JPS63130580A - Purification of tryptophan - Google Patents

Purification of tryptophan

Info

Publication number
JPS63130580A
JPS63130580A JP27574686A JP27574686A JPS63130580A JP S63130580 A JPS63130580 A JP S63130580A JP 27574686 A JP27574686 A JP 27574686A JP 27574686 A JP27574686 A JP 27574686A JP S63130580 A JPS63130580 A JP S63130580A
Authority
JP
Japan
Prior art keywords
tryptophan
ammonia
reverse osmosis
osmosis membrane
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27574686A
Other languages
Japanese (ja)
Other versions
JPH0784441B2 (en
Inventor
Takao Hoya
敬夫 保谷
Shigetomo Yamamoto
山本 茂智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Utilization of Light Oil
Original Assignee
Research Association for Utilization of Light Oil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Utilization of Light Oil filed Critical Research Association for Utilization of Light Oil
Priority to JP27574686A priority Critical patent/JPH0784441B2/en
Publication of JPS63130580A publication Critical patent/JPS63130580A/en
Publication of JPH0784441B2 publication Critical patent/JPH0784441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Indole Compounds (AREA)

Abstract

PURPOSE:To crystallize and purify the titled compound useful as a medicine, in high purity, by passing an aqueous solution of tryptophan containing impurities through a nonpolar highly porous polymer resin, eluting with ammonia water and concentrating the eluate with a reverse osmosis membrane. CONSTITUTION:An aqueous solution of tryptophan containing impurities is passed through a nonpolar highly porous polymer resin to effect the adsorption of tryptophan and the tryptophan adsorbed to the resin is eluted with ammonia water (the 1st step). The eluate obtained by the 1st step is concentrated with a reverse osmosis membrane (the 2nd step). The objective compound is crystallized by removing ammonia from the concentrated liquid obtained by the 2nd step (the 3rd step). The amount of the resin used in the 1st step is usually 5-100%, preferably 5-30% of the aqueous solution of tryptophan and the concentration of the ammonia water used in the 1st step is preferably about 0.5-5N.

Description

【発明の詳細な説明】 技術分野 本発明は、トリプトファンの精製法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for purifying tryptophan.

本発明の方法によれば、医薬品、飼料添訓剤等に有用な
トリット7アンを多量に製造する場合に、高純度でかつ
高回収率でトリプトファンを精製する効率的な方法が提
供される。
According to the method of the present invention, an efficient method for purifying tryptophan with high purity and high recovery rate is provided when producing a large amount of trit-7an useful for pharmaceuticals, feed additives, etc.

先行技術 トリプトファンの製造方法は、セリンとインドールよシ
トリプトファンシンテターゼを用いて合aする方法、ピ
ルビン酸とアンモニアとインドールからトリプトファナ
ーゼを用いて合成する方法、アンスラニル酸からの中間
体醗酵法等がよく知られている。
Prior art methods for producing tryptophan include a method of synthesizing serine and indole using citryptophan synthetase, a method of synthesizing pyruvate, ammonia and indole using tryptophanase, and an intermediate fermentation method from anthranilic acid. well known.

いずれの場合にも、反応粗液には、相当量の不純物が混
在する。例えばセリンとインドールからの合成法では、
未反応D−セリンや共存無機塩が、ピルビン酸、アンモ
ニア及びインドールからの合成法では未反応ピルビン酸
や多量のアンモニウム塩更にその他の共存無機塩が4在
し、又、アンスラニル酸からの中間体醗酵では、培養液
中に含まれる多量の無機塩等が存在する。
In either case, the reaction crude liquid contains a considerable amount of impurities. For example, in the synthesis method from serine and indole,
Unreacted D-serine and coexisting inorganic salts are present in the synthesis method from pyruvic acid, ammonia, and indole, and unreacted pyruvic acid, a large amount of ammonium salt, and other coexisting inorganic salts are present, and intermediates from anthranilic acid are present. In fermentation, there are large amounts of inorganic salts contained in the culture solution.

これ等の不純物からトリプトファンを分離精製する常法
としては、トリプトファンを含む反応粗液を強酸性陽イ
オン交換樹脂に吸着させた後、適当な溶離液を用いてト
リプトファンよシ脱着しゃすいD−セリン等の共存アミ
ノ酸を溶出させ、次いでアンモニア水でトリプトファン
を溶出させる方法がある。
The conventional method for separating and purifying tryptophan from these impurities is to adsorb the crude reaction solution containing tryptophan onto a strongly acidic cation exchange resin, and then use an appropriate eluent to remove the tryptophan and desorb D-serine. There is a method of eluting coexisting amino acids such as, and then eluting tryptophan with aqueous ammonia.

