JPH0283394A - Purification of s-adenosyl-l-homocystein - Google Patents

Purification of s-adenosyl-l-homocystein

Info

Publication number
JPH0283394A
JPH0283394A JP23553388A JP23553388A JPH0283394A JP H0283394 A JPH0283394 A JP H0283394A JP 23553388 A JP23553388 A JP 23553388A JP 23553388 A JP23553388 A JP 23553388A JP H0283394 A JPH0283394 A JP H0283394A
Authority
JP
Japan
Prior art keywords
sah
homocystein
adenosyl
exchange resin
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23553388A
Other languages
Japanese (ja)
Inventor
Akitoshi Ito
彰敏 伊藤
Yuji Kumai
裕司 熊井
Shozo Shiozaki
塩崎 正三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP23553388A priority Critical patent/JPH0283394A/en
Publication of JPH0283394A publication Critical patent/JPH0283394A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title cysteine free from coloring by dye in high purity and recovery by treating a liquid containing crude S-adenosyl-L-homocystein with a weakly acidic cation exchange resin and porous synthetic absorbent. CONSTITUTION:A liquid containing crude S-adenosyl-L-homocystein is parified by a process obtained by combining a process treating the above-mentioned L-homocystein with a weakly acidic cation exchange resin with a process treating the above-mentioned L-homocystein with a porous synthetic resin absorbent each one or more times in arbitrary order.

Description

【発明の詳細な説明】 本発明はS−アデノシル−L−ホモシステイン(以下、
SAHと略称する)の精製法に関し、さらに詳しくは、
夾雑物を含む粗SAH含有液より高純度のSAHを効率
よく単離精製する方法に関する。
Detailed Description of the Invention The present invention provides S-adenosyl-L-homocysteine (hereinafter referred to as
For more details regarding the purification method of SAH (abbreviated as SAH),
The present invention relates to a method for efficiently isolating and purifying highly pure SAH from a crude SAH-containing liquid containing impurities.

SAHは、生体内においてS−アデノシル−L−メチオ
ニン(以下、SAMと略称する)が関与するメチル基供
与反応で生じる重要な生理活性物質である。而して近時
かかるSAHに鎮静剤、睡眠誘発剤などとしての効果が
見出されており、その大量生産が期待されている。
SAH is an important physiologically active substance that is generated in vivo through a methyl group-donating reaction involving S-adenosyl-L-methionine (hereinafter abbreviated as SAM). Recently, SAH has been found to be effective as a sedative, sleep-inducing agent, etc., and its mass production is expected.

SAHの精製法としては、■粗SAH含有液にリンタン
グステン酸を加えてSAHを沈澱させる方法(Meth
ods in ENZYMOLOGY 6,573.1
963)、■強酸性陽イオン交換樹脂にSAHを吸着さ
せた後、硫酸で溶出させ、溶出液にリンタングステン酸
を加えてSAHを沈澱させる方法(J、Nut、r。
As a method for purifying SAH, there is a method in which SAH is precipitated by adding phosphotungstic acid to a crude SAH-containing solution (Meth
ods in ENZYMOLOGY 6,573.1
963), (1) A method in which SAH is adsorbed on a strongly acidic cation exchange resin, eluted with sulfuric acid, and phosphotungstic acid is added to the eluate to precipitate SAH (J, Nut, r.

Sci、Vitaminol、、 23.73.197
7)、■活性炭にSAHを吸着させた後、エタノール/
水/濃アンモニア水(50:50:1)で溶出させ、溶
出液を減圧上濃縮して濃縮物のpHを#酸で7に調節し
た後、SAHを0℃で品出させる方法(特公昭45−3
7536号)などが知られている。
Sci, Vitaminol, 23.73.197
7),■ After adsorbing SAH on activated carbon, ethanol/
A method of elution with water/concentrated ammonia water (50:50:1), concentrating the eluate under reduced pressure, adjusting the pH of the concentrate to 7 with #acid, and then releasing SAH at 0°C (Tokuko Showa). 45-3
No. 7536), etc. are known.

