of acrylic ester and/or methacrylic ester, or a copolymer of these monomers and a non-polar monomer such as styrene or divinylbenzene; For example, Amberlight XAD-7, XAD-8
(manufactured by Rohm and Haas), Diaion
Examples include HP-ZMG (manufactured by Mitsubishi Kasei Corporation).
These can be used in combination as desired. These adsorbents have a common feature in that they selectively adsorb impurities such as amines and dyes in crude SAM-containing liquids, but their ability to adsorb SAM is selective depending on the type; In the case of type adsorbent
SAM is not adsorbed, and in the case of intermediate polarity adsorbents, it depends on the PH range, with adsorption occurring in relatively weakly acidic regions and no adsorption in relatively strongly acidic regions. In the present invention, each of the processes (A) and (B) is performed at least once. The order of processing can be combined as appropriate; a specific example is (A) - (B), (B)
- (A), (A) - (B) - (A), (B) - (A) - (B), etc., and if necessary, the above treatment steps (A) and (B) can be carried out. can be added. However, as the number of processing steps increases, the process becomes more complex and economical efficiency decreases.
Usually, a combination of the above four types is selected. Furthermore, when performing treatment (B) prior to treatment (A), it is operationally advantageous to set conditions that allow the synthetic resin adsorbent to selectively adsorb only impurities without adsorbing SAM. Specific methods include, for example, a method using a non-polar adsorbent, a method using an intermediate polar adsorbent and contacting in an acidic region of PH 3.5 or less, preferably 0.2 to 3.0. . Furthermore, when carrying out the treatment (B) at the final stage of the purification process, SAM may be adsorbed on a synthetic resin adsorbent and then separated, or it may be allowed to pass through without being adsorbed. In the present invention, the SAM elution fraction eluted from such a purification step is concentrated under reduced pressure as necessary, and then subjected to methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, methoxyethanol, acetone, methyl ethyl ketone, By contacting with an organic solvent such as methyl acid, ethyl acetate, methyl acetate, ethyl acetate, butyl acetate, dioxane, etc.
A precipitate of a salt consisting of SAM and an inorganic or organic acid is obtained. In addition, the SAM eluate can be used with anion exchange resin (OH - type) or SAM without using an organic solvent.
After removing the excess acid using an alkali that forms a water-insoluble salt with the acid used for fractional elution, the solvent is evaporated to dryness under reduced pressure. powder can be obtained. Furthermore, since the H + type weakly acidic ion exchange resin used in the present invention is regenerated into the H + type at the stage of eluting SAM, special regeneration treatment is not necessarily necessary, and it can be used repeatedly by simply washing with water. Furthermore, the synthetic adsorbent can be easily regenerated by simply washing it with, for example, a 50% aqueous methanol solution and then washing with water. Thus, according to the present invention, SAM of extremely high purity can be produced with simple operations using easily regenerated processing means.
can be obtained efficiently. The present invention will be explained in more detail with reference to Examples below. Example 1 Medium of Schlenk.F. et al. [Journal of Biological Chemistry (J.
229, p. 1037 (1957)] and Saccharomyces Cerevisiae .
210g of bacterial cells that have accumulated SAM by culturing 1FO2044
Suspended in 1000ml of 1.5N perchloric acid and incubated at room temperature for 1 hour.
Shaking extraction was performed. Next, potassium bicarbonate was added to the extract from which bacterial cell residue had been removed by centrifugation, and the pH was adjusted to 5.0.The resulting potassium perchlorate precipitate was removed by suction, and 1.15 g of SAM was obtained.
1080 ml of extract containing . This extract was added to a weakly acidic cation exchange resin Amberlite IRC-50 (H +
mold) (product name, manufactured by Rohm and Haas) 200
The SAM was retained and adsorbed by passing through a column packed with ml.
After washing the column with 400ml of 0.0001N acetic acid,
Separately elute SAM with sulfuric acid and collect 630ml of SAM elution fraction.
I got it. This SAM elution fraction was adjusted to pH 4.5 using a weakly basic anion exchange resin Amberlite IRA-45 (OH - type) (trade name, manufactured by Rohm & Haas), and then treated with an acrylic ester synthetic resin. The SAM was retained and adsorbed by passing through a column packed with adsorbent Amberlite XAD-7 (trade name, manufactured by Rohm and Haas) 1.5. After washing the column with 0.0001N acetic acid 2, SAM was fractionally eluted with 0.1N sulfuric acid to obtain 1440 ml of SAM elution fraction. After concentrating this SAM elution fraction under reduced pressure to a total volume of 200 ml,
800 ml of acetone was added to obtain a precipitate of SAM sulfate. A precipitate was obtained by centrifugation, dissolved in a small amount of water, and then lyophilized to obtain 174 g of SAM sulfate as a white powder that was homogeneous in paper chromatography and silica gel thin layer chromatography. SAM
The recovery rate and purity are shown in Table 1. Example 2 1000 ml of an extract containing 1.06 g of SAM obtained in the same manner as in Example 1 was obtained. This extract was passed through a column packed with 200 ml of weakly acidic cation exchange resin Amberlite IRC-84 (H + type) (trade name, manufactured by Rohm and Haas) to retain and adsorb SAM. After washing the column with 400 ml of 0.0001N hydrochloric acid, SAM was fractionally eluted with 0.2N hydrochloric acid to obtain 640 ml of SAM elution fraction. This SAM elution fraction was treated with a weakly basic anion exchange resin Amberlite IRA-45 (OH - type) at pH 4.8.
Synthetic adsorbent Amberlite XAD after adjusting to
-7 (Product name, manufactured by Rohm and Haas) 1.5
