JPS6350395A - Production of compound semiconductor crystal substrate - Google Patents

Production of compound semiconductor crystal substrate

Info

Publication number
JPS6350395A
JPS6350395A JP19579886A JP19579886A JPS6350395A JP S6350395 A JPS6350395 A JP S6350395A JP 19579886 A JP19579886 A JP 19579886A JP 19579886 A JP19579886 A JP 19579886A JP S6350395 A JPS6350395 A JP S6350395A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor crystal
crystal
vpe
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19579886A
Other languages
Japanese (ja)
Inventor
Nobuyori Tsuzuki
都築 信頼
Yoshihiro Imamura
今村 義宏
Hidefumi Mori
森 英史
Tatsuo Izawa
達夫 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19579886A priority Critical patent/JPS6350395A/en
Publication of JPS6350395A publication Critical patent/JPS6350395A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To economically produce the title high-quality compd. semiconductor substrate on a substrate having a large area by forming the intermediate layer of a compd. semiconductor crystal on a supporting crystal substrate of a different kind of material by the MBE method, and growing a compd. semiconductor crystal on the intermediate layer by the VPE method. CONSTITUTION:The intermediate layer 2 of the compd. semiconductor crystal consisting of group III and V elements is formed on the supporting crystal substrate 1 consisting of a silicon or germanium signal crystal by the molecular beam epitaxy (MBE). The same compd. semiconductor crystal 3 is further formed on the intermediate layer 2 by the vapor phase epitaxy (VPE). One method among the chloride VPE method, the high chloride VPE method, and the org. metal vapor phase epitaxy (MO-VPE) or a combination of the two methods is used as the VPE method. As a result, the quality of the semiconductor crystal can be improved to the extent where the crystal can be applied to a device.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は異種材料の支持結晶基板上に化合物半導体結晶
を形成する化合物半導体結晶基板の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method for manufacturing a compound semiconductor crystal substrate in which a compound semiconductor crystal is formed on a supporting crystal substrate made of a different material.

〔従来の技術〕[Conventional technology]

従来から化合物半導体結晶基板は、レーザー、発光ダイ
オード(LED ) 、太陽電池等の光デバイスおよび
接合形トランジスタ、電界効果トランジスタ等の電子デ
バイスに用いられており、さらに最近では光デバイスと
電子デバイスを一体化したいわゆる光−電子デバイスに
も用いられて来ている。
Compound semiconductor crystal substrates have traditionally been used in optical devices such as lasers, light emitting diodes (LEDs), and solar cells, and electronic devices such as junction transistors and field effect transistors, and more recently, they have been used to integrate optical devices and electronic devices. It has also been used in so-called opto-electronic devices.

これらのデバイスは水平ブリッジマン法又はチョコラル
スキー引上法により製造された、化合物半導体結晶イン
ゴットを切断、灯心した化合物半導体結晶支持基板上に
ホモエピタキシャル成品した化合物半導体基板上に作製
されていた。しかし、このような方法で製造された化合
物半導体結晶基板は高価でありまた欠陥の少ない大面、
積結晶基板を得ることが困難な現状にある。このような
問題に対して化合物半導体結晶の利点を活がしつつ大面
積でかつ経済性の優れた化合物半導体結晶基板を得るた
めに、安価でかつ大面積で大量生産技術の確立てれてい
るシリコン又はゲルマニウム結晶上に化合物半導体結晶
を形成することにょシ、安価で高性能、多機能なデバイ
スに適用できる化合物半導体結晶基板を製造する試みが
なされている。
These devices were fabricated on a compound semiconductor substrate manufactured by the horizontal Bridgman method or the Czochralski pulling method, in which a compound semiconductor crystal ingot was cut and cored onto a compound semiconductor crystal support substrate and homoepitaxially formed. However, compound semiconductor crystal substrates manufactured by this method are expensive and have a large surface with few defects.
Currently, it is difficult to obtain multi-crystalline substrates. In order to solve these problems and take advantage of the advantages of compound semiconductor crystals and to obtain large-area, economical compound semiconductor crystal substrates, inexpensive, large-area, mass-production technology has been established. Attempts have been made to form compound semiconductor crystals on silicon or germanium crystals to produce compound semiconductor crystal substrates that can be applied to inexpensive, high-performance, and multifunctional devices.

