JPS6349210B2 - - Google Patents

Info

Publication number
JPS6349210B2
JPS6349210B2 JP14854581A JP14854581A JPS6349210B2 JP S6349210 B2 JPS6349210 B2 JP S6349210B2 JP 14854581 A JP14854581 A JP 14854581A JP 14854581 A JP14854581 A JP 14854581A JP S6349210 B2 JPS6349210 B2 JP S6349210B2
Authority
JP
Japan
Prior art keywords
solution
resist
parts
phma
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14854581A
Other languages
Japanese (ja)
Other versions
JPS5849942A (en
Inventor
Kunio Hibino
Takakatsu Morimoto
Katsumi Ogawa
Shinichi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14854581A priority Critical patent/JPS5849942A/en
Publication of JPS5849942A publication Critical patent/JPS5849942A/en
Publication of JPS6349210B2 publication Critical patent/JPS6349210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、遠紫外線に感光するレジストに関す
るもので、半導体素子や集積回路などの超微細パ
ターンを形成するために適したものである。 従来、集積回路の製造工程において、回路パタ
ーンを製作する際には、紫外線(350〜450nm)
を用いたマスク転写技術が用いられてきた。しか
し、紫外線を用いると解像度は回折現象などのた
めに、実用上約2μmが限界となり、超LSIなどの
さらに微細なパターンが要求される製造工程で
は、紫外線を用いる転写技術は限界にきている。
そこで、集積回路の高密度化に対処するためには
回折のより少ない遠紫外線(200〜350nm)を用
いるマスク転写技術が注目されている。そのため
に、遠紫外線に感光するレジスト、すなわち、遠
紫外線露光用レジスト材料の開発が急がれてい
る。 遠紫外線露光用レジスト材料としてはポリメタ
クリル酸メチルや、従来から紫外線露光用レジス
トとして用いられてきたキノンジアジド系フオト
レジストなどが検討されてきたが、感度あるいは
解像度あるいは耐ドライエツチング特性において
不十分であり、これらレジストは実用に供するに
は、まだ種々の問題点が残されている。 本発明は、高感度で耐ドライエツチング性がす
ぐれており、かつ、接着性のすぐれたネガ型(遠
紫外線露光後、現像液に不溶化)の遠紫外線露光
用レジスト材料を提供するもので、メタクリル酸
グリシジル・メタクリル酸フエニル共重合体から
なるものである。 このメタクリル酸グリシジル(以下GMAで表
す)・メタクリル酸フエニル(以下PhMAで表
す)共重合体を用いてレジストパターンを形成す
る方法の例を説明すると、まずこの共重合体(以
下P(GMA・PhMA)で表す)を7重量%(以
下単に%で表す)のベンゼン溶液とし、0.2μmの
フイルターでろ過し、レジスト溶液とする。溶媒
としては、ベンゼンのほかに、トルエン、キシレ
ン、メチルセロソルブアセテート、エチルセロソ
ルブアセテート、シクロヘキサノン、ジオキサン
などを用いることができる。このレジスト溶液を
熱酸化したシリコンウエハ上に、約5c.c.滴下し、
回転塗布法にて、前記ウエハ上に1μm厚のレジ
スト膜を形成する。次いで、熱処理した後、この
基板上に、所定のパターンを有するマスク材(ク
ロム薄膜を有する石英板)を設置し、遠紫外線を
数秒間露光する。遠紫外線を露光された部分は光
反応によつて不溶化する。この基板を現像液に浸
漬すると、露光されなかつた部分のレジストは溶
解し、露光された部分のみが残存する。 このようにしてレジストパターンを形成した基
板を、CF4ガス中のプラズマ処理にて、ドライエ
ツチングを行なつたところ、酸化シリコンがエツ
チングされたのちも、レジスト被膜は残存してお
り、十分な耐ドライエツチング特性を持つている
ことがわかつた。 また、同様にしてレジストパターンを形成した
シリコンウエハをフツ酸・フツ化アンモニウムの
水溶液に浸漬して酸化シリコンのいわゆるウエツ
トエツチングを行なつたところ、レジストと酸化
シリコンの境界面でのエツチング溶液のしみ込み
もなく、きれいなパターンが得られ、良好な接着
性を有していることがわかつた。 本発明に用いるP(GMA―PhMA)は、共重
合組成でメタクリル酸グリシジル5〜50モル%、
メタクリル酸フエニル95〜50モル%が有効であ
る。GMA成分は5モル%以下では接着性が低下
する。また、GMA成分が50モル%以上では耐ド
ライエツチング性は低下する。また感度は
PhMA成分が多い程良くなる。 また、本発明に用いるP(GMA―PhMA)は
重量平均分子量(以下、Mwと略す)1万から
100万が有効であり、望ましくは3万から70万が
適当である。Mw1万以下では、ポリマとしての
特性が低く、十分な硬度を持つたレジスト被膜が
得られず、また、Mw100万以上では、レジスト
溶液の粘度が高くなりすぎるため、回転塗布法な
どでは、均一で十分な膜厚のレジスト被膜を得る
ことは困難である。 以下、本発明の実施例を説明する。 実施例 1 減圧蒸留して精製したGMA70重量部(以下単
に部で表す)、PhMA30部を精製したベンゼン
100部に溶解させ、アゾビスイソブチロニトリル
(以下、AIBNと略す)0.04部を重合開始剤とし
て添加し、封管中で90℃において7時間重合させ
た、重合後、10倍量のメタノール中に注ぎ込み、
ポリマの再沈精製を行なつた。得られたポリマの
分子量をゲルパーミエイシヨンクロマトグラフイ
(以下、GPCと略す)を用いて測定したところ、
Mw59.5万であつた。 このポリマをメチルセロソブアセテート(以下
MCAと略す)に溶解し12%溶液とした。これを
0.2μmのフイルターでろ過し、レジスト溶液とし
た。この溶液を熱酸化シリコンウエハに滴下し、
回転塗布法で1μmのレジスト被膜を形成した。
この基板を120℃で30分間熱処理し、試料Aとし
た。 実施例 2 実施例1と同様に、GMA50部、PhMA50部を
ベンゼン100部に溶解させ、AIBN0.1部を重合開