しかしながら本方法においては、イオン交換樹脂の再生
に多量の酸を必要とし、更に共存無機塩が多い場合、イ
オン交換樹脂の交換能が無機塩と交換する為、トリプト
ファンに対して多量のイオン交換樹脂を必要とし、実質
的に使用できなくなる等の問題がある。
However, in this method, a large amount of acid is required to regenerate the ion exchange resin, and when there are many coexisting inorganic salts, the exchange ability of the ion exchange resin is exchanged with the inorganic salt. However, there are problems such as the fact that it requires

トリプトファンの他の′nI製方法としては、トリプト
ファンを含むアミノ酸混合液を非イオン交換性脱色樹脂
に吸着せしめ、分子量小なるトリプトファン以外のアミ
ノ酸、トリプトファンの順に水で溶出する方法が知られ
ている)特公昭30−2982号公報参照)。
Another known method for producing tryptophan is to adsorb an amino acid mixture containing tryptophan onto a non-ion exchange decolorizing resin, and elute the amino acids other than tryptophan, which have lower molecular weights, with water in that order.) (See Japanese Patent Publication No. 30-2982).

しかしながらこの方法では、全部のトリプトファンを溶
出する為に多量の水を必要とし、得られたトリシト7ア
ン溶液は希薄となシ、このトリプトファン溶液からトリ
プトファンを回収する為、多大のエネルギーを要する等
の問題がある。
However, this method requires a large amount of water to elute all tryptophan, the resulting tricyto7an solution is not dilute, and it requires a large amount of energy to recover tryptophan from this tryptophan solution. There's a problem.

発明の要旨 本発明は、上述の従来技術の問題点を解決することを目
的としてなされたものである。
SUMMARY OF THE INVENTION The present invention has been made for the purpose of solving the problems of the prior art described above.

即ち、本発明は、不純物を含有するトリプトファン水溶
液からトリプトファンを分離精製する方法において、 工程l:該氷水溶液非極性ハイポーラスポリマー系樹脂
に通液しトリプトファンを吸着させ、その後アンモニア
水で該樹脂に吸着したトリプトファンを溶出させる、 工程2:工程1で得た溶出液を逆浸透膜を用いて濃縮す
る、 工程3:工程2で得た濃縮液からアンモニアを除去しト
リプトファンを晶出させる、 ことからなる工程を採ることを特徴とするトリプトファ
ンの精製法を提供するものである。
That is, the present invention provides a method for separating and purifying tryptophan from an aqueous tryptophan solution containing impurities, which includes the following steps: Step 1: The ice-water solution is passed through a non-polar high-porous polymer resin to adsorb tryptophan, and then ammonia water is added to the resin. Elute the adsorbed tryptophan. Step 2: Concentrate the eluate obtained in Step 1 using a reverse osmosis membrane. Step 3: Remove ammonia from the concentrated solution obtained in Step 2 and crystallize tryptophan. The present invention provides a method for purifying tryptophan, which is characterized by employing the following steps.

発明の効果 本発明の方法によれば、不純物を含有するトリプトファ
ン水溶液からトリプトファンを高純度かつ高回収率で精
製することができる。更に、工程2で生じるアンモニア
水を工程lのトリプトファン溶出液として再使用するこ
とで、精製に用いる助剤の消費量を極めて低減すること
ができ、この様な経済的なd!製法を採りても目的とす
るトリプトファンは、高純度かつ高回収率で精製できる
Effects of the Invention According to the method of the present invention, tryptophan can be purified with high purity and high recovery rate from an aqueous tryptophan solution containing impurities. Furthermore, by reusing the aqueous ammonia produced in Step 2 as the tryptophan eluate in Step 1, the consumption of auxiliary agents used in purification can be extremely reduced, resulting in such an economical d! Regardless of the manufacturing method, the target tryptophan can be purified with high purity and high recovery rate.

発明の詳細な説明 本発明の方法における工程lは、不純物を含むトリプト
ファン水溶液を非他性ハイポーラスポリマー系樹脂に通
液してトリプトファンを吸着せしめ、しかる後にアンモ
ニア水でトリプトファンを溶出せしめることにある。
Detailed Description of the Invention Step 1 in the method of the present invention consists in passing an impurity-containing tryptophan aqueous solution through a non-transparent high porous polymer resin to adsorb tryptophan, and then eluting tryptophan with aqueous ammonia. .

アンモニア水を溶出液として用いることで、溶出液中の
トリプトファン製置を通液する反応液の数倍に濃縮する
ことが可能となシ、次工程である逆浸透膜を用いた濃縮
工程の負荷を著しく軽減することができる。
By using aqueous ammonia as the eluent, it is possible to concentrate the eluate to several times the amount of the reaction solution passing through the tryptophan membrane, which reduces the burden on the next step of concentration using a reverse osmosis membrane. can be significantly reduced.