これまで試みられている製造方法はクロライドvpg法
又はハイドライドVPE法、MBB法、M。
Production methods that have been tried so far include the chloride VPG method, the hydride VPE method, the MBB method, and the M.

−VPE法があり、それぞれ単独に用いられていた。-VPE methods, each of which was used independently.

クロライドVPE法又はハイドライドVPE法は、これ
までに実用的なレーザー、LED等の光デバイスの製造
に適用され、高品質なホモエピタキシャル化合物半導体
結晶基板の製造に実績を有している。しかし・異種材料
の支持結晶基板上に化合物半導体結晶を形成するいわゆ
るヘテロエピタキシャル化合物半導体結晶基板を製造す
る方法が未だ開発されてない。その原因はクロライドV
PE法又はハイドライドVPE法で使用する成長原料ガ
ス中に極くわずか含まれる酸素成分と)ICtガスによ
シ石英反応管管壁がエツチングされ管壁から出る酸素成
分により支持結晶基板表面が酸化され、支持結晶基板上
に化合物半導体結晶が堆積しない。
The chloride VPE method or the hydride VPE method has been applied to the production of practical optical devices such as lasers and LEDs, and has a track record of producing high-quality homoepitaxial compound semiconductor crystal substrates. However, a method for manufacturing a so-called heteroepitaxial compound semiconductor crystal substrate in which a compound semiconductor crystal is formed on a support crystal substrate made of different materials has not yet been developed. The cause is chloride V
The quartz reaction tube wall is etched by the ICt gas, which is very small in the oxygen component contained in the growth source gas used in the PE method or the hydride VPE method, and the supporting crystal substrate surface is oxidized by the oxygen component released from the tube wall. , compound semiconductor crystals are not deposited on the supporting crystal substrate.

MBE法は、クロライドVPE法又はハイドライドVP
E法と比較して酸素成分の非常に少ない雰囲気が達成さ
れるため支持結晶基板上に化合物半導体結晶は堆積する
。しかしながら、MBE法で形成した異種結晶基板上の
化合物半導体結晶は結晶性が悪くデバイスへの適用が不
可能である。さらにMBE装置は一般にクロライドVP
E装置又はハイドライドVPE装置に比べ非常に高価で
あり、生産能力にも劣る。Mo−VPE法は、異種材料
からなる支持結晶基板上に化合物半導体結晶を堆積する
ことが出来るが、有機金属原料ガス;・て含まれるカー
ボン成分が異種材料からなる支持結晶基板表面に悪影響
を与え、MO−VI’E 法のみではデバイスへの適用
が可能な良質な化合物半導体結晶基板が得られない。
MBE method is chloride VPE method or hydride VP
Compared to the E method, a compound semiconductor crystal is deposited on the supporting crystal substrate because an atmosphere with a very low oxygen component is achieved. However, a compound semiconductor crystal on a heterocrystalline substrate formed by the MBE method has poor crystallinity and cannot be applied to devices. Furthermore, MBE equipment generally uses chloride VP.
It is very expensive and has inferior production capacity compared to E equipment or hydride VPE equipment. In the Mo-VPE method, compound semiconductor crystals can be deposited on a supporting crystal substrate made of a different material, but the carbon component contained in the organometallic raw material gas has an adverse effect on the surface of the supporting crystal substrate made of a different material. , MO-VI'E method alone cannot provide a high-quality compound semiconductor crystal substrate that can be applied to devices.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように従来の化合物半導体結晶基板の製造方法は
、欠陥の少い大面積結晶基板を安価に得ることが困難で
あるという欠点があった。
As described above, the conventional method for manufacturing a compound semiconductor crystal substrate has the drawback that it is difficult to obtain a large-area crystal substrate with few defects at a low cost.

