JPS6349211B2 - - Google Patents

Info

Publication number
JPS6349211B2
JPS6349211B2 JP14759781A JP14759781A JPS6349211B2 JP S6349211 B2 JPS6349211 B2 JP S6349211B2 JP 14759781 A JP14759781 A JP 14759781A JP 14759781 A JP14759781 A JP 14759781A JP S6349211 B2 JPS6349211 B2 JP S6349211B2
Authority
JP
Japan
Prior art keywords
resist
solution
parts
bzma
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14759781A
Other languages
Japanese (ja)
Other versions
JPS5848048A (en
Inventor
Katsumi Ogawa
Kunio Hibino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14759781A priority Critical patent/JPS5848048A/en
Publication of JPS5848048A publication Critical patent/JPS5848048A/en
Publication of JPS6349211B2 publication Critical patent/JPS6349211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、遠紫外線に感光するレジストに関す
るもので、半導体素子や集積回路などの超微細パ
ターンを形成するのに適したものである。 従来、集積回路の製造工程において、回路パタ
ーンを製作する際には、紫外線を用いたマスク転
写技術が用いられてきた。しかし、紫外線を用い
ると、解像度は回折現象などのために、実用上約
2μmが限界となり、超LSIなどの、さらに微細な
パターンが要求される製造工程では、紫外線を用
いる転写技術は限界にきている。そこで、集積回
路の高密度化に対処するためには、回折のより少
ない遠紫外線(波長200〜350nm)を用いるマス
ク転写技術が注目されている。そのために、遠紫
外線に感光するレジスト、即ち、遠紫外線露光用
レジスト材料の開発が急がれている。 従来、遠紫外線露光用レジスト材料としては、
ポリメタクリル酸メチル、ポリメチルイソプロペ
ニルケトンや、紫外線露光用レジストとして用い
られてきたジアジド系フオトレジストなどが検討
されてきたが、感度や解像度特性、耐ドライエツ
チング特性において不十分であり、前記レジスト
を実用に供するには、まだ種々の問題点が残され
ている。 本発明は、高感度で、耐ドライエツチング性の
優れたポジ型(遠紫外線露光後現像液に可溶化)
の遠紫外線レジスト材料を提供するもので、メタ
クリル酸ベンジル・メタクリル酸グリシジル共重
合体からなるものである。 本発明のレジスト材料を用いてレジストパター
ンを形成する方法の例を説明すると、まずメタク
リル酸ベンジル(以下BzMAと略す)・メタクリ
ル酸グリシジル(以下GMAと略す)共重合体
(以下P(BzMA―GMA)と略す)を7〜10重量
%(以下単に%で表す)の濃度になるように、メ
チルセロソルブアセテートに溶解させ、0.2μmの
フイルターでろ過してレジスト溶溶とする。溶媒
としてはこの他に、トルエン、キシレン、又はエ
チルセロソルブアセテートなどが使用できる。次
に、このレジスト溶液を、熱酸化したシリコンウ
エハ上に約5c.c.滴下し、回転塗布法にて前記ウエ
ハ上に約1μm厚のレジスト薄膜を形成する。こ
の基板を熱処理した後、基板上に所定のパターン
を有するマスク材(クロム薄膜を有する石英板)
を設置し、遠紫外線を数十〜百秒間露光する。遠
紫外線が露光された部分は、光反応により可溶化
する。この基板を現像液に浸漬すると、露光され
た部分のレジストは、露光されなかつた部分に比
べて溶解速度が大きく、一定時間の現像後、露光
されなかつた部分のみ基板上にパターンとして残
存する。 このようにしてレジストパターンを形成した基
板を、CF4ガスを用いてドライエツチングを行な
つたところ、従来から用いられているポリメタク
リル酸メチルに比べて、大きな耐ドライエツチン
グ特性をもつていることがわかつた。 本発明に用いるP(BzMA・GMA)は、共重
合組成で、メタクリル酸ベンジル30〜50モル%、
メタクリル酸グリシジル70〜50モル%が有効であ
る。BzMAが30モル%以下では耐ドライエツチ
ング性が低下する。またBzMAが50モル%以上
では感度が低下する。 また本発明に用いるP(BzMA・GMA)は重
量平均分子量(以下Mwと略す)1万から100万
までが有効であるが、望ましくは、10万から60万
が適当である。Mwが1万以下ではポリマーとし
ての特性が低下し、十分な硬度をもつたレジスト
被膜が得られず、また、Mw100万以上ではレジ
スト溶液の粘度が高くなり、回転塗布法などでは
均一な膜厚のレジスト被膜を得ることが困難であ
る。 以下、本発明の実施例を詳細に説明する。 実施例 1 減圧蒸留して精製したBzMA30部、GMA70部
を精製したベンゼン90部に溶解させ、アゾビスイ
ソブチロニトリル(以下AIBNと略す)0.09部を
重合開始剤として添加し、封管中で90℃において
6時間重合させた。重合後、20倍量のメタノール
中に注ぎ込み、再沈精製を行なつた。得られたポ
リマーの分子量をゲルパーミエーシヨンクロマト
グラフイー(以下GPCと略す)を用いて測定す
ると、Mw29.0万であつた。このポリマーを、メ
チルセロソルブアセテート(以下MCAと略す)
に溶解し、10%溶液とした。これを0.2μmのフイ
ルターでろ過し、レジスト溶液とした。この溶液
を熱酸化したシリコンウエハ上に滴下し、回転塗
布法にて、1μm厚のレジスト被膜を形成した。
この基板を120℃で30分間熱処理し、試料Aとし
た。 実施例 2 実施例1と同様にBzMA50部、GMA50部をベ
ンゼン90部に溶解させ、AIBN0.03部を重合開始
剤として添加し、封管中で90℃において6時間重
合させた。重合後20倍量のメタノール中に注ぎ込
み、再沈精製を行なつた。得られたポリマーの分
子量をGPCにて測定するとMw58.3万であつた。
このポリマーをMCAに溶解し、7%溶液とした。
これを0.2μmのフイルターでろ過し、レジスト溶
液とした。この溶液を熱酸化シリコンウエハ上に
滴下し、回転塗布法にて1μm厚のレジスト被膜
を形成した。この基板を120℃で30分間熱処理し
試料Bとした。 実施例 3 実施例1と同様にBzMA50部、GMA50部をベ
ンゼン90部に溶解させ、AIBN0.80部を重合開始
剤として添加し、封管中で90℃において6時間重
合させた。重合後20倍量のメタノール中に注ぎ込
み、再沈精製を行なつた。得られたポリマーの分
子量をGPCにて測定すると、Mw8.2万であつた。
このポリマーをMCAに溶解し12%溶液とした。
これを0.2μmのフイルターでろ過し、レジスト溶
液とした。この溶液を熱酸化シリコンウエハ上に
滴下し、回転塗布法にて1μmのレジスト被膜を
形成した。この基板を120℃で30分熱処理し試料
Cとした。 比較例 減圧蒸留して精製したメタクリル酸メチル100
部を精製したベンゼン100部に溶解させ、
AIBN0.01部を重合開始剤として添加し、封管中
で90℃において2時間重合させた。重合後、20倍
量のメタノール中に注ぎ込み、再沈精製を行なつ
た。得られたポリマーの分子量をGPCを用いて
測定すると63.4万であつた。このポリマーをエチ
ルセロソルブアセテートに溶解し、5%溶液とし
た。これを0.2μmのフイルターでろ過し、レジス
ト溶液とした。この溶液を熱酸化シリコンウエハ
上に滴下し、回転塗布法にて1μm厚のレジスト
被膜を形成し、試料Dとした。 上記で作成した試料A〜Dに、遠紫外線露光装
置で種々の露光時間で露光した。露光後、試料A
〜Cについてはメチルイソブチルケトンに浸漬し
て現像し、試料Dについては酢酸イソアミル3
部、酢酸エチル1部からなる現像液に浸漬して現
像処理を行ない、感度測定を行なつた。 また、平行平板型反応性スパツタエツチング装
置を用い、試料A〜Dのドライエツチングの特性
を評価した。エツチングガスとしてはCF4を用
い、ガス圧0.1Torr、出力0.45W/cm2の条件で3
分間エツチングを行なつた。次表に、感度、耐ド
ライエツチング特性の評価結果を示す。