工程2は、上記工程1によって得られたトリプトファン
のアンモニア水溶液をアンモニア水溶液のまま、逆浸透
膜を用いて濃縮することにある。
Step 2 consists in concentrating the ammonia aqueous solution of tryptophan obtained in the above step 1 using a reverse osmosis membrane while remaining as an ammonia aqueous solution.

) IJ f ) 7アンは、水に対する溶解度が低く
、また溶解度の温夏依存性も小さいので、通常用いられ
る冷却晶析では回収率が低くおさえられるが、工程1の
非極性ハイポーラスポリマー系樹脂から溶出せしめたア
ンモニア水溶液のまま逆浸透膜を用いて濃縮することに
よって、高い#縮度を得ることができる。
) IJ f ) 7an has low solubility in water and also has a small temperature dependence of solubility, so the recovery rate can be kept low by commonly used cooling crystallization. A high #condensation degree can be obtained by concentrating the ammonia aqueous solution eluted from the ammonia using a reverse osmosis membrane.

工程3は、工程2の逆浸透gtl−用いて濃縮したトリ
シト7アン溶液から、蒸発等によってアンモニアを除去
し、トリプトファンを晶出せしめ回収することにある。
Step 3 is to remove ammonia by evaporation or the like from the tricito-7 ammonium solution concentrated using reverse osmosis GTL in step 2, and to crystallize and recover tryptophan.

逆浸透膜を用いて濃−したトリプトファン水浴液から、
アンモニアを除去するだけで、簡単に高回収率でトリプ
トファンの結晶を回収できる。
From tryptophan water bath solution concentrated using reverse osmosis membrane,
Just by removing ammonia, tryptophan crystals can be easily recovered with a high recovery rate.

本発明の方法においては、工程2の逆浸透膜を用いるト
リプトファンの誠縮の際に、逆浸透膜を透過するアンモ
ニア水を、そのまま工程1の非極性ハイデーラスポリマ
ー系樹脂に吸着したトリプトファンの溶出液として使用
するのが好ましい。
In the method of the present invention, during the shrinkage of tryptophan using a reverse osmosis membrane in step 2, the ammonia water that permeates through the reverse osmosis membrane is directly absorbed into the tryptophan adsorbed on the non-polar high deluxe polymer resin in step 1. Preferably, it is used as an eluent.

工程2で用いられる逆浸透膜は、アンモニア水を排除・
濃縮しないので、トリプトファンと同時に逆浸透膜に供
給されたアンモニア(、アンモニウムイオン)は、濃縮
側と同濃度で透過側へ移動する。このアンモニア水を工
程1の非極性ハイポーラスポリマー系w脂からのトリプ
トファンの溶出に供することによって、逆浸透膜透過ア
ンモニア水の大半を回収工程を経ることなく回収するこ
とができる。もちろん、濃縮側も透過側と同濃度のアン
モニア水を同伴するので、濃縮工程の前もしくは透過ア
ンモニア水は、濃アンモニア水もしくはアンモニアガス
によって若干の濃度調整を行うこともできる。
The reverse osmosis membrane used in step 2 eliminates ammonia water.
Since it is not concentrated, ammonia (ammonium ions) supplied to the reverse osmosis membrane at the same time as tryptophan moves to the permeation side at the same concentration as the concentration side. By using this ammonia water to elute tryptophan from the non-polar highly porous polymer-based fat in Step 1, most of the ammonia water that has passed through the reverse osmosis membrane can be recovered without going through a recovery step. Of course, since the concentration side also carries ammonia water with the same concentration as the permeation side, the concentration of the permeated ammonia water or before the concentration step can be slightly adjusted by using concentrated ammonia water or ammonia gas.

この工程2で生ずる逆浸透膜透過アンモニア水をそのま
ま工程1に再使用しても、目的とするトリプトファンの
精製におけるトリプトファンの純度及び回収率を低下せ
しめることなく、助剤としてのアンモニアの消費量も低
減できる利点を有する。
Even if the ammonia water permeated through the reverse osmosis membrane produced in Step 2 is reused as is in Step 1, the purity and recovery rate of tryptophan in purification of the target tryptophan will not decrease, and the consumption of ammonia as an auxiliary agent will also be reduced. It has the advantage of being able to reduce

本発明で用いられる非極性ハイポーラス?リマー系樹脂
は、イオン交換樹脂とは異なシイオン極性を有しない中
性のビニル七ツマ−1例えばスチレン、ジビニルベンゼ
ン等の重合体又は共重合体である非極性の樹脂であシ、
かつこれらの樹脂は100〜100OXの細孔半径を有
するハイポーラスなポリマー系樹脂である。
Nonpolar hyperporous used in the present invention? The remer-based resin is a non-polar resin that is a neutral vinyl chloride polymer or copolymer, such as styrene and divinylbenzene, which does not have ion polarity unlike ion exchange resins.
Moreover, these resins are highly porous polymer resins having a pore radius of 100 to 100OX.