しかしながら、■の方法は沈澱したSAHの純度が低く
、さらに複雑な再結晶工程が必要であり、一方、■及び
■の方法ではSAHの回収率が低く、またSAHと着色
成分等の夾雑物との分離が不完全で医薬として使用しう
るような高純度のSAHが得られないという欠点を有し
ていた。
However, in the method (2), the purity of the precipitated SAH is low and a more complicated recrystallization process is required.On the other hand, in the methods (2) and (2), the recovery rate of SAH is low, and the SAH and impurities such as coloring components are mixed. However, the separation of SAH is incomplete and SAH of high purity that can be used as a medicine cannot be obtained.

そこで本発明者らは従来技術におけるこれらの欠点を改
良すべく鋭意検討を進めた結果、粗SAH含有液からS
AHを単離精製するにあたり、弱酸性陽イオン交換樹脂
による処理と多孔性合成樹脂吸着剤による処理とを組み
合わせることがきわめて効果的であることを見出し、本
発明を完成した。
Therefore, the present inventors conducted intensive studies to improve these shortcomings in the conventional technology, and as a result, SAH was extracted from the crude SAH-containing liquid.
In isolating and purifying AH, the inventors have discovered that it is extremely effective to combine treatment with a weakly acidic cation exchange resin and treatment with a porous synthetic resin adsorbent, and have completed the present invention.

すなわち本発明の目的は、高純度のSAHを効率よく単
離精製する方法を提供することにあり、かかる本発明の
目的は、粗S A H含有液を(a)弱酸性陽イオン交
換樹脂と(b)多孔性合成樹脂吸着剤による処理工程を
任意の順序でそれぞれ一度以上結合した精製工程に供給
し、精製することによって達成される。
That is, an object of the present invention is to provide a method for efficiently isolating and purifying high-purity SAH, and an object of the present invention is to process a crude SAH-containing liquid with (a) a weakly acidic cation exchange resin. (b) This is accomplished by supplying the treatment steps using a porous synthetic resin adsorbent in any order to a combined purification step at least once, and purification.

本発明において用いられる粗SAH含有液の製造法は特
に限定されるものではなく、例えばアデノシンとホモシ
スティンよりSAHを合成する能力を有する微生物の菌
体の存在下にアデノシンとホモシスティンを水性媒体中
で接触させて反応せしめ、SAHを製造する方法(特開
昭59−146595号)、SAMから酵素的に脱メチ
ル化して製造する方法(J、Biol、Chem、、 
240.2512.1965)  、  あるいはSA
Mから化学的に脱メチル化して製造する方法(特公昭4
5−37536号)などが例示される。
The method for producing the crude SAH-containing liquid used in the present invention is not particularly limited. A method for producing SAH by contacting and reacting with SAM (Japanese Unexamined Patent Publication No. 146595/1982), a method for producing SAH by enzymatic demethylation from SAM (J, Biol, Chem.
240.2512.1965) or SA
A method of manufacturing by chemically demethylating M
5-37536) and the like.

本発明においては、かかる粗SAH含有液を処理するに
際して(a)弱酸性陽イオン交換樹脂による処理と(b
)多孔性合成樹脂吸着剤による処理とを任意の組み合わ
せにおいてそれぞれ一度以上行うことが必須の要件であ
る。
In the present invention, when treating such a crude SAH-containing liquid, (a) treatment with a weakly acidic cation exchange resin and (b) treatment with a weakly acidic cation exchange resin are performed.
) It is essential that treatment with a porous synthetic resin adsorbent be performed at least once in any combination.

ここで、前記(a)の処理は次のようにして行われる。Here, the process (a) is performed as follows.

すなわち、粗SAH含有液のpHを通常3.5〜8、好
ましくは5〜7に調整する。この際、粗SAH含有液の
PHが上記の範囲以外にあるとSAHがイオン交換樹脂
に保持吸着され難くなる。pHの調整法は特に限定され
るものではないが、水に離溶性または不溶性の沈澱を形
成する酸、アルカリの組み合わせを用いるか、あるいは
陰イオン交換樹脂(OR−型)を用いる方法が好ましい
That is, the pH of the crude SAH-containing liquid is usually adjusted to 3.5-8, preferably 5-7. At this time, if the pH of the crude SAH-containing liquid is outside the above range, SAH will be difficult to be retained and adsorbed by the ion exchange resin. The method for adjusting the pH is not particularly limited, but it is preferable to use a combination of acid and alkali that forms a precipitate that is soluble or insoluble in water, or to use an anion exchange resin (OR-type).