The present invention relates to a resist sensitive to deep ultraviolet rays, and is suitable for forming ultra-fine patterns for semiconductor elements, integrated circuits, and the like. Conventionally, in the manufacturing process of integrated circuits, mask transfer technology using ultraviolet rays has been used when producing circuit patterns. However, when ultraviolet rays are used, the resolution is practically limited due to diffraction phenomena.
2 μm is the limit, and in manufacturing processes that require even finer patterns, such as those for ultra-LSIs, transfer technology that uses ultraviolet light has reached its limit. Therefore, in order to cope with the increasing density of integrated circuits, mask transfer technology that uses far ultraviolet light (wavelength 200 to 350 nm), which causes less diffraction, is attracting attention. For this reason, there is an urgent need to develop resists that are sensitive to deep ultraviolet rays, that is, resist materials for exposure to deep ultraviolet rays. Conventionally, resist materials for deep ultraviolet exposure include:
Polymethyl methacrylate, polymethyl isopropenyl ketone, and diazide photoresists, which have been used as resists for ultraviolet exposure, have been studied, but they are insufficient in sensitivity, resolution, and dry etching resistance. Various problems still remain before it can be put into practical use. The present invention is a positive type with high sensitivity and excellent dry etching resistance (solubilized in developer after exposure to deep ultraviolet rays).
This product provides a far-UV resist material consisting of a benzyl methacrylate/glycidyl methacrylate copolymer. To explain an example of the method of forming a resist pattern using the resist material of the present invention, first, benzyl methacrylate (hereinafter abbreviated as BzMA)/glycidyl methacrylate (hereinafter abbreviated as GMA) copolymer (hereinafter P (BzMA-GMA) ) is dissolved in methyl cellosolve acetate to a concentration of 7 to 10% by weight (hereinafter simply expressed in %) and filtered through a 0.2 μm filter to obtain a resist solution. Other solvents that can be used include toluene, xylene, and ethyl cellosolve acetate. Next, about 5 cc of this resist solution is dropped onto a thermally oxidized silicon wafer, and a resist thin film with a thickness of about 1 μm is formed on the wafer by spin coating. After heat-treating this substrate, a mask material (quartz plate with a thin chromium film) with a predetermined pattern on the substrate
and expose it to far ultraviolet light for several tens to 100 seconds. The part exposed to deep ultraviolet rays becomes solubilized by a photoreaction. When this substrate is immersed in a developer, the exposed portions of the resist dissolve at a higher rate than the unexposed portions, and after development for a certain period of time, only the unexposed portions remain as a pattern on the substrate. When the substrate on which the resist pattern was formed in this way was dry etched using CF 4 gas, it was found that it had greater dry etching resistance than the conventionally used polymethyl methacrylate. I understood. P (BzMA/GMA) used in the present invention has a copolymerization composition of 30 to 50 mol% of benzyl methacrylate,
70-50 mol% glycidyl methacrylate is effective. If BzMA is less than 30 mol%, dry etching resistance decreases. Moreover, when BzMA is 50 mol% or more, the sensitivity decreases. Moreover, the weight average molecular weight (hereinafter abbreviated as Mw) of P (BzMA/GMA) used in the present invention is effective from 10,000 to 1,000,000, but preferably from 100,000 to 600,000. If the Mw is less than 10,000, the properties as a polymer will deteriorate, making it impossible to obtain a resist film with sufficient hardness.If the Mw is more than 1 million, the viscosity of the resist solution will increase, and a uniform film thickness cannot be obtained using spin coating methods. It is difficult to obtain a resist film