上述の様な非極性ハイポーラス−リマー系樹脂の具体例
を例示すると、たとえば“ダイヤイオンHP−10”、
1司HP−20’、“同HP−21” 、”同HP−3
0”、”同HP−40”、“同HP−50” 、“セパ
ピーズ5P−206’、′同5P−207’、′同5p
−soo ”、“同5P−9001て以上商品名、三菱
化成社製)、“アンバーライトXAD−2’ 、”同X
AD−4’ (以上商品名、ローム・アンド・ハース社
製)などがこれにあたる。
Specific examples of the above-mentioned non-polar high porous remer resin include "Diaion HP-10",
1 Tsukasa HP-20', "Do HP-21", "Do HP-3"
0'', ``Same HP-40'', ``Same HP-50'', ``Sepapies 5P-206', ``Same 5P-207'', ``Same 5P''
-soo", "5P-9001 product name, manufactured by Mitsubishi Chemical Corporation), "Amberlite XAD-2',""X
This includes AD-4' (all trade names, manufactured by Rohm and Haas).

本発明に用いられる不純物を含有するトリプトファン水
溶液中のトリプトファン濃度は、トリプトファンが溶解
している限シいかなる濃度であってもかまわないが、好
ましくは5〜15Iilt糧度の溶液である。この原料
となる該−水溶液中に含まれる不純物は、該水溶液がど
の様な工程を経て得られたかによって種々異なるが、そ
の中のいくつかを例示すれば以下の様である。
The tryptophan concentration in the impurity-containing tryptophan aqueous solution used in the present invention may be any concentration as long as the tryptophan is dissolved, but it is preferably a solution with a concentration of 5 to 15 Iilt. The impurities contained in the aqueous solution, which is the raw material, vary depending on the process through which the aqueous solution was obtained, but some examples are as follows.

例えば、原料としてDL−セリンとインドールを用いた
酵素的製造法においては、未反応のL−セリン、反応に
利用されないD−セリン、未反応のインドール、補酵素
であるピリドキサールリン酸やその低塩化ナトリウム、
塩化アンモニウム、リン酸二水素カリウム等の無機塩が
これにあたる。
For example, in the enzymatic production method using DL-serine and indole as raw materials, unreacted L-serine, D-serine that is not used in the reaction, unreacted indole, pyridoxal phosphate as a coenzyme, and its low chloride sodium,
This includes inorganic salts such as ammonium chloride and potassium dihydrogen phosphate.

また、インドールとピルビン酸およびアンモニウム塩を
原料とする酵素的製造法においては、未反応のインドー
ル、ピルビン酸またはその塩、酢酸アンモニウムや塩化
アンモニウム等のアンモニウム塩、補酵素であるピリド
キサールリン酸やその低PH調整等に用いられるリン酸
二水素カリウム等の無機塩がこれにあたる。アンスラニ
ル酸を用いた中間体Ii!酵による製造法では、未反応
のアンスラニル酸や、グルコース、硫酸アンモニウム、
リン酸水素ナトリウム、リン酸二水素カリウム、硫酸マ
ンガン等の醗酵液成分等がこれにあたる。
In addition, in the enzymatic production method using indole, pyruvate and ammonium salt as raw materials, unreacted indole, pyruvate or its salt, ammonium salts such as ammonium acetate and ammonium chloride, the coenzyme pyridoxal phosphate and its This includes inorganic salts such as potassium dihydrogen phosphate, which are used for low pH adjustment. Intermediate Ii using anthranilic acid! In the production method using fermentation, unreacted anthranilic acid, glucose, ammonium sulfate,
This includes fermentation liquid components such as sodium hydrogen phosphate, potassium dihydrogen phosphate, and manganese sulfate.

工程1で使用する非極性ノ・イボ−ラスポリマー系樹脂
の量は、通液する不純物を含有するトリプトファン水溶
液中のトリプトファンの濃度によシ異る°が、通常トリ
プトファン水溶液の5〜100%好ましくは5〜30%
の容量で充分である。トリプトファン水溶液を通液後、
直ちにアンモニア水でトリットファンを溶出させてもか
まわないが、非極性ハイポーラスポリマー系樹脂を充填
した塔底よシ、トリプトファンが漏出する液量の少し手
前で通液を中止し、純水を少し通水することがトリプト
ファンと不純物アミノ酸や有機塩、無機塩類との分離性
上好ましい。
The amount of the non-polar non-volatile polymer resin used in step 1 varies depending on the concentration of tryptophan in the impurity-containing tryptophan aqueous solution to be passed, but it is usually preferably 5 to 100% of the tryptophan aqueous solution. is 5-30%
capacity is sufficient. After passing the tryptophan aqueous solution,
You can immediately elute the tritophane with aqueous ammonia, but since the bottom of the column is filled with non-polar high porous polymer resin, stop passing the liquid just before the volume of tryptophan leaks out, and add a small amount of pure water. It is preferable to pass water through it in order to separate tryptophan from impurity amino acids, organic salts, and inorganic salts.