本発明の目的は上記した従来の化合物半導体結晶基板の
製造方法が有する欠点を解決し、大面積な異種材料の支
持結晶基板上に経済的にかつ高品質な化合物半導体結晶
基板を得る製造方法を提供することにある。
The purpose of the present invention is to solve the drawbacks of the conventional compound semiconductor crystal substrate manufacturing methods described above, and to provide a manufacturing method for economically and high-quality compound semiconductor crystal substrates on a large-area support crystal substrate made of different materials. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的の達成を図るため、シリコン又はゲル
マニウムの支持結晶基板上にM B E法で化合物半導
体結晶中間層を形成し、さらにその上に高品質な化合物
半導体結晶をクロライドVPE法、ハイドライドVPE
法、Mo −VP E法のうち1つの方法又は2つ以上
の方法を組合せた方法で成長させることを最も主要な特
徴とする。従来の製造方法のように支持結晶基板上にN
IBE法のみ又はVPE法のみで化合物半導体結晶を成
長させる場合と異なる。
In order to achieve the above object, the present invention forms a compound semiconductor crystal intermediate layer on a supporting crystal substrate of silicon or germanium by the MBE method, and further coats a high quality compound semiconductor crystal thereon by using the chloride VPE method or the hydride method. V.P.E.
The main feature is that the growth can be performed by one method or a combination of two or more methods among the method and the Mo-VPE method. N on the supporting crystal substrate as in the conventional manufacturing method.
This is different from growing a compound semiconductor crystal using only the IBE method or only the VPE method.

〔作 用〕[For production]

VPE法による結晶性改善効果の理由 M B E法では、原料ガスの圧力にしてlo−4〜/
 0−7torr  程度の高真空で成長が行なわれる
ため、基板温度が高いと蒸気圧の高い■族原刺が基板か
ら再蒸発して結晶が成長しなくなってしまうため基板温
度をあまシ高く出来ない。さらに、MB E法では、原
料は熱分解による蒸着法であるため化学反°応が十分で
ない。これらの理由によりSi上にM B E法で成長
したm−v族化合物半導体は結晶性が悪い。しかし、V
PE法は常圧からやや減圧(/ 00 torr −/
 torr )  で行なわれるため、■族原料の再蒸
発もなく基板温度が高く出来る。基板表面にm−v族半
導体が存在する場合、基板温度が高いと基板上に到達し
た■族と■族の反応が十分に進み基板上に成長するm−
v族−化合物半導体は結晶性が良くなる。また、M B
 E中間層上:・こVPE法で成長させる場合、基板温
度をMBE中間層を成長させた温度よりも高くすること
によりアニール効果によシ固相反応が起き格子のみだれ
が回復しM B E中間層の結晶性も改善され、さらに
その上にVI’E法でよシ結晶性の良い結晶を成長でき
る。
Reasons for the crystallinity improvement effect of the VPE method In the MBE method, the pressure of the raw material gas is lo-4~/
Since growth is carried out in a high vacuum of about 0-7 torr, it is not possible to raise the substrate temperature too high because if the substrate temperature is high, the group II thorns with high vapor pressure will re-evaporate from the substrate and the crystal will no longer grow. . Furthermore, in the MBE method, the chemical reaction is not sufficient because the vapor deposition method uses thermal decomposition of the raw material. For these reasons, the m-v group compound semiconductor grown on Si by the MBE method has poor crystallinity. However, V
The PE method uses normal pressure to slightly reduced pressure (/ 00 torr -/
(torr), the substrate temperature can be increased without re-evaporation of the group (1) raw material. When an m-v group semiconductor is present on the substrate surface, if the substrate temperature is high, the reaction of the group II and group III that have arrived on the substrate will proceed sufficiently and the m-v group will grow on the substrate.
Group V compound semiconductors have improved crystallinity. Also, M.B.
On the E intermediate layer: - When grown using the VPE method, by raising the substrate temperature higher than the temperature at which the MBE intermediate layer was grown, a solid phase reaction occurs due to the annealing effect, and the lattice distortion is restored, resulting in MBE. The crystallinity of the intermediate layer is also improved, and a crystal with good crystallinity can be grown on it by the VI'E method.

〔実施例〕〔Example〕

以下シリコン結晶基板を支持基板としてGaPを化合物
半導体結晶とする化合物半導体結晶基板を挙げて、図面
を用いて本発明の詳細な説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings, citing a compound semiconductor crystal substrate in which a silicon crystal substrate is used as a supporting substrate and GaP is used as a compound semiconductor crystal.

第1図は本発明の一実施例における主な工程を示したも
ので、lはシリコン支持結晶基板、2はM B E法に
よるC)aP化合物半導体結晶中間層、3はVl)E法
によるGaP化合物半導体結晶層である。
FIG. 1 shows the main steps in one embodiment of the present invention, where l is a silicon supporting crystal substrate, 2 is C) an aP compound semiconductor crystal intermediate layer formed by the MBE method, and 3 is Vl) an aP compound semiconductor crystal intermediate layer formed by the E method. This is a GaP compound semiconductor crystal layer.