始剤として添加し、封管中で90℃において7時間
重合させた。重合後、10倍量のメタノール中に注
ぎ込み、再沈精製した。得られたポリマの分子量
をGPCを用いて測定したところ、Mw23.9万であ
つた。 このポリマをMCAに溶解し、15%溶液とした。
これを0.2μmのフイルターでろ過し、レジスト溶
液とした。この溶液を熱酸化シリコンウエハに滴
下し、回転塗布法で1μmのレジスト被膜を形成
した。この基板を120℃で30分間熱処理し試料B
とした。 実施例 3 実施例1と同様に、GMA30部、PhMA70部を
ベンゼン100部に溶解させ、AIBN0.5部を重合開
始剤として添加し、封管中で90℃において7時間
重合させた。重合後、10倍量のメタノール中に注
ぎ込み、再沈精製した。得られたポリマの分子量
をGPCを用いて測定したところ、Mw6.3万であ
つた。このポリマをMCAに溶解し、19%溶液と
した。これを0.2μmのフイルターでろ過し、レジ
スト溶液とした。この溶液を熱酸化シリコンウエ
ハに滴下し、回転塗布法で1.0μmのレジスト被膜
を形成した。この基板を120℃で30分熱処理し試
料Cとした。 実施例 4 実施例1と同様に、GMA5部、PhMA95部を
ベンゼン100部に溶解させ、AIBN0.1部を重合開
始剤として添加し、封管中で90℃において7時間
重合させた。重合後、10倍量のメタノール中に注
ぎ込み、再沈精製を行なつた。得られたポリマの
分子量をGPCを用いて測定したところ、Mw24.2
万であつた。このポリマをMCAに溶解し、15%
溶液とした。これを0.2μmのフイルターでろ過
し、レジスト溶液とした。この溶液を熱酸化シリ
コンウエハに滴下し、回転塗布法で1μmのレジ
スト被膜を形成した。この基板を120℃で30分間
の熱処理を行ない試料Dとした。 実施例 5 実施例1と同様に、PhMA100部をベンゼン
100部に溶解させ、AIBN0.1部を重合開始剤とし
て添加し、封管中で80℃において7時間重合させ
た。重合後、10倍量のメタノール中に注ぎ込み、
再沈精製した。得られたポリマの分子量をGPC
を用いて測定したところMw27.9万であつた。こ
のポリマーをキシレンに溶解し、10%溶液とし
た。これを0.2μmのフイルターでろ過し、レジス
ト溶液とした。この溶液を熱酸化シリコンウエハ
に滴下し、回転塗布法で1μmのレジスト被膜を
形成した。この基板を120℃で30分間の熱処理を
行ない試料Eとした。 比較例 減圧蒸留して精製したメタクリル酸メチル100
部を精製したベンゼン100部に溶解させ、
AIBN0.04部を重合開始剤として添加し、封管中
で90℃において5時間重合させた。重合後10倍量
のメタノール中に注ぎ込み、再沈精製を行なつ
た。得られたポリマの分子量をGPCを用いて測
定したところ、Mw63.4万であつた。このポリマ
をエチルセロソルブアセテートに溶解し、7%溶
液とした。この溶液を熱酸化シリコンウエハに滴
下し、回転塗布法で1μmのレジスト被膜を形成
した。この基板を170℃で30分間熱処理し試料F
とした。 上記で作成した試料A〜Fに、遠紫外露光装置
で、種々の露光時間で露光し、露光後、試料A〜
Eについてはメチルイソブチルケトン10部、メチ
ルエチルケトン1部からなる現像液に浸漬して、
また試料Fについては、酢酸イソアミル3部、酢
酸エチル1部からなる現像液に浸漬して、現像処
理を行ない感度測定を行なつた。 また、試料A〜Fを平行平板型反応性スパツタ
エツチング装置を用い、エツチングガスとして
CF4を用い、ガス圧0.1Torr、出力0.45W/cm2
条件で3分間エツチングを行なつた。 また、試料A〜Fを50%フツ酸水溶液10部、45
%フツ化アンモニウム水溶液60部からなるエツチ
ング液に3分間浸漬し、SiO2のウエツトエツチ
ングを行なつた。 次表に感度、ドライエツチング、ウエツトエツ
チングの結果を示す。
The present invention relates to a resist sensitive to deep ultraviolet rays, and is suitable for forming ultra-fine patterns for semiconductor devices, integrated circuits, and the like. Conventionally, in the integrated circuit manufacturing process, ultraviolet light (350 to 450 nm) is used to create circuit patterns.
A mask transfer technique has been used. However, when ultraviolet rays are used, the resolution is practically limited to approximately 2 μm due to diffraction phenomena, and in manufacturing processes that require even finer patterns, such as those for ultra-LSIs, transfer technology that uses ultraviolet rays has reached its limit. .
Therefore, in order to cope with the increasing density of integrated circuits, mask transfer technology that uses far ultraviolet light (200 to 350 nm), which causes less diffraction, is attracting attention. Therefore, there is an urgent need to develop resists that are sensitive to deep ultraviolet rays, that is, resist materials for exposure to deep ultraviolet rays. Polymethyl methacrylate and quinone diazide photoresists, which have traditionally been used as resists for ultraviolet exposure, have been considered as resist materials for deep ultraviolet exposure, but they are insufficient in