本発明の工程2でトリプトファンの溶出に用いられるア
ンモニア水の舗度は特に限定されず、非極性ハイポーラ
スポリマー系樹脂からトリプトファン水溶液する為に充
分な濃度を用いれば良いが、0.5規定から5規定程度
のアンモニア水が好ましい。
The degree of ammonia water used to elute tryptophan in step 2 of the present invention is not particularly limited, and it is sufficient to use a sufficient concentration to obtain a tryptophan aqueous solution from a non-polar high porous polymer resin, but from 0.5N to Aqueous ammonia of about 5N is preferable.

工程1の原料として用いられるトリプトファン水溶液で
ある反応粗液中にインドールが゛多量混入する場合も、
インドールはかかるアンモニア水溶液によって溶出され
ないので、トリプトファンの純度を高く得ることができ
極めて好都合である。
Even when a large amount of indole is mixed into the reaction crude solution, which is the tryptophan aqueous solution used as the raw material in step 1,
Since indole is not eluted by such an ammonia aqueous solution, tryptophan can be obtained with high purity, which is extremely convenient.

ハイポーラスポリマー系樹脂に吸着したインドールは、
使用につれて蓄積するので、適当な時期にメタノール、
エタノール、インプロノ譬ノール等のアルコール類やか
かるアルコールと水との混合液、アセトン等を用いて溶
離回収することができる。
Indole adsorbed to high porous polymer resin,
As it accumulates as it is used, methanol,
Elution and recovery can be performed using alcohols such as ethanol and impronol, a mixture of such alcohol and water, acetone, and the like.

工程2で用いる非極性ハイポーラスポリマー系樹脂から
溶出したトリプトファンの濃縮に用いられる逆浸透膜は
、通常用いられる逆浸透膜であれば塩排除率の高いいわ
ゆるタイトな逆浸透膜であっても、塩排除率の低いいわ
ゆるルーズな逆浸透膜でありても、所定濃度のアンモニ
ア水での使用に耐える逆浸透膜であればよい。
The reverse osmosis membrane used to concentrate the tryptophan eluted from the non-polar high porous polymer resin used in step 2 is a normally used reverse osmosis membrane, even if it is a so-called tight reverse osmosis membrane with a high salt rejection rate. Even a so-called loose reverse osmosis membrane with a low salt rejection rate may be used as long as it can withstand use with aqueous ammonia at a predetermined concentration.

逆浸透膜による濃縮倍率は、用いる逆浸透膜やアンモニ
ア水の濃度、非極性ハイポーラスポリマー系樹脂からの
溶出濃度によりて適宜選択すればよい。また、逆浸透膜
モジュール形式もいわゆるスノ々イラル型、チューブラ
−型、ホロファイバー型のいずれにも限定されるもので
はない。
The concentration ratio by the reverse osmosis membrane may be appropriately selected depending on the reverse osmosis membrane used, the concentration of ammonia water, and the elution concentration from the non-polar high porous polymer resin. Further, the reverse osmosis membrane module format is not limited to any of the so-called snot-irral type, tubular type, and holofiber type.

逆浸透膜によって濃縮されたトリプトファン溶液は、続
いて単蒸留や通常の晶析装置によってアンモニアを蒸発
除去することによって、簡単に高純度のトリプトファン
結晶を析出回収することができる。
The tryptophan solution concentrated by the reverse osmosis membrane is then subjected to simple distillation or a conventional crystallizer to remove ammonia by evaporation, thereby easily precipitating and recovering highly pure tryptophan crystals.

本発明によって、共存する無機塩、未反応原料等からト
リプトファンを選択的に分離精製し、しかも簡単に、エ
ネルイー消費を削減し、結晶トリプトファンを高純度で
収率よく回収することができる。
According to the present invention, tryptophan can be selectively separated and purified from coexisting inorganic salts, unreacted raw materials, etc., and moreover, it is possible to easily reduce energy consumption and recover crystalline tryptophan with high purity and good yield.

実施例 実施例1 トリプトファンシンターゼを用いて、インドールとDL
−セリンを反応させて下記組成の反応粗液を得た。
Examples Example 1 Indole and DL using tryptophan synthase
- Serine was reacted to obtain a crude reaction liquid having the following composition.