of Examples of the present invention will be described in detail below. Example 1 30 parts of BzMA and 70 parts of GMA purified by vacuum distillation were dissolved in 90 parts of purified benzene, 0.09 part of azobisisobutyronitrile (hereinafter abbreviated as AIBN) was added as a polymerization initiator, and the mixture was dissolved in a sealed tube. Polymerization was carried out at 90°C for 6 hours. After polymerization, it was poured into 20 times the amount of methanol and purified by reprecipitation. When the molecular weight of the obtained polymer was measured using gel permeation chromatography (hereinafter abbreviated as GPC), it was Mw 290,000. This polymer is methyl cellosolve acetate (hereinafter abbreviated as MCA).
to make a 10% solution. This was filtered through a 0.2 μm filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1 μm thick resist film was formed by spin coating.
This substrate was heat treated at 120° C. for 30 minutes to obtain Sample A. Example 2 In the same manner as in Example 1, 50 parts of BzMA and 50 parts of GMA were dissolved in 90 parts of benzene, 0.03 part of AIBN was added as a polymerization initiator, and the mixture was polymerized in a sealed tube at 90° C. for 6 hours. After polymerization, it was poured into 20 times the amount of methanol and purified by reprecipitation. The molecular weight of the obtained polymer was measured by GPC and was found to be Mw 583,000.
This polymer was dissolved in MCA to form a 7% solution.
This was filtered through a 0.2 μm filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1 μm thick resist film was formed by spin coating. This substrate was heat-treated at 120° C. for 30 minutes to obtain Sample B. Example 3 In the same manner as in Example 1, 50 parts of BzMA and 50 parts of GMA were dissolved in 90 parts of benzene, 0.80 parts of AIBN was added as a polymerization initiator, and the mixture was polymerized in a sealed tube at 90° C. for 6 hours. After polymerization, it was poured into 20 times the amount of methanol and purified by reprecipitation. When the molecular weight of the obtained polymer was measured by GPC, it was Mw82,000.
This polymer was dissolved in MCA to form a 12% solution.
This was filtered through a 0.2 μm filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1 μm resist film was formed by spin coating. This substrate was heat-treated at 120° C. for 30 minutes to obtain Sample C. Comparative example Methyl methacrylate purified by vacuum distillation 100
part was dissolved in 100 parts of purified benzene,
0.01 part of AIBN was added as a polymerization initiator, and polymerization was carried out at 90° C. for 2 hours in a sealed tube. After polymerization, it was poured into 20 times the amount of methanol and purified by reprecipitation. The molecular weight of the obtained polymer was measured using GPC and was found to be 634,000. This polymer was dissolved in ethyl cellosolve acetate to form a 5% solution. This was filtered through a 0.2 μm filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a resist film with a thickness of 1 μm was formed using a spin coating method to form a sample D. Samples A to D prepared above were exposed to light at various exposure times using a deep ultraviolet exposure device. After exposure, sample A
~C was developed by immersion in methyl isobutyl ketone, and sample D was developed using isoamyl acetate 3.
The sample was developed by immersing it in a developer containing 1 part of ethyl acetate and 1 part of ethyl acetate, and the sensitivity was measured. Further, the dry etching characteristics of Samples A to D were evaluated using a parallel plate type reactive sputter etching apparatus. CF 4 was used as the etching gas, and the gas pressure was 0.1 Torr and the output was 0.45 W/cm 2 .
Etching was performed for a minute. The following table shows the evaluation results of sensitivity and dry etching resistance.