The SAM was retained and adsorbed through a column packed with After washing the column with 0.0001N acetic acid 2,
SAM was fractionally eluted through a mixed solvent of 0.1N hydrochloric acid and acetone (1:0.1 volume ratio), and the SAM elution fraction was
Obtained 1120ml. After concentrating this SAM elution fraction under reduced pressure until the total solution amounted to 200 ml, weakly basic anion exchange resin Amberlite IRA-45 (OH - type) was added to adjust the pH to 2.0, and the resin was removed by suction. was concentrated under reduced pressure.
This concentrated solution was freeze-dried to obtain 1.19 g of SAM hydrochloride as a white powder that was uniform in paper chromatography and silica gel thin layer chromatography.
The SAM recovery rate and purity are shown in Table 1. Example 3 In the same manner as in Example 1, 950 ml of an extract containing 0.98 g of SAM was obtained. This extract is applied to the styrene-divinylbenzene based synthetic resin adsorbent Amberlite.
It was passed through a column packed with 200 ml of XAD-2 (trade name, manufactured by Rohm and Haas) without adsorbing SAM. Fractions containing SAM were collected and potassium bicarbonate was added to adjust the pH to 5.0, and the resulting potassium perchlorate precipitate was removed by suction filtration to obtain a SAM-containing solution. Next, this SAM-containing solution was passed through a column packed with 200 ml of weakly acidic cation exchange resin Amberlite IRC-50 (H + type) to retain and adsorb SAM. After washing the column with 400 ml of 0.0001N acetic acid, SAM was fractionally eluted with 0.1N sulfuric acid to obtain 630 ml of SAM elution fraction. After concentrating this SAM elution fraction under reduced pressure to a total volume of 200 ml, 800 ml of acetone was added to the SAM.
A sulfate precipitate was obtained. Obtain the precipitate by centrifugation, dissolve it in a small amount of water, and then lyophilize it to obtain SAM sulfate as a white powder that is uniform in paper chromatography and silica gel thin layer chromatography.
1.50g was obtained. The recovery rate and purity of SAM are shown in Table 1. Example 4 200 g of bacterial cells that had accumulated SAM in the same manner as in Example 3 were suspended in 1000 ml of 0.1N formic acid, heated at 60°C for 10 minutes, and then immediately cooled. 1020 ml of the extract containing 0.91 g of SAM obtained by removing bacterial cells by centrifugation was mixed with 200 ml of the acrylic acid ester synthetic resin adsorbent Amberlite XAD-8 (trade name, manufactured by Rohm and Haas). Pass it through a packed column,
The SAM was passed through the column without being adsorbed to the resin. The fractions containing SAM were collected and treated with a weakly basic anion exchange resin Amberlite IRA-45 (OH - type).
After adjusting the pH to 5.0, it was passed through a column packed with 200 ml of weakly acidic cation exchange resin Amberlite IRC-84 (H + type) to retain and adsorb SAM. column
After washing with 400ml of 0.0001N hydrochloric acid, wash with 0.2N hydrochloric acid.
SAM was fractionally eluted to obtain 710 ml of SAM elution fraction. A weakly basic anion exchange resin Amberlite IRA-45 (OH - type) was added to this SAM extraction fraction.
The pH was adjusted to 2.0, the resin was removed by suction, and the liquid was concentrated under reduced pressure. This concentrated solution was freeze-dried to obtain 1.01 g of SAM hydrochloride as a white powder, which was uniform in paper chromatography and silica gel thin layer chromatography. The recovery rate and purity of SAM are the first
Shown in the table. Example 5 SAM elution fraction obtained by treatment with a styrene-divinylbenzene-based synthetic resin adsorbent and an H + type weakly acidic cation exchange resin in the same manner as in Example 3.
630 ml was further passed through a column packed with 200 ml of acrylic acid ester-based synthetic resin adsorbent Amberlite XAD-7, and the SAM was allowed to pass through the column without being adsorbed to the resin. Collect the fractions containing SAM,
After concentrating under reduced pressure until the total volume is 200ml, add acetone.
800 ml was added to obtain a precipitate of SAM sulfate. A precipitate was obtained by centrifugation, dissolved in a small amount of water, and then lyophilized to obtain 1.46 g of SAM sulfate as a white powder that was homogeneous by paper chromatography.
The recovery rate and purity of SAM are shown in Table 1. Comparative Example 1 Potassium hydrogen carbonate was added to 950 ml of an extract containing 0.98 g of SAM obtained in the same manner as in Example 1.
The pH was adjusted to 5.0, and the resulting potassium perchlorate precipitate was removed by suction to obtain a SAM-containing solution. This SAM-containing solution was passed through a column packed with 200 ml of weakly acidic cation exchange resin Amberlite IRC-50 (H + type) to retain and adsorb SAM. After washing the column with 400ml of 0.0001N acetic acid, separate and elute SAM with 0.1N sulfuric acid. 610ml of SAM elution fraction.
I got it. This SAM elution fraction was passed through a column packed with 200 ml of activated carbon for chromatography to adsorb SAM. After washing the column with 600ml of 0.2N sulfuric acid,
SAM was fractionally eluted through a mixed solvent of 1.0N sulfuric acid and methanol (1:1 volume ratio) to obtain a SAM elution fraction. This SAM elution fraction was concentrated under reduced pressure to a total volume of 200 ml, and then 800 ml of acetone was added to precipitate SAM sulfate. Obtain the precipitate by centrifugation, dissolve it in a small amount of water, and freeze-dry to obtain 1.28 g of SAM sulfate as a white powder that is homogeneous by paper chromatography and silica gel thin layer chromatography.
I got it. The recovery rate and purity of SAM are shown in Table 1. Comparative example 2 Weakly acidic cation exchange resin Amberlite IRC-
An experiment was conducted in the same manner as in Example 1, except that the treatment was limited to 50 (H + type). Results first
Shown in the table.