terms of sensitivity, resolution, or dry etching resistance. However, various problems still remain before these resists can be put to practical use. The present invention provides a negative-type (insoluble in developer after exposure to deep ultraviolet rays) resist material for far ultraviolet exposure that has high sensitivity, excellent dry etching resistance, and excellent adhesion. It consists of a glycidyl acid/phenyl methacrylate copolymer. To explain an example of a method for forming a resist pattern using this glycidyl methacrylate (hereinafter referred to as GMA)/phenyl methacrylate (hereinafter referred to as PhMA) copolymer, first, this copolymer (hereinafter referred to as P (hereinafter referred to as GMA/PhMA) ) is made into a 7% by weight (hereinafter simply expressed as %) benzene solution, filtered through a 0.2 μm filter, and used as a resist solution. As the solvent, in addition to benzene, toluene, xylene, methyl cellosolve acetate, ethyl cellosolve acetate, cyclohexanone, dioxane, etc. can be used. Approximately 5 c.c. of this resist solution was dropped onto a thermally oxidized silicon wafer.
A resist film with a thickness of 1 μm is formed on the wafer by a spin coating method. Next, after heat treatment, a mask material (a quartz plate with a thin chromium film) having a predetermined pattern is placed on the substrate and exposed to deep ultraviolet rays for several seconds. The portion exposed to deep ultraviolet light becomes insolubilized by a photoreaction. When this substrate is immersed in a developer, the unexposed portions of the resist are dissolved, leaving only the exposed portions remaining. When the substrate on which the resist pattern was formed in this way was dry-etched using plasma treatment in CF 4 gas, the resist film remained even after the silicon oxide had been etched, providing sufficient durability. It was found that it has dry etching properties. Furthermore, when a silicon wafer on which a resist pattern was formed in the same manner was immersed in an aqueous solution of fluoric acid and ammonium fluoride to perform so-called wet etching of silicon oxide, the etching solution was removed at the interface between the resist and silicon oxide. It was found that a clean pattern was obtained without any seepage, and that it had good adhesive properties. P (GMA-PhMA) used in the present invention has a copolymerization composition of 5 to 50 mol% of glycidyl methacrylate,
95-50 mol% phenyl methacrylate is effective. If the GMA component is less than 5 mol %, adhesiveness decreases. Furthermore, if the GMA component is 50 mol% or more, the dry etching resistance decreases. Also, the sensitivity
The more PhMA ingredients there are, the better it will be. In addition, P (GMA-PhMA) used in the present invention has a weight average molecular weight (hereinafter abbreviated as Mw) of 10,000 to