次いで、粗SAH含有液を弱酸性陽イオン交換樹脂に接
触させ陽電荷をもったSAHを選択的に吸着させるとと
もに、中性及び陰電荷をもった夾雑物を除去する。
Next, the crude SAH-containing liquid is brought into contact with a weakly acidic cation exchange resin to selectively adsorb positively charged SAH and remove neutral and negatively charged impurities.

用いられる弱酸性陽イオン交換樹脂はイオン交換基とし
てカルボン酸基を有するものであればよく、具体的な例
としてはアンバーライトIRC−50、IRC−84(
ローム・アンド・ハース社製)、ダイヤイオンWK20
(三菱化成社製)などが挙げられる。この際、樹脂は「
形、Na”形、NH4” 形のいずれでもよいが、好ま
しくはH+形を用いる。
The weakly acidic cation exchange resin used may be one having a carboxylic acid group as an ion exchange group, and specific examples include Amberlite IRC-50, IRC-84 (
(manufactured by Rohm and Haas), Diaion WK20
(manufactured by Mitsubishi Kasei Corporation). At this time, the resin is
It may be either the Na'' form or the NH4'' form, but preferably the H+ form is used.

また接触法はバッチ法、カラム法のいずれでもよいが、
操作性、不純物除去の容易さの点でカラム法がより好ま
しい。
The contact method may be either a batch method or a column method, but
A column method is more preferred in terms of operability and ease of removing impurities.

次いでイオン交換樹脂に吸着されたSAHは通常pH3
,0以下、好ましくは0.2〜2.0の無機酸または有
機酸の水溶液で分別溶出することによって分離される。
The SAH adsorbed onto the ion exchange resin is then typically at a pH of 3.
, 0 or less, preferably 0.2 to 2.0, by fractional elution with an aqueous solution of an inorganic or organic acid.

用いられる酸は特に限定されるものではなく、例えば塩
酸、硫酸、リン酸、#酸、P−トルエンスルホン酸など
が例示される。また必要に応じて、SAHの分別溶出に
先立って水または希薄な酸水溶液(例えばPH3,5以
上)で洗浄することにより微量存在する不純物を除去す
ることもできる。
The acid used is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, phosphoric acid, #acid, and P-toluenesulfonic acid. Further, if necessary, trace amounts of impurities can be removed by washing with water or a dilute acid aqueous solution (for example, pH 3.5 or higher) prior to the fractional elution of SAH.

一方、前記(b)の処理は次のようにしておこなわれる
。すなわち、粗SAH含有液のpHを必要に応じて、好
ましくは中性付近に調整した後、多孔性合成樹脂吸着剤
と接触させる。この際、pHの調整法や吸着剤との接触
法は前記(a)と同様の方法を用いることができる。か
かる吸着剤との接触により色素が選択的に吸着される。
On the other hand, the process (b) above is performed as follows. That is, after adjusting the pH of the crude SAH-containing liquid as necessary, preferably to around neutrality, it is brought into contact with the porous synthetic resin adsorbent. At this time, the same methods as in (a) above can be used for the pH adjustment method and the contact method with the adsorbent. The dye is selectively adsorbed by contact with such an adsorbent.