上記シリコン支持結晶基板/の表面にMBE 法により
、第1図に示す如(GaP化合物半導体結晶中間層を形
成する。M B E法は、シリコン支持結晶基板を化学
処理により清浄表面にし、Li B E  装置内に仕
込み真空度10−7〜/ 0−10’porrの高真空
に排気にしたのちり00°C以上の温度で高温処理して
さらに基板表面を清浄処理したのちGaP化合物半導体
結晶中間層を形成する。さらに第1図に示すが如< M
BE法で形成されたGaP化合物半導体結晶中間層の上
にVPE法でGaP化合物半導体結晶を成長させ、Ga
P化合物半導体結晶基板を得る。
A GaP compound semiconductor crystal intermediate layer (as shown in FIG. 1) is formed on the surface of the silicon supported crystal substrate by the MBE method. E After the dust was charged into the equipment and evacuated to a high vacuum with a vacuum level of 10-7 to 0-10'porr, it was treated at a high temperature of 00°C or higher, and the substrate surface was further cleaned, and then the GaP compound semiconductor crystal intermediate was removed. Further, as shown in FIG.
A GaP compound semiconductor crystal is grown by the VPE method on the GaP compound semiconductor crystal intermediate layer formed by the BE method.
A P compound semiconductor crystal substrate is obtained.

第1表にシリコン支持結晶基板/の面方位(10O)お
よU (///)で、VPE法としてハイドライドVP
E法を用いた場合で結晶品質を評価する代表的な例とし
てX線二結晶法によるX線回折スペクトラムの半値幅お
よび光学顕微鏡で調べた表面状態をシリコン支持結晶、
MBE法にょるGaP中間層、その上のVPE法による
GaP成長層別に膜厚とともに示す。
Table 1 shows the plane orientation (10O) and U (///) of the silicon supporting crystal substrate /, using hydride VP as the VPE method.
A typical example of evaluating crystal quality when using the E method is to measure the half-width of the X-ray diffraction spectrum by the X-ray double crystal method and the surface condition examined with an optical microscope using a silicon-supported crystal.
The film thicknesses of the GaP intermediate layer formed by the MBE method and the GaP layer grown thereon by the VPE method are shown.

第1表 X線半値幅はシリコン<、1oo)基板を用いた場合は
(≠00)面反射で、シリコン(/ I/ )基板を用
いた場合はC333’1面反射である。第1表から明ら
かなようにシリコン支持基板上にMBEで形成したGa
P中間層のX線半値@は大きく結晶品質が悪いことを示
しているが、M B E中間層の上にVPE法で成長さ
せたGat’結晶のX線半値幅は小さくなりVPE法に
よる結晶品質の改善効果が大きい6%にシリコン(//
/)支持基板の場合、MBE中間層の半値幅は無限大、
いわゆるX線二結晶法では結晶品質が評価不可能な程、
結晶品質が悪いことを示しているがその場合でもMBE
中間層の上にVPE法で成長させたGaP (7) X
線半値幅は小さくなっておりVPE法による結晶品質の
改善効果が著るしいことを示している。さらに本発明の
効果をみるため上記の実施例による化合物半導体結晶基
板を用いて第2図に示すLEDデバイスを作製した。
The X-ray half-width in Table 1 is a (≠00) plane reflection when a silicon <, 1oo) substrate is used, and a C333' single plane reflection when a silicon (/I/) substrate is used. As is clear from Table 1, Ga formed by MBE on a silicon support substrate
The X-ray half-width of the P intermediate layer is large, indicating poor crystal quality, but the X-ray half-width of the Gat' crystal grown on the MBE intermediate layer by the VPE method is small, indicating that the crystal quality is poor. Silicon accounts for 6%, which has a large quality improvement effect (//
/) In the case of the support substrate, the half-width of the MBE intermediate layer is infinite,
The quality of the crystals cannot be evaluated using the so-called X-ray double crystal method.
This indicates that the crystal quality is poor, but even in that case, MBE
GaP grown by VPE method on the intermediate layer (7)
The half width of the line is small, indicating that the VPE method has a significant effect of improving crystal quality. Furthermore, in order to examine the effects of the present invention, an LED device shown in FIG. 2 was fabricated using the compound semiconductor crystal substrate according to the above example.