1 million is effective, preferably 30,000 to 700,000. If the Mw is less than 10,000, the properties as a polymer will be low and a resist film with sufficient hardness cannot be obtained.If the Mw is more than 1,000,000, the viscosity of the resist solution will become too high, so it will not be possible to achieve a uniform coating using spin coating. It is difficult to obtain a resist film of sufficient thickness. Examples of the present invention will be described below. Example 1 70 parts by weight of GMA purified by vacuum distillation (hereinafter simply expressed in parts) and 30 parts of PhMA purified benzene
100 parts of azobisisobutyronitrile (hereinafter abbreviated as AIBN) was added as a polymerization initiator, and the mixture was polymerized in a sealed tube at 90°C for 7 hours. After polymerization, 10 times the amount of methanol was added. Pour it inside,
The polymer was purified by reprecipitation. When the molecular weight of the obtained polymer was measured using gel permeation chromatography (hereinafter abbreviated as GPC),
It was MW595,000. This polymer is converted into methyl cellosobu acetate (hereinafter referred to as
(abbreviated as MCA) to make a 12% solution. this
It was filtered through a 0.2 μm filter to obtain a resist solution. Drop this solution onto a thermally oxidized silicon wafer,
A 1 μm resist film was formed by spin coating.
This substrate was heat treated at 120° C. for 30 minutes to obtain Sample A. Example 2 In the same manner as in Example 1, 50 parts of GMA and 50 parts of PhMA were dissolved in 100 parts of benzene, 0.1 part of AIBN was added as a polymerization initiator, and the mixture was polymerized in a sealed tube at 90° C. for 7 hours. After polymerization, it was poured into 10 times the amount of methanol and purified by reprecipitation. When the molecular weight of the obtained polymer was measured using GPC, it was Mw 239,000. This polymer was dissolved in MCA to make a 15% solution.
This was filtered through a 0.2 μm filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1 μm resist film was formed by spin coating. This substrate was heat-treated at 120℃ for 30 minutes, and sample B
And so. Example 3 In the same manner as in Example 1, 30 parts of GMA and 70 parts of PhMA were dissolved in 100 parts of benzene, 0.5 parts of AIBN was added as a polymerization initiator, and the mixture was polymerized in a sealed tube at 90° C. for 7 hours. After polymerization, it was poured into 10 times the amount of methanol and purified by reprecipitation. When the molecular weight of the obtained polymer was measured using GPC, it was found to be Mw 63,000. This polymer was dissolved in MCA to form a 19% solution. This was filtered through a 0.2 μm filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1.0 μm resist film was formed by spin coating. This substrate was heat-treated at 120° C. for 30 minutes to obtain Sample C. Example 4 In the same manner as in Example 1, 5 parts of GMA and 95 parts of PhMA were dissolved in 100 parts of benzene, 0.1 part of AIBN was added as a polymerization initiator, and the mixture was polymerized in a sealed tube at 90° C. for 7 hours. After polymerization, it was poured into 10 times the amount of methanol and purified by reprecipitation. When the molecular weight of the obtained polymer was measured using GPC, it was found to be Mw24.2.