また本発明で用いられる多孔性合成樹脂吸着剤は水不溶
性で巨大網状構造を有するものであり、その具体例とし
てスチレン−ジビニルベンゼン共重合体を母核とする非
極性型吸着剤、例えばアンバーライトXAD−2,XA
D−4(ローム・アンド・ハース社製)、ダイヤイオン
HP−10,HP−20,HP−30,HP−40,H
P−50(三菱化成社製)、セパビーズS P −20
6,S P −207(三菱化成社製)などや、アクリ
ル酸エステル及び/またはメタクリル酸エステルの重合
体またはこれらの単量体とスチレン、ジビニルベンゼン
などのごとき非極性単量体との共重合体を母核とする中
間極性型吸着剤、例えばアンバーライトXAD−7、X
AD−8(ローム・アンド・ハース社製)、ダイヤイオ
ンHP−2MG(三菱化成社製)などがあげられる。こ
れらは所望により適宜併用することができる。
Furthermore, the porous synthetic resin adsorbent used in the present invention is water-insoluble and has a giant network structure, and a specific example thereof is a non-polar type adsorbent having a core of styrene-divinylbenzene copolymer, such as Amberlite. XAD-2,XA
D-4 (manufactured by Rohm and Haas), Diaion HP-10, HP-20, HP-30, HP-40, H
P-50 (manufactured by Mitsubishi Kasei Corporation), Sepabeads SP-20
6, S P-207 (manufactured by Mitsubishi Kasei Corporation), polymers of acrylic esters and/or methacrylic esters, or copolymerization of these monomers with nonpolar monomers such as styrene, divinylbenzene, etc. Intermediate polar adsorbent with coalescence as its core, such as Amberlite XAD-7, X
Examples include AD-8 (manufactured by Rohm and Haas) and Diaion HP-2MG (manufactured by Mitsubishi Kasei). These can be used in combination as desired.

本発明においては、かかる(a>、 (b)の処理がそ
れぞれ一度以上実施される。処理のIIII序は適宜組
み合せればよく、その具体例として■(a)→(b)、
■(b)→(a)、■(a)→(b)→(a)、■(b
)→(a)→(b)などが挙げられ、さらに必要に応じ
て前記(a)、(b)の処理工程を付加することができ
る。しかし、処理工程が増すにつれて工程が複雑化し経
済性が低下するので、通常は前記4種の組み合せが選択
される。
In the present invention, each of the processes (a> and (b)) is performed at least once.The order of III processes may be combined as appropriate, and specific examples thereof include ■(a)→(b),
■(b) → (a), ■(a) → (b) → (a), ■(b
) → (a) → (b), etc., and the treatment steps (a) and (b) can be added as necessary. However, as the number of processing steps increases, the process becomes more complicated and economical efficiency decreases, so a combination of the above four types is usually selected.

本発明においては、かかる精製工程から溶出するSAH
溶出画分を減圧濃縮或いは逆浸透膜を用いる方法等で濃
縮した後、低温下に静置してSAHを品出させる。しか
る後、濾過或いは遠心分離によりSAHを回収し、凍結
乾燥或いはスプレー乾燥、風乾等の方法で水分を除去す
ることによりSAHの結晶粉末を得ることができる。ま
た、必要に応じてSAH結晶を熱水に再溶解した後低温
下で再結晶せしめることでさらにSAHの純度を高める
ことができる。
In the present invention, SAH eluted from such purification step
After the eluted fraction is concentrated by vacuum concentration or a method using a reverse osmosis membrane, it is left to stand at a low temperature to extract SAH. Thereafter, SAH is collected by filtration or centrifugation, and water is removed by freeze drying, spray drying, air drying, or the like to obtain a crystalline SAH powder. Further, if necessary, the purity of SAH can be further increased by redissolving the SAH crystal in hot water and then recrystallizing it at a low temperature.

また本発明で用いる弱酸性イオン交換樹脂はSAHを溶
出した段階でH°型に再生されているので特別の再生処
理は必ずしも必要でなく、水洗するだけで繰り返し使用
することができる。さらに合成吸着剤の再生は、例えば
50%メタノール水溶液で洗浄したのち水洗を施すだけ
で容易に実施することができる。
Further, since the weakly acidic ion exchange resin used in the present invention is regenerated into H° type at the stage of eluting SAH, special regeneration treatment is not necessarily necessary, and it can be used repeatedly by simply washing with water. Furthermore, the synthetic adsorbent can be easily regenerated, for example, by simply washing it with a 50% aqueous methanol solution and then washing it with water.

かくして本発明によれば、再生の容易な処理手段によっ
て簡単な操作できわめて高純度のSAHを効率よく取得
することができる。
Thus, according to the present invention, SAH of extremely high purity can be efficiently obtained with a simple operation using a processing means that is easy to regenerate.