【表】【table】

【表】 この結果より、本発明による方法を用いれば公
知の方法と比べて高純度のSAMが高い回収率で
得られることが明らかである。
[Table] From the results, it is clear that the method according to the present invention allows highly purified SAM to be obtained at a higher recovery rate than the known method.

Claims (1)

【特許請求の範囲】[Claims] 1 粗S―アデノシル―L―メチオニン含有液を
精製工程に供給してS―アデノシル―L―メチオ
ニンを精製する方法において、前記精製工程が(A)
H+型弱酸性陽イオン交換樹脂で処理する工程と
(B)多孔性合成樹脂吸着剤で処理する工程を、それ
ぞれ一度以上、任意の順序で結合したものである
ことを特徴とするS―アデノシル―L―メチオニ
ンの精製法。
1. In a method for purifying S-adenosyl-L-methionine by supplying a crude S-adenosyl-L-methionine-containing liquid to a purification step, the purification step comprises (A)
Process of treatment with H + type weakly acidic cation exchange resin
(B) A method for purifying S-adenosyl-L-methionine, which comprises combining the steps of treatment with a porous synthetic resin adsorbent at least once in any order.
JP57139948A 1982-08-13 1982-08-13 Purification of s-adenosyl-l-methionine Granted JPS5929700A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57139948A JPS5929700A (en) 1982-08-13 1982-08-13 Purification of s-adenosyl-l-methionine
FR8313208A FR2531714B1 (en) 1982-08-13 1983-08-11 PROCESS FOR THE PURIFICATION OF S-ADENOSYL-L-METHIONINE
IT22555/83A IT1169764B (en) 1982-08-13 1983-08-12 PROCEDURE FOR THE PURIFICATION OF S-ADENOSIL-L-METIONA
DE3329218A DE3329218C2 (en) 1982-08-13 1983-08-12 Process for the purification of S-adenosyl-L-methionine
CH4446/83A CH653341A5 (en) 1982-08-13 1983-08-15 METHOD FOR PURIFYING S-ADENOSYL-L-METHIONINE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57139948A JPS5929700A (en) 1982-08-13 1982-08-13 Purification of s-adenosyl-l-methionine

Publications (2)

Publication Number Publication Date
JPS5929700A JPS5929700A (en) 1984-02-16
JPS635039B2 true JPS635039B2 (en) 1988-02-01

Family

ID=15257401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57139948A Granted JPS5929700A (en) 1982-08-13 1982-08-13 Purification of s-adenosyl-l-methionine

Country Status (5)