トリプトファン         Log/lD−セリ
ン         6.211/lL−セリン   
      1.11i/lピリドキサール−5−リン
酸        1ダ/を塩化ナトリウム     
    2 i/を上記反応粗液6tを、非極性ハイポ
ーラスポリマー系樹脂「ダイヤイオンHP−20J (
商品名、三菱化成製)2tを充填したカラムに5V3H
r−1で通液した。続いて、脱塩水1tを通液した後、
2規定アンモニア水25t、脱塩水2tを通液し、塔底
にて屈折率計で出口液組成を検知しつつ、トリプトファ
ン画分2−7tを集液した。このトリットファン画分の
トリプトファン濃度は、229/l  と原液の42倍
に濃縮され、その純度は97チ、回収率はほぼ100チ
であった。
Tryptophan Log/lD-serine 6.211/lL-serine
1.11 i/l pyridoxal-5-phosphate 1 da/l sodium chloride
2 i / 6 tons of the above reaction crude solution was mixed with non-polar high porous polymer resin "Diaion HP-20J (
5V3H in a column packed with 2t (product name, manufactured by Mitsubishi Kasei)
The liquid was passed through at r-1. Subsequently, after passing 1 t of demineralized water,
25 tons of 2N ammonia water and 2 tons of demineralized water were passed through the column, and 2-7 tons of the tryptophan fraction was collected while detecting the composition of the outlet liquid with a refractometer at the bottom of the column. The tryptophan concentration of this tritophane fraction was 229/l, which was 42 times that of the original solution, the purity was 97%, and the recovery rate was approximately 100%.

続いて上記溶出液のアンモニア濃度を濃アンモニア水を
用いて2規定に調整後、チューブラ−型逆浸透膜1’−
PBILTL−198ミニモジユール」(部品名:帝人
エンジニアリング製)を用いて9077/14で濃縮し
た。(逆浸透膜による濃縮倍率は41倍である。)透過
液は2規定アンモニア水で、トリプトファンは含まれな
か9た。濃縮水はアンモニア濃度2規定、トリプトファ
ン回収率97チでありた。得られたa縮液640ゴを、
40℃、60−Hgで単蒸留し、残液の−が9以下とな
るまでアンモニア及び水を蒸発除去し、トリプトファン
結晶を晶出せしめた後、フィルターろ過し、結晶トリプ
トファン47.8 gを得た。結晶回収率は80チ、純
度99.5 %の白色結晶であった。水の蒸発i−はト
リグト7アン1g当94.71でありた。
Subsequently, after adjusting the ammonia concentration of the above eluate to 2N using concentrated ammonia water, a tubular reverse osmosis membrane 1'-
It was concentrated using 9077/14 using "PBILTL-198 Mini Module" (part name: manufactured by Teijin Engineering). (The concentration ratio by the reverse osmosis membrane was 41 times.) The permeate was 2N ammonia water and did not contain tryptophan. The concentrated water had an ammonia concentration of 2N and a tryptophan recovery rate of 97N. The obtained a-condensed liquid 640 go,
Simple distillation was carried out at 40° C. and 60 −Hg, and ammonia and water were removed by evaporation until the − of the residual liquid became 9 or less. Tryptophan crystals were crystallized, and then filtered through a filter to obtain 47.8 g of crystalline tryptophan. Ta. The crystal recovery rate was 80%, and white crystals had a purity of 99.5%. The evaporation i- of water was 94.71 per gram of triglyceride.

実施例2 実施例1と全く同様の反応で得られた反応液6tを、実
施例1と同様に非極性ハイポーラスポリマー系樹脂[セ
パピーズ5p−soo J (商品名二三菱化成製)2
tを充填したカラムに5V3Hr−1テ通液した。続い
て脱塩水Xtを通液した後、実施例1で用いた逆浸透膜
の透過液2tを通液し、更に脱塩水2tを通液した。実
施例1と同様に、トリプトファン画分2.71を集液し
た。このトリットファン画分のトリプトファン濃度は、
21.5g/lで原液の215倍に濃縮され、その純度
は97%、回収率97チであった。
Example 2 6 tons of the reaction solution obtained in exactly the same reaction as in Example 1 was treated with a non-polar high porous polymer resin [Sepapeas 5p-soo J (trade name: manufactured by Mitsubishi Kasei) 2 in the same manner as in Example 1.
5V3Hr-1 solution was passed through the column packed with T. Subsequently, after passing demineralized water Xt, 2t of the permeate from the reverse osmosis membrane used in Example 1 was passed through, and further 2t of demineralized water was passed through. As in Example 1, 2.71 tryptophan fractions were collected. The tryptophan concentration of this tritophane fraction is
The concentration was 21.5 g/l, 215 times that of the original solution, the purity was 97%, and the recovery rate was 97%.