以下に実施例を挙げて本発明をさらに具体的に説明する
The present invention will be explained in more detail with reference to Examples below.

なお、実施例におけるSAHの定量は高速液体クロマト
グラフィー(日本分光製、TRIROTAR−V型、カ
ラム: Cosmoci15C18,Detecjer
:UV260nm )を用いて行った。
In addition, the determination of SAH in the examples was performed using high performance liquid chromatography (manufactured by JASCO Corporation, TRIROTAR-V type, column: Cosmoci15C18, Detecjer
:UV260nm).

実施例 1 グルコースIg/dR、ペプトン1.5g/clR1酵
母エキス0.3g八2、K2HPOA0.3g/dQ、
NaC10,2g/dR1MgSO4・7t(200,
02g/JR1寒天2g/d9.からなる寒天斜面培地
(p117.0)で28℃、24時間培養したシュード
モナス・プチダIFO12996又はアルカリゲネス・
フェカリスIF012699の1白金耳を、グルコース
Ig/clR、ペプトン1.5g/dQ、酵母エキス0
.3g/clQ、に2HPO40,3g/cB!、Na
C10,2g/dR1MgSO+ ・711200.0
2g/dΩからなり、pH7,0に調整、加熱滅菌した
液体培地500mRに植菌し、28℃で40時間振盪培
養を行った。遠心分離にて集菌し、0,1Mリン酸カリ
ウムバッファ(PH8,0)で洗浄した後、再び遠心分
離を行うことにより温潤菌体を得た。次いでシュードモ
ナス・プチダIFO12996の湿潤菌体3g及びアル
カリゲネス・フェカリスIFO12699の湿潤菌体1
旺をアデノシン10mM、  DL−ホモシステイン2
0mM、  リン酸カリウムバッファ(pH8,0)1
00mMからなる基質溶液100m1llに懸濁し、3
7℃で7時間振盪して反応させた。次いで100℃10
分間加熱した後、蒸留水を加えて約300mQとし、遠
心分離により菌体残渣を除去してSAM 1.20gを
含むSAH含有液300mQ(pH7,5)を得た。
Example 1 Glucose Ig/dR, peptone 1.5g/clR1 yeast extract 0.3g82, K2HPOA 0.3g/dQ,
NaC10,2g/dR1MgSO4・7t(200,
02g/JR1 agar 2g/d9. Pseudomonas putida IFO12996 or Alcaligenes
1 platinum loop of Faecalis IF012699, glucose Ig/clR, peptone 1.5g/dQ, yeast extract 0
.. 3g/clQ, 2HPO40, 3g/cB! , Na
C10,2g/dR1MgSO+ ・711200.0
The cells were inoculated into 500 mR of a heat-sterilized liquid medium containing 2 g/dΩ, adjusted to pH 7.0, and cultured with shaking at 28° C. for 40 hours. Bacteria were collected by centrifugation, washed with 0.1 M potassium phosphate buffer (PH8, 0), and centrifuged again to obtain warm bacterial cells. Next, 3 g of wet bacterial cells of Pseudomonas putida IFO12996 and 1 wet bacterial cell of Alcaligenes faecalis IFO12699 were added.
Adenosine 10mM, DL-homocysteine 2
0mM, potassium phosphate buffer (pH 8,0) 1
Suspend in 100ml of substrate solution consisting of 00mM,
The mixture was shaken and reacted at 7°C for 7 hours. Then 100℃10
After heating for a minute, distilled water was added to bring the volume to about 300 mQ, and bacterial cell residue was removed by centrifugation to obtain 300 mQ of SAH-containing liquid (pH 7.5) containing 1.20 g of SAM.