It was ten thousand. Dissolve this polymer in MCA and 15%
It was made into a solution. This was filtered through a 0.2 μm filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1 μm resist film was formed by spin coating. This substrate was heat treated at 120° C. for 30 minutes to obtain Sample D. Example 5 Similarly to Example 1, 100 parts of PhMA was added to benzene.
100 parts of the solution was added, 0.1 part of AIBN was added as a polymerization initiator, and the mixture was polymerized in a sealed tube at 80°C for 7 hours. After polymerization, pour into 10 times the volume of methanol,
Purified by reprecipitation. GPC the molecular weight of the obtained polymer
It was measured using Mw 279,000. This polymer was dissolved in xylene to form a 10% solution. This was filtered through a 0.2 μm filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1 μm resist film was formed by spin coating. This substrate was heat treated at 120° C. for 30 minutes to obtain Sample E. Comparative example Methyl methacrylate purified by vacuum distillation 100
part was dissolved in 100 parts of purified benzene,
0.04 part of AIBN was added as a polymerization initiator, and polymerization was carried out at 90° C. for 5 hours in a sealed tube. After polymerization, it was poured into 10 times the amount of methanol and purified by reprecipitation. When the molecular weight of the obtained polymer was measured using GPC, it was found to be Mw634,000. This polymer was dissolved in ethyl cellosolve acetate to form a 7% solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1 μm resist film was formed by spin coating. This substrate was heat-treated at 170℃ for 30 minutes, and sample F
And so. Samples A to F prepared above were exposed to light at various exposure times using a deep ultraviolet exposure device, and after exposure, samples A to F were
For E, immerse it in a developer consisting of 10 parts of methyl isobutyl ketone and 1 part of methyl ethyl ketone.
Regarding sample F, it was immersed in a developer consisting of 3 parts of isoamyl acetate and 1 part of ethyl acetate to perform a development process, and then the sensitivity was measured. In addition, samples A to F were etched using a parallel plate type reactive sputter etching device as an etching gas.
Etching was carried out using CF 4 for 3 minutes at a gas pressure of 0.1 Torr and an output of 0.45 W/cm 2 . In addition, samples A to F were mixed with 10 parts of 50% hydrofluoric acid aqueous solution, 45
% ammonium fluoride aqueous solution for 3 minutes to perform wet etching of SiO 2 . The following table shows the sensitivity, dry etching, and wet etching results.