続いて、実施例1と全く同様に、上記溶出液を2規定に
調整後、逆浸透膜を用いて90g/lまで濃縮し、単蒸
留及びろ過を実施しトリプトファンの白色結晶45.7
9を得た。回収率76%、純度99.5%であった。逆
浸透膜による濃縮倍率は4.2倍であった。単蒸留によ
る水の蒸発量は、トリプトファン1g当シ4.7gであ
った。
Subsequently, in exactly the same manner as in Example 1, the eluate was adjusted to 2N, concentrated to 90 g/l using a reverse osmosis membrane, and subjected to simple distillation and filtration to obtain white tryptophan crystals with a concentration of 45.7 g/l.
I got a 9. The recovery rate was 76% and the purity was 99.5%. The concentration ratio by reverse osmosis membrane was 4.2 times. The amount of water evaporated by simple distillation was 4.7 g per 1 g of tryptophan.

実施例3 トリプトファナーゼを用いてインドール、ピルビン酸ソ
ーダ及び塩化アンモニウムを反応させて、下記組成の反
応粗液を得た。
Example 3 Indole, sodium pyruvate, and ammonium chloride were reacted using tryptophanase to obtain a crude reaction solution having the following composition.

トリプトファン        10gZtピルビンピ
ルビン酸ソーダ    s g7tインドール    
      z g7t、塩化アンモニウム     
  231i/L塩化ナトリウム        2.
99/lピリドキサール−5−リン酸     111
19/を上記反応粗液6tを、非極性ノ・イボ−ラス系
樹脂「ダイヤイオンHP−20j(商品名、三菱化成製
)2tを充填したカラムに、5V3Hr””で通液した
Tryptophan 10gZt pyruvate sodium pyruvate s g7t indole
z g7t, ammonium chloride
231i/L Sodium Chloride 2.
99/l pyridoxal-5-phosphate 111
19/ was passed through a column filled with 2 tons of non-polar non-ibolus resin "Diaion HP-20j (trade name, manufactured by Mitsubishi Kasei) at 5V3Hr".

続いて脱塩水1tを通液した後、実施例2で用いた逆浸
透膜の透過液2tを通液し、更に脱塩水2tを通液した
。実施例1と同様に、トリプトファン画分2.71を集
液した。このトリプトファン画分のトリプトファン濃度
は21.51/lで、原液の2.15倍に濃縮され、そ
の純度は98チ、回収宅は98%であった。
Subsequently, 1 t of demineralized water was passed through it, and then 2 t of the permeate from the reverse osmosis membrane used in Example 2 was passed through it, and further 2 t of demineralized water was passed through it. As in Example 1, 2.71 tryptophan fractions were collected. The tryptophan concentration of this tryptophan fraction was 21.51/l, concentrated 2.15 times that of the original solution, and its purity was 98%, with a recovery rate of 98%.

続いて、実施例1と同様に上記浴出液を2規定に調整後
、逆浸透膜を用いて90g7tまで濃縮し、単蒸留及び
ろ過を実施し、トリプトファンの白色結晶46.8 I
!を得た。回収率78%、純度99.7%であった。逆
浸透膜での濃縮倍率は4゜2倍であ広単蒸留による水の
蒸発量はトリプトファン1g当シ4.7gであった。
Subsequently, the bath solution was adjusted to 2N in the same manner as in Example 1, concentrated to 90g7t using a reverse osmosis membrane, and subjected to simple distillation and filtration to obtain 46.8 I of white crystals of tryptophan.
! I got it. The recovery rate was 78% and the purity was 99.7%. The concentration ratio with the reverse osmosis membrane was 4.2 times, and the amount of water evaporated by simple distillation was 4.7 g per 1 g of tryptophan.

比較例 実施例1と全く同様の反応で得られた反応粗液6tを、
実施例1と同様に非極性ノ・イボ−ラスポリマー系樹脂
「HP−20J 2 tを充填したカラムに5V3Hr
−1で通液した。続いて脱塩水30tを通液した。実施
例1と同様に塔底にて屈折率計で出口液組成を検知しつ
つ、トリプトファン画分22tを採取した。このトリプ
トファン画分のトリプトファン濃度は2.3g/l と
、反応粗液に対して4.3倍希釈されていた。また、ト
リプトファンの回収率は85%、純度は96チでありた
Comparative Example 6 tons of crude reaction liquid obtained in exactly the same reaction as Example 1,
In the same manner as in Example 1, a column packed with 2 t of non-polar non-irborous polymer resin "HP-20J" was heated at 5V3Hr.
The solution was passed at -1. Subsequently, 30 tons of demineralized water was passed through. As in Example 1, 22 tons of the tryptophan fraction was collected while detecting the composition of the outlet liquid using a refractometer at the bottom of the tower. The tryptophan concentration of this tryptophan fraction was 2.3 g/l, which was 4.3 times diluted with respect to the crude reaction solution. Furthermore, the recovery rate of tryptophan was 85%, and the purity was 96%.