このSAW含有液を弱酸性陽イオン交換樹脂アンバーラ
イトIRC−50(H+型)(ローム・アンド・ハース
社製)  100mQを詰めたカラムに通しSAHを保
持吸着させた。カラムを0.002N#M 400m1
で洗浄した後、0.IN硫酸でSAHを分別溶出させS
A、H溶出画分110艷を得た。このSAH溶出画分に
水酸化バリウムを加えてPH7,0に調整し、生じた硫
酸バリウムの沈澱を吸引濾過により除去した後スチレン
−ジビニルベンゼン系合成樹脂吸着剤セパビーズ5P−
206(三菱化成社製) 2gを添加し、30分間撹拌
しながら接触せしめた。次いで吸引濾過により合成樹脂
吸着剤を除去し濾過液を全容4〇−になるまで減圧濃縮
した後、5℃に24時間放置してSAHを晶出させ、こ
れを吸引濾過により回収し凍結乾燥して白色のSAH粉
末1.09gを得た。
This SAW-containing solution was passed through a column packed with 100 mQ of weakly acidic cation exchange resin Amberlite IRC-50 (H+ type) (manufactured by Rohm and Haas) to retain and adsorb SAH. Column 0.002N#M 400ml
After washing with 0. SAH was fractionally eluted with IN sulfuric acid.
110 fractions of A and H elution fractions were obtained. Barium hydroxide was added to this SAH elution fraction to adjust the pH to 7.0, and the resulting barium sulfate precipitate was removed by suction filtration.
206 (manufactured by Mitsubishi Kasei Corporation) was added, and the mixture was brought into contact with the mixture for 30 minutes with stirring. Next, the synthetic resin adsorbent was removed by suction filtration, and the filtrate was concentrated under reduced pressure to a total volume of 40%, and then left at 5°C for 24 hours to crystallize SAH, which was recovered by suction filtration and freeze-dried. 1.09 g of white SAH powder was obtained.

SAHの回収率及び純度を第1表に示した。The recovery rate and purity of SAH are shown in Table 1.

実施例 2 実施例1と同様にしてSAH1,15gを含むSAH含
有液315艷を得た。このSAH含有液を弱酸性陽イオ
ン交換樹脂アンバーライトIRC−84(H+型、ロー
ム・アンド・ハース社製)  100−を詰めたカラム
に通しSAHを保持吸着させた。カラムを0.002N
酢酸400−で洗浄した後、 0.IN塩酸でSAHを
分別溶出させSAH溶出画分130−を得た。このSA
H溶出画分を弱塩基性陰イオン交換樹脂アンバーライト
IRA−45(OH−型)でpH6,8に調整後、スチ
レン−ジビニルベンゼン系合成樹脂吸着剤ダイヤイオン
HP−20(三菱化成社製)5〇−を詰めたカラムに通
し、SAHを吸着させることなく通過させた。SAHを
含む両分を集め減圧濃縮で液量を40−とし、5℃に2
4時間放置してSAHを品出させ、これを吸引濾過によ
り回収し、凍結乾燥して白色のSAH粉末1.04gを
得た。SAHの回収率及び純度を第1表に示した。
Example 2 In the same manner as in Example 1, 315 SAH-containing liquids containing 1.15 g of SAH were obtained. This SAH-containing solution was passed through a column packed with a weakly acidic cation exchange resin Amberlite IRC-84 (H+ type, manufactured by Rohm and Haas) 100- to retain and adsorb SAH. Column 0.002N
After washing with acetic acid 400-0. SAH was fractionally eluted with IN hydrochloric acid to obtain SAH elution fraction 130-. This SA
After adjusting the H elution fraction to pH 6.8 using a weakly basic anion exchange resin Amberlite IRA-45 (OH-type), the styrene-divinylbenzene-based synthetic resin adsorbent Diaion HP-20 (manufactured by Mitsubishi Kasei Corporation) was added. The sample was passed through a column packed with 50-glue without adsorbing SAH. Both components containing SAH were collected, concentrated under reduced pressure to a liquid volume of 40-40°C, and kept at 5°C for 2
The SAH was allowed to stand for 4 hours, recovered by suction filtration, and lyophilized to obtain 1.04 g of white SAH powder. The recovery rate and purity of SAH are shown in Table 1.