図中/はシリコン支持結晶基板1.21”!:MBE法
によるGaI’化合物半導体結晶中間層を示し、3/は
口形GaP層を示し、32は亜鉛拡散で形成したP形G
aP層を示し、弘はP形電極、夕はn形電極を示す。こ
のようにしてGaP化合物半導体結晶基板上に作製した
GaP LEDデバイスは中心波長!73−で発光し本
発明の効果、すなわち良質のP形及びN形のGaP結晶
が得られていることが実証された。
In the figure, / indicates a silicon supported crystal substrate 1.21"!: GaI' compound semiconductor crystal intermediate layer formed by MBE method, 3/ indicates a mouth-shaped GaP layer, and 32 indicates a P-type G formed by zinc diffusion.
The aP layer is shown, Hiroshi indicates a P-type electrode, and Yu indicates an N-type electrode. The GaP LED device fabricated on the GaP compound semiconductor crystal substrate in this way has a center wavelength! 73-, which demonstrated the effect of the present invention, that is, that high-quality P-type and N-type GaP crystals were obtained.

以上の実施例は支持結晶基板としてンリコン結晶基板、
化合物半導体結晶としてGaPを用いた場合であるが、
支持結晶基板としてゲルマニウム結晶基板を用いても上
記の同様な効果が得られ、また化合物半導体結晶として
GaP以外の■族及びV族の元素からなる場合でも上記
と同様な効果が得られ、MBE法についてもハイドライ
ドVPE法のみを使った場合であるが、その他のクロラ
イドV E P法MO−VP E法等VPE法をそれぞ
れ単独に使用しても、2つ以上のVPEを組合せた方法
でも同様の効果が期待できる。
In the above embodiments, a silicon crystal substrate is used as a supporting crystal substrate.
In the case where GaP is used as the compound semiconductor crystal,
Even when a germanium crystal substrate is used as the supporting crystal substrate, the same effect as described above can be obtained, and even when the compound semiconductor crystal is made of group II and group V elements other than GaP, the same effect as above can be obtained, and the MBE method This is also the case when only the hydride VPE method is used, but the same result can be obtained even if other VPE methods such as chloride VEP method, MO-VPE method, etc. are used individually, or when two or more VPE methods are combined. You can expect good results.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、異種材料の支持結晶基板上に化合
物半導体結晶を形成することによって化合物半導体結晶
基板を製造する方法において、支持結晶基板上にM B
 E法で化合物半導体中間層を形成し、さらにその上に
VPE法で化合物半導体結晶を成長させることにより、
化合物半導体結晶の品質をデバイスに適用可能なレベル
まで改善し、経済的にかつ大面積に集積化された多機能
な光デバイス、電子デバイスさらに光−電子デバイスの
製造を可能とすることが出来る。
As explained above, in a method for manufacturing a compound semiconductor crystal substrate by forming a compound semiconductor crystal on a supporting crystal substrate made of a different material, M B is formed on the supporting crystal substrate.
By forming a compound semiconductor intermediate layer using the E method and growing a compound semiconductor crystal on top of it using the VPE method,
The quality of compound semiconductor crystals can be improved to a level that can be applied to devices, making it possible to economically manufacture multifunctional optical devices, electronic devices, and opto-electronic devices that are integrated over a large area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における主な工程の断面図で
あり、第2図は本発明をLEDデバイスに適用した断面
図である。 /・・・シリコン支持結晶基板、2・・・M B E法
によるGaP化合物半導体結晶中間層、3・・・VlJ
E法によるGaP化合物半導体結晶層、≠・・・P形電
極、!・・・n形電極、3/・・・n形GaP層、32
・・・P形GaP層。 第 1 反 Y2図
FIG. 1 is a sectional view of the main steps in an embodiment of the present invention, and FIG. 2 is a sectional view of the present invention applied to an LED device. /...Silicon supporting crystal substrate, 2...GaP compound semiconductor crystal intermediate layer by MBE method, 3...VlJ
GaP compound semiconductor crystal layer by E method, ≠...P-type electrode,! ...n-type electrode, 3/...n-type GaP layer, 32
...P-type GaP layer. Part 1 Anti-Y2 diagram

Claims (1)