このトリプトファン画分を、実施例1と同様の単蒸留装
置を用いて2..2Lまで濃縮し、更に該濃縮液を5℃
に冷却し、そのまま5時間放置してトリプトファン結晶
を晶出せしめた後ろ過した。得られたトリプトファン結
晶の回収率は651純度は97.5 %であった。濃縮
に要した水の蒸発量は、トリプトファン1g当F)59
’#であった。
This tryptophan fraction was distilled into 2. .. Concentrate to 2L, and then heat the concentrated solution at 5°C.
The mixture was cooled to 100 mL, left as it was for 5 hours to crystallize tryptophan crystals, and then filtered. The recovery rate of the tryptophan crystals obtained was 651, and the purity was 97.5%. The amount of water required for concentration is 1 g of tryptophan (F)59
'#Met.

Claims (1)

【特許請求の範囲】[Claims] (1)不純物を含有するトリプトファン水溶液からトリ
プトファンを分離精製する方法において、 ¥工程1¥:該水溶液を非極性ハイポーラスポリマー系
樹脂に通液しトリプトファンを吸着させ、その後アンモ
ニア水で該樹脂に吸着したトリプトファンを溶出させる
、 ¥工程2¥:工程1で得た溶出液を逆浸透膜を用いて濃
縮する、 ¥工程3¥:工程2で得た濃縮液からアンモニアを除去
しトリプトファンを晶出させる、 ことからなる工程を採ることを特徴とするトリプトファ
ンの精製法。
(1) In a method for separating and purifying tryptophan from an aqueous tryptophan solution containing impurities, ¥Step 1¥: The aqueous solution is passed through a non-polar highly porous polymer resin to adsorb tryptophan, and then adsorbed to the resin with aqueous ammonia. Step 2: Concentrate the eluate obtained in Step 1 using a reverse osmosis membrane. Step 3: Remove ammonia from the concentrated solution obtained in Step 2 and crystallize tryptophan. A method for purifying tryptophan characterized by adopting a process consisting of.
JP27574686A 1986-11-19 1986-11-19 Purification method of tryptophan Expired - Lifetime JPH0784441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27574686A JPH0784441B2 (en) 1986-11-19 1986-11-19 Purification method of tryptophan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27574686A JPH0784441B2 (en) 1986-11-19 1986-11-19 Purification method of tryptophan

Publications (2)

Publication Number Publication Date
JPS63130580A true JPS63130580A (en) 1988-06-02
JPH0784441B2 JPH0784441B2 (en) 1995-09-13

Family

ID=17559817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27574686A Expired - Lifetime JPH0784441B2 (en) 1986-11-19 1986-11-19 Purification method of tryptophan

Country Status (1)

Country Link
JP (1) JPH0784441B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090306A1 (en) * 2004-03-19 2005-09-29 Biosphere S.P.A. Process for the purification of tryptophan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090306A1 (en) * 2004-03-19 2005-09-29 Biosphere S.P.A. Process for the purification of tryptophan

Also Published As

Publication number Publication date
JPH0784441B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
SU1450747A3 (en) Method of purifying raw 4-demethoxydoxorubicene
JP3134236B2 (en) Method for producing high α-glycosyl-L-ascorbic acid content and separation system for the production
JPS6329999B2 (en)
US2375165A (en) Recovery of nitrogenous products from organic wastes
US2375164A (en) Recovery of betaine and betaine salts from sugar beet wastes
JP3013995B2 (en) Method for separating 2-keto-L-gulonic acid from fermentation medium
CN111171097A (en) Separation and purification method for producing adenosine by fermentation
US4584399A (en) Purification of L-phenylalanine
EP2910543B1 (en) Method for purifying 1,4-diaminobutane, 1,4-diaminobutane purified by said method, and polyamide prepared therefrom
JPS585904B2 (en) Method for producing guanidine and its salts
US6147259A (en) Process for producing glutamic acid
JPS60136543A (en) Method for purifying phenylalanine
JPS63130580A (en) Purification of tryptophan
CN110885357B (en) Method for separating and purifying glutamine dipeptide by nanofiltration membrane
US5965028A (en) Process for treating a liquid
KR19980703687A (en) Method of preparing monosodium glutamate
CN106674037B (en) A method of separating L-phenylalanine from Abbas's sweet tea synthesis mother liquid
JPS6337635B2 (en)
EP0781264A1 (en) Process for recovering citric acid
JPH0267256A (en) Isolation and purification of carnitine and carnitinenitrile
HU214452B (en) Process for producing salts of deferoxamin b with high purity
JPS61126070A (en) Method of decoloring and purifying l-tryptophan
CN117720601A (en) Improved method for separating and purifying beta-nicotinamide mononucleotide by macroporous adsorption resin
SU412192A1 (en) The method of isolation of salsoline and salsolidine
AU2022333819A1 (en) Method for producing cytidine-5’-diphosphate compound