実施例 3 実施例1と同様にしてSAH1,03gを含むSAH含
有液300dを得た。このSAH含有液をスチレン−ジ
ビニルベンゼン系合成樹脂吸着剤アンバーライトXAD
−2(ローム・アンド・ハース社製)  100m9を
詰めたカラムに通し、SAHを吸着させることなく通過
させた。次いでSAHを含む画分を集め、弱酸性陽イオ
ン交換樹脂アンバー945丁RC−50(H”型)(ロ
ーム・アンド・ハース社製)  100+T19を詰め
たカラムに通しSAHを保持吸着させた。カラムを0.
002N酢酸400dで洗浄した後、0.IN硫酸でS
AHを分別溶出させS A H溶出画分120−を得た
。このSAH溶出画分に水酸化バリウムを加えてpi(
7,0に調整し、吸引濾過により生じた硫酸バリウムの
沈澱を除いた濾液を全容50艷になるまで減圧濃縮した
。濃縮液を5°Cに24時間放置してSAHを品出させ
、これを吸引濾過によ り回収し、凍M乾燥して白色の
SAH粉末0.94gを得た。SAHの回収率及び純度
を第1表に示した。
Example 3 In the same manner as in Example 1, 300 d of SAH-containing liquid containing 1.03 g of SAH was obtained. This SAH-containing liquid is mixed with styrene-divinylbenzene based synthetic resin adsorbent Amberlite XAD.
-2 (manufactured by Rohm and Haas) through a column packed with 100 m9 of SAH without adsorbing it. Next, the fractions containing SAH were collected and passed through a column packed with weakly acidic cation exchange resin Amber 945 RC-50 (H'' type) (manufactured by Rohm & Haas) 100+T19 to retain and adsorb SAH. 0.
After washing with 400 d of 0.002N acetic acid, S with IN sulfuric acid
AH was fractionally eluted to obtain S AH elution fraction 120-. Barium hydroxide was added to this SAH elution fraction and pi(
The filtrate was adjusted to 7.0 and the barium sulfate precipitate produced by suction filtration was removed, and the filtrate was concentrated under reduced pressure to a total volume of 50 liters. The concentrated solution was left at 5°C for 24 hours to extract SAH, which was recovered by suction filtration and freeze-dried to obtain 0.94 g of white SAH powder. The recovery rate and purity of SAH are shown in Table 1.

比較例 実施例1と同様にしてSAH1,10gを含むSAH含
有液300mIQを得た。このSAH含有液をクロマト
グラフ用活性炭50m9を詰めたカラムに通してSAH
を吸着させた。蒸留水200mQでカラムを洗浄した後
、エタノール/水/濃アンモニア水(65:35:2)
の混合溶媒を通してSAHを溶出させ、SA H溶出画
分を得た。
Comparative Example In the same manner as in Example 1, 300 ml of SAH-containing liquid containing 1.10 g of SAH was obtained. This SAH-containing liquid was passed through a column packed with 50 m9 of activated carbon for chromatography to remove SAH.
was adsorbed. After washing the column with 200 mQ of distilled water, ethanol/water/concentrated ammonia water (65:35:2)
SAH was eluted through a mixed solvent of 1 to obtain an SAH elution fraction.

このSAH溶出画分を20dまで減圧濃縮した後酢酸で
p)17.0に調整し、0°Cに48時間放置してSA
Hを品出させ、これを吸引濾過により回収し、凍結乾燥
してSAH粉末1.OOgを得た。SAHの回収率及び
純度を第1表に示した。
This SAH elution fraction was concentrated under reduced pressure to 20 d, adjusted to p) 17.0 with acetic acid, and left at 0°C for 48 hours to allow SA
H was extracted, collected by suction filtration, and freeze-dried to obtain SAH powder 1. Obtained OOg. The recovery rate and purity of SAH are shown in Table 1.

第  1  表 注1; SAH純度:高速液体クロマトグラフィー分析
において260nmで検出されるSAH注2; SAH
回収率:粗SAH含有液中のSAH量に対する精製後の
結晶中のS A I−(量の割合を高速液体クロマトグ
ラフィーによる定量値から計算した。
Table 1 Note 1; SAH purity: SAH detected at 260 nm in high performance liquid chromatography analysis Note 2; SAH
Recovery rate: The ratio of the amount of SAH in the crystals after purification to the amount of SAH in the crude SAH-containing liquid was calculated from the quantitative value determined by high performance liquid chromatography.