【特許請求の範囲】 1、異種材料の支持結晶基板上に化合物半導体結晶を形
成することによって化合物半導体結晶基板を製造するに
当り、支持結晶基板上に分子線エピタキシ(MBE)法
で化合物半導体結晶中間層を形成しさらにその上に気相
エピタキシ(VPE)法で化合物半導体結晶を成長させ
ることを特徴とする化合物半導体結晶基板の製造方法。 2、前記支持結晶基板はシリコン又はゲルマニウム単結
晶からなり、化合物半導体結晶はIII族及びV族の元素
からなることを特徴とする特許請求の範囲第1項記載の
化合物半導体結晶基板の製造方法。 3、前記気相エピタキシ(VPE)法はクロライドVP
E法、ハイドライドVPE法、有機金属気相エピタキシ
(MO−VPE)法のうち1つの方法又は2つ以上の方
法を組合せた方法であることを特徴とする特許請求の範
囲第1項記載の化合物半導体結晶基板の製造方法。
[Claims] 1. In manufacturing a compound semiconductor crystal substrate by forming a compound semiconductor crystal on a supporting crystal substrate of a different material, a compound semiconductor crystal is formed on the supporting crystal substrate by molecular beam epitaxy (MBE). A method for manufacturing a compound semiconductor crystal substrate, comprising forming an intermediate layer and growing a compound semiconductor crystal thereon by vapor phase epitaxy (VPE). 2. The method for manufacturing a compound semiconductor crystal substrate according to claim 1, wherein the supporting crystal substrate is made of silicon or germanium single crystal, and the compound semiconductor crystal is made of a group III and group V element. 3. The vapor phase epitaxy (VPE) method uses chloride VP
The compound according to claim 1, which is a method of one method or a combination of two or more of the E method, hydride VPE method, and metal organic vapor phase epitaxy (MO-VPE) method. A method for manufacturing a semiconductor crystal substrate.
JP19579886A 1986-08-21 1986-08-21 Production of compound semiconductor crystal substrate Pending JPS6350395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19579886A JPS6350395A (en) 1986-08-21 1986-08-21 Production of compound semiconductor crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19579886A JPS6350395A (en) 1986-08-21 1986-08-21 Production of compound semiconductor crystal substrate

Publications (1)

Publication Number Publication Date
JPS6350395A true JPS6350395A (en) 1988-03-03

Family

ID=16347151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19579886A Pending JPS6350395A (en) 1986-08-21 1986-08-21 Production of compound semiconductor crystal substrate

Country Status (1)

Country Link
JP (1) JPS6350395A (en)

Similar Documents

Publication Publication Date Title
JP2007230823A (en) Method for manufacturing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
DE4138121A1 (en) SOLAR CELL AND METHOD FOR THE PRODUCTION THEREOF
JPS6329928A (en) Method of making gallium arsenite grow on silicon by epitaxial growth
JPH05217890A (en) Crystal for producing semiconductor device and it&#39;s manufacture
JP2002249400A (en) Method for manufacturing compound semiconductor single crystal and utilization thereof
Fukuda et al. High quality heteroepitaxial Ge growth on (100) Si by MBE
JP2570646B2 (en) Si-based semiconductor crystal substrate and method of manufacturing the same
JPH08255923A (en) Semiconductor device employing ii-vi compound semiconductor and fabrication thereof
CN107604339B (en) Preparation method of cadmium selenide thin film material
JPS6350395A (en) Production of compound semiconductor crystal substrate
KR101041659B1 (en) A Method Of Manfacturing GaN Epitaxial Layer Using ZnO Buffer Layer
JP3979115B2 (en) Method for manufacturing iron silicide layer, semiconductor substrate, and optical semiconductor device
JP2006253414A (en) Method for forming semiconductor thin film on si substrate and its structure
US20100187539A1 (en) Compound semiconductor epitaxial wafer and fabrication method thereof
He et al. Synthesis of dislocation free Si y (Sn x C1− x) 1− y alloys by molecular beam deposition and solid phase epitaxy
JP2642096B2 (en) Method of forming compound semiconductor thin film
JP4211236B2 (en) Iron silicide film forming method, semiconductor wafer, and optical semiconductor device
CN105986321B (en) In the method for Ge Grown GaAs epitaxial films
JPS62132312A (en) Manufacture of semiconductor thin film
JPS6066811A (en) Manufacture of compound semiconductor device
JP3055158B2 (en) Method for manufacturing silicon carbide semiconductor film
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPS63186416A (en) Compound semiconductor substrate
KR101134568B1 (en) Growth Method of Single Crystalline CdTe layer on Si substrates
JPH01120011A (en) Inp semiconductor thin film