【表】 以上のように本発明により、高感度で、かつ耐
ドライエツチング特性および接着性のすぐれたレ
ジスト材料を提供することができ、半導体工業に
大きく貢献するものである。
[Table] As described above, the present invention makes it possible to provide a resist material that is highly sensitive and has excellent dry etching resistance and adhesive properties, thereby greatly contributing to the semiconductor industry.

Claims (1)

【特許請求の範囲】[Claims] 1 メタクリル酸フエニル95〜50モル%、メタク
リル酸グリシジル5〜50モル%の共重合組成をも
つメタクリル酸フエニル・メタクリル酸グリシジ
ル共重合体からなる遠紫外線露光用レジスト材
料。
1. A resist material for deep ultraviolet exposure consisting of a phenyl methacrylate/glycidyl methacrylate copolymer having a copolymerization composition of 95 to 50 mol% of phenyl methacrylate and 5 to 50 mol% of glycidyl methacrylate.
JP14854581A 1981-09-18 1981-09-18 Resist material for exposure to far ultraviolet ray Granted JPS5849942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14854581A JPS5849942A (en) 1981-09-18 1981-09-18 Resist material for exposure to far ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14854581A JPS5849942A (en) 1981-09-18 1981-09-18 Resist material for exposure to far ultraviolet ray

Publications (2)

Publication Number Publication Date
JPS5849942A JPS5849942A (en) 1983-03-24
JPS6349210B2 true JPS6349210B2 (en) 1988-10-04

Family

ID=15455156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14854581A Granted JPS5849942A (en) 1981-09-18 1981-09-18 Resist material for exposure to far ultraviolet ray

Country Status (1)

Country Link
JP (1) JPS5849942A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030819A1 (en) 2003-09-30 2005-04-07 Mitsubishi Rayon Co., Ltd. Flowability improver for engineering plastics, thermoplastic resin compositions containing the same, and molded articles of the compositions
KR101443407B1 (en) 2006-12-25 2014-09-24 미츠비시 레이온 가부시키가이샤 Fluidity improving agent, aromatic polycarbonate resin composition, and molded article thereof
CN101952368B (en) 2008-03-11 2012-11-21 三菱丽阳株式会社 Fluidity improver for aromatic polycarbonate resin, process for producing the fluidity improver for aromatic polycarbonate resin, aromatic polycarbonate resin composition, and molded product

Also Published As

Publication number Publication date
JPS5849942A (en) 1983-03-24

Similar Documents

Publication Publication Date Title
US4289845A (en) Fabrication based on radiation sensitive resists and related products
JP2881969B2 (en) Radiation-sensitive resist and pattern forming method
JPS5872139A (en) Photosensitive material
JPS6048022B2 (en) electronic sensitive resist
JPS6349210B2 (en)
US4808682A (en) Copolymers having o-nitrocarbinol ester groups, production of two-layer resists, and fabrication of semiconductor components
EP0064864B1 (en) Method of making sensitive positive electron beam resists
JPS6349211B2 (en)
US4415653A (en) Method of making sensitive positive electron beam resists
JPH0353623B2 (en)
JPH0544665B2 (en)
JPS5848046A (en) Resist material for use in far ultraviolet exposure
JPH0369098B2 (en)
US4054454A (en) Photosensitive copolymer on silicon support
US3964909A (en) Method of preparing a pattern on a silicon wafer
JPH0381143B2 (en)
JPS59121042A (en) Negative type resist composition
JPH0145611B2 (en)
JPH01126643A (en) Pattern forming material
JPH05257285A (en) Radiosensitive material and formation of pattern using the same
US4349647A (en) Resist material for micro-fabrication
JPH022564A (en) Positive type electron beam resist
EP0007976A1 (en) Lithographic resist and device processing utilizing same
JPS6091350A (en) Ionizing radiation sensitive negative type resist
JPH0377985B2 (en)