この結果より、本発明による方法を用いれば公知の方法
と比べて高純度かつ色素による着色のないSAHが高い
回収率で得られることが明らかである。
From these results, it is clear that by using the method according to the present invention, SAH with higher purity and without coloration due to dyes can be obtained at a higher recovery rate than with known methods.

Claims (1)

【特許請求の範囲】[Claims] 1、粗S−アデノシル−L−ホモシステイン含有液を精
製工程に供給してS−アデノシル−L−ホモシステイン
を精製する方法において、前記精製工程が(a)弱酸性
陽イオン交換樹脂で処理する工程と(b)多孔性合成樹
脂吸着剤で処理する工程を、それぞれ一度以上、任意の
順序で結合したものであることを特徴とするS−アデノ
シル−L−ホモシステインの精製法。
1. In a method for purifying S-adenosyl-L-homocysteine by supplying a crude S-adenosyl-L-homocysteine-containing liquid to a purification step, the purification step comprises (a) treatment with a weakly acidic cation exchange resin. A method for purifying S-adenosyl-L-homocysteine, characterized in that the steps of step (b) and (b) treatment with a porous synthetic resin adsorbent are combined at least once each in any order.
JP23553388A 1988-09-20 1988-09-20 Purification of s-adenosyl-l-homocystein Pending JPH0283394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23553388A JPH0283394A (en) 1988-09-20 1988-09-20 Purification of s-adenosyl-l-homocystein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23553388A JPH0283394A (en) 1988-09-20 1988-09-20 Purification of s-adenosyl-l-homocystein

Publications (1)

Publication Number Publication Date
JPH0283394A true JPH0283394A (en) 1990-03-23

Family

ID=16987386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23553388A Pending JPH0283394A (en) 1988-09-20 1988-09-20 Purification of s-adenosyl-l-homocystein

Country Status (1)

Country Link
JP (1) JPH0283394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108410751A (en) * 2018-02-05 2018-08-17 温州大学 A kind of Bacillus foecalis alkaligenes and its application in Degradation of Azo Dyes decoloration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108410751A (en) * 2018-02-05 2018-08-17 温州大学 A kind of Bacillus foecalis alkaligenes and its application in Degradation of Azo Dyes decoloration
CN108410751B (en) * 2018-02-05 2021-01-26 温州大学 Alcaligenes faecalis and application thereof in degradation and decoloration of azo dyes

Similar Documents

Publication Publication Date Title
KR100282076B1 (en) Process for producing calcium d-pantothenate
JPH07252291A (en) Purification of anthracyclinone glycoside
JP2006014720A (en) Method for refining vancomycin hydrochloride
US4584399A (en) Purification of L-phenylalanine
JP3421338B2 (en) Method for producing vancomycin
CN101096380A (en) Method for purifying citicoline from biotransformation or multienzyme reaction liquid
JP3992497B2 (en) High purity acarbose manufacturing method
JPH0283394A (en) Purification of s-adenosyl-l-homocystein
JPS62246575A (en) Method for purifying pyrroloquinolinequinone
EP0533115B1 (en) Process for production of hydroxocobalamin
JPS5929700A (en) Purification of s-adenosyl-l-methionine
JPS6337635B2 (en)
KR100284174B1 (en) Method for purification of spiramycin
US2677644A (en) Purification of vitamin b12 solutions
RU2047620C1 (en) Method of flavine-adenine dinucleotide purification
JPH10225299A (en) Production of vancomycin
JPS59144799A (en) Purification of coenzyme a
JPS6348262A (en) Method for eluting l-tryptophan adsorbed on active carbon
JPH02178288A (en) Purification of 3-hydroxymethyl-7-aminocephem carboxylic acid
JPH02167091A (en) Isolation and purification of ergot alkaloid
JPS6032717A (en) Purification of kallikrein
JPS5995298A (en) Separation and purification of vitamin b12
JPH0415770B2 (en)
JPH04202176A (en) Purification of abscisic acid
JPS63130580A (en) Purification of tryptophan