【表】 以上のように、本発明は高感度で、耐ドライエ
ツチング特性の優れたレジストを提供するもので
あり、半導体工業に大きく貢献するものである。
[Table] As described above, the present invention provides a resist with high sensitivity and excellent dry etching resistance, and will greatly contribute to the semiconductor industry.

Claims (1)

【特許請求の範囲】[Claims] 1 メタクリル酸ベンジル70〜50モル%、メタク
リル酸グリシジル30〜50モル%の共重合組成をも
つメタクリル酸ベンジル・メタクリル酸グリシジ
ル共重合体からなる遠紫外線露光用レジスト材
料。
1. A resist material for deep ultraviolet exposure consisting of a benzyl methacrylate/glycidyl methacrylate copolymer having a copolymerization composition of 70 to 50 mol% of benzyl methacrylate and 30 to 50 mol% of glycidyl methacrylate.
JP14759781A 1981-09-17 1981-09-17 Resist material for use in far ultraviolet exposure Granted JPS5848048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14759781A JPS5848048A (en) 1981-09-17 1981-09-17 Resist material for use in far ultraviolet exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14759781A JPS5848048A (en) 1981-09-17 1981-09-17 Resist material for use in far ultraviolet exposure

Publications (2)

Publication Number Publication Date
JPS5848048A JPS5848048A (en) 1983-03-19
JPS6349211B2 true JPS6349211B2 (en) 1988-10-04

Family

ID=15433939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14759781A Granted JPS5848048A (en) 1981-09-17 1981-09-17 Resist material for use in far ultraviolet exposure

Country Status (1)

Country Link
JP (1) JPS5848048A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868743A (en) * 1981-10-21 1983-04-23 Hitachi Ltd Radation sensitive organic polymer material
JP4053631B2 (en) * 1997-10-08 2008-02-27 Azエレクトロニックマテリアルズ株式会社 Composition for antireflection film or light absorption film and polymer used therefor
US7794919B2 (en) * 2003-04-02 2010-09-14 Nissan Chemical Industries, Ltd. Composition for forming underlayer coating for lithography containing epoxy compound and carboxylic acid compound

Also Published As

Publication number Publication date
JPS5848048A (en) 1983-03-19

Similar Documents

Publication Publication Date Title
US4481049A (en) Bilevel resist
CA1248403A (en) Bilevel resist
JPS6048022B2 (en) electronic sensitive resist
JPS58115435A (en) Formation of patterned photoresist
JPS5949536A (en) Formation of micropattern
CA1312843C (en) Fabrication of electronic devices utilizing lithographic techniques
JPS6349211B2 (en)
KR100211546B1 (en) Novel copolymer for photoresist
US4935094A (en) Negative resist with oxygen plasma resistance
JPH0353622B2 (en)
US4808682A (en) Copolymers having o-nitrocarbinol ester groups, production of two-layer resists, and fabrication of semiconductor components
EP0064864B1 (en) Method of making sensitive positive electron beam resists
JPS6349210B2 (en)
US4415653A (en) Method of making sensitive positive electron beam resists
JPH0353623B2 (en)
JPS59198446A (en) Photosensitive resin composition and using method thereof
US4617254A (en) Process for forming detailed images
JPS59121042A (en) Negative type resist composition
US4273858A (en) Resist material for micro-fabrication with unsaturated dicarboxylic moiety
JPS61289345A (en) Resist for lithography
JPH05257285A (en) Radiosensitive material and formation of pattern using the same
US4349647A (en) Resist material for micro-fabrication
JPH026512A (en) Production of photoreactive polymer and resist
US4604305A (en) Improvements in contrast of a positive polymer resist having a glass transition temperature through control of the molecular weight distribution and prebaked temperature
JPH022564A (en) Positive type electron beam resist