Country Link
JP (1) JPS5929700A (en)
CH (1) CH653341A5 (en)
DE (1) DE3329218C2 (en)
FR (1) FR2531714B1 (en)
IT (1) IT1169764B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1169900B (en) * 1983-10-26 1987-06-03 Tecofar Srl SALT OF S-ADENOSYL-METHIONINE, COMPOSITION CONTAINING SUCH SALT PREFERABLY FOR PHARMACEUTICAL USE AND PREPARATION PROCESS
IT1173990B (en) * 1984-05-16 1987-06-24 Bioresearch Spa STABLE SALTS OF SULPHO-ADENOSYL-METHIONINE (SAME) PARTICULARLY SUITABLE FOR PARENTERAL USE
IT1318535B1 (en) 2000-05-25 2003-08-27 Chementecno Srl PROCESS FOR THE PREPARATION OF PHARMACEUTICALLY ACCEPTABLE SALTS OF (SS, RS) -S-ADENOSYL-METHIONINE.
DE102005009751A1 (en) 2005-03-03 2006-09-07 Consortium für elektrochemische Industrie GmbH Process for the fermentative production of S-adenosyl-methionine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217031A (en) * 1975-07-30 1977-02-08 Canon Inc Thermal fixing device
JPS5217033A (en) * 1975-07-31 1977-02-08 Nippon Telegr & Teleph Corp <Ntt> Electroconductive thermal printing process
JPS5314078A (en) * 1976-06-21 1978-02-08 Johnson Controls Inc Fuel igniter preventive of contact interlocking
JPS543879A (en) * 1977-06-10 1979-01-12 Hitachi Ltd Method of increasing interlaminar strength of composite material
JPS5625199A (en) * 1979-08-06 1981-03-10 Wakamoto Pharmaceut Co Ltd Purification of coenzyme a
JPS56145299A (en) * 1980-04-11 1981-11-11 Kanegafuchi Chem Ind Co Ltd Purification of s-adenosyl-l-methionine
JPS576917A (en) * 1980-05-09 1982-01-13 Philips Nv Exclusive protecting circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217031A (en) * 1975-07-30 1977-02-08 Canon Inc Thermal fixing device
JPS5217033A (en) * 1975-07-31 1977-02-08 Nippon Telegr & Teleph Corp <Ntt> Electroconductive thermal printing process
JPS5314078A (en) * 1976-06-21 1978-02-08 Johnson Controls Inc Fuel igniter preventive of contact interlocking
JPS543879A (en) * 1977-06-10 1979-01-12 Hitachi Ltd Method of increasing interlaminar strength of composite material
JPS5625199A (en) * 1979-08-06 1981-03-10 Wakamoto Pharmaceut Co Ltd Purification of coenzyme a
JPS56145299A (en) * 1980-04-11 1981-11-11 Kanegafuchi Chem Ind Co Ltd Purification of s-adenosyl-l-methionine
JPS576917A (en) * 1980-05-09 1982-01-13 Philips Nv Exclusive protecting circuit

Also Published As

Publication number Publication date
JPS5929700A (en) 1984-02-16
DE3329218C2 (en) 1993-11-25
IT8322555A1 (en) 1985-02-12
FR2531714B1 (en) 1986-04-25
IT8322555A0 (en) 1983-08-12
DE3329218A1 (en) 1984-03-01
CH653341A5 (en) 1985-12-31
FR2531714A1 (en) 1984-02-17
IT1169764B (en) 1987-06-03

Similar Documents

Publication Publication Date Title
EP0938493A1 (en) Method of isolating cyclosporins
KR101514903B1 (en) Process for purifying cyclic lipopeptide compounds or salts thereof
JPH07252291A (en) Purification of anthracyclinone glycoside
KR100470524B1 (en) Manufacturing method of moenomycin A
JPS635039B2 (en)
KR100383435B1 (en) A process for preparing acarbose with high purity
JPS617285A (en) Extraction of purified saponin
EP1091001B1 (en) Process for the purification of S-adenosyl-L-methionine and for the preparation of the pharmaceutically acceptable salts thereof
JPS625917A (en) Production of saponin containing no isoflavone from soybean embro bud
JP3141029B2 (en) Method for purifying pentostatin
JPS62246575A (en) Method for purifying pyrroloquinolinequinone
JP3085320B2 (en) Method for producing hydroxocobalamin
CN1211490C (en) Production method of creatine phosphate
JPH0283394A (en) Purification of s-adenosyl-l-homocystein
Pirotta Ion exchangers in pharmacy, medicine and biochemistry
JPH02167091A (en) Isolation and purification of ergot alkaloid
RU2047620C1 (en) Method of flavine-adenine dinucleotide purification
CN117964672A (en) Macroporous adsorption resin separation and purification method for beta-nicotinamide mononucleotide
JPH0776570A (en) Isolation of abscisic acid
JPS6317825B2 (en)
JPH0278686A (en) Separation and purification of ergoalkaloid
JPS6257637B2 (en)
JPS59144799A (en) Purification of coenzyme a
JPH05192175A (en) Production of diadenosine pllyphosphate solution
JPS61215330A (en) Purification of serrapeptase