JPH0353623B2 - - Google Patents

Info

Publication number
JPH0353623B2
JPH0353623B2 JP14759681A JP14759681A JPH0353623B2 JP H0353623 B2 JPH0353623 B2 JP H0353623B2 JP 14759681 A JP14759681 A JP 14759681A JP 14759681 A JP14759681 A JP 14759681A JP H0353623 B2 JPH0353623 B2 JP H0353623B2
Authority
JP
Japan
Prior art keywords
weight
parts
resist
solution
mipk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14759681A
Other languages
Japanese (ja)
Other versions
JPS58134630A (en
Inventor
Katsumi Ogawa
Kunio Hibino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14759681A priority Critical patent/JPS58134630A/en
Publication of JPS58134630A publication Critical patent/JPS58134630A/en
Publication of JPH0353623B2 publication Critical patent/JPH0353623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、遠紫外線に感光するレジストに関す
るもので、半導体素子や集積回路などの超微細パ
ターンを形成するのに適したものである。 従来、集積回路の製造工程において、回路パタ
ーンを製作する際には、紫外線を用いたマスク転
写技術が用いられてきた。しかし、紫外線を用い
ると、解像度は回折現像などのために、実用上約
2μmが限界となり、超LSIなどの、さらに微細な
パターンが要求される製造工程では、紫外線を用
いる転写技術は限界にきている。そこで、集積回
路の高密度化に対処するためには、回折のより少
ない遠紫外線(波長200〜350nm)を用いるマス
ク転写技術が注目されている。そのために、遠紫
外線に感光するレジスト、即ち、遠紫外線露光用
レジスト材料の開発が急がれている。 従来、遠紫外線露光用レジスト材料としては、
ポリメタクリル酸メチル、ポリメチルイソプロペ
ニルケトンや、紫外線露光用レジストとして用い
られてきたジアジド系フオトレジストなどが検討
されてきたが、感度や解像度特性、耐ドライエツ
チング特性において不十分であり、前記レジスト
を実用に供するには、まだ種々の問題点が残され
ている。 本発明は、高感度で、耐ドライエツチング性が
あり、接着性のすぐれたポジ型(遠紫外線露光後
現像液に可溶化)の遠紫外線レジスト材料を提供
するもので、メチルイソプロペニルケトン・メタ
クリル酸グリシジル共重合体からなるものであ
る。 本発明のレジスト材料を用いてレジストパター
ンを形成する方法の例を説明すると、まずメチル
イソプロペニルケトン(以下MIPKと略す)・メ
タクリル酸グリシジル(以下GMAと略す)共重
合体(以下P(MIPK−GMA)と略す)を10〜13
重量%の濃度になるようにメチルセロソルブアセ
テートに溶解させ、0.2μmのフイルターでろ過
し、レジスト溶液とする。溶媒としては、他にト
ルエン、キシレン、エチルセロソルブアセテート
などを用いることができる。このレジスト溶液
を、熱酸化したシリコンウエハ上に約5c.c.滴下
し、回転塗布法にて、前記ウエハ上に1μm厚の
レジスト薄膜を形成する。 次に、この基板を熱処理した後、基板上に所定
のパターンを有するマスク材(クロム薄膜を有す
る石英板)を設置し、遠紫外線を数十秒間露光す
る。遠紫外線が露光された部分は、光反応により
可溶化する。この基板を現像液に浸漬すると、露
光された部分のレジストは、露光されなかつた部
分に比べて溶解速度が大きく一定時間の現像後、
露光されなかつた部分のみ基板上にパターンとし
て残存する。 こうしてレジストパターンを形成した基板を、
GF4ガスを用いてドライエツチングを行なつたと
ころ、従来から用いられているポリメタクリル酸
メチルの2〜3倍の耐ドライエツチング特性をも
つていることがわかつた。 また、同様にしてレジストパターンを形成した
シリコンウエハをフツ化アンモニウム6重量部と
フツ化水素酸1重量部の混合溶液に浸漬して、酸
化シリコンのいわゆるウエツトエツチングを行な
つたところ、レジストと酸化シリコンの境界面で
のエツチング溶液のしみ込みもなく、良好な接着
性を有していることがわかつた。 本発明に用いるP(MIPK−GMA)は、共重合
組成で、MIPK80〜50モル%、GMA20〜50モル
%が有効である。MIPKが50モル%以下(GMA
が50モル%以上)では感度が低下する。また、
MIPK成分が80モル%以上(GMAが20%以下)
では耐ドライエツチング特性、および接着性が低
下する。 また本発明に用いるP(MIPK−GMA)は重量
平均分子量(以下、Mwと略す)1万から100万
が有効であり、望ましくは、10万から60万が適当
である。Mw1万以下では、ポリマーとしての特
性が低く、十分な硬度をもつたレジスト被膜が得
られず、また、Mw100万以上では、レジスト溶
液の粘度が高くなりすぎるため、回転塗布法など
で均一な膜厚のレジスト被膜を得ることは困難で
ある。 以下、本発明の実施例を詳細に説明する。 実施例 1 減圧蒸留して精製したMIPK70重量部、
GMA30重量部を精製したベンゼン90重量部に溶
解させ、アゾビスイソブチロニトリル(以下
AIBNと略す)0.09重量部を重合開始剤として添
加し、封管中で90℃において5時間重合させた。
重合後、20倍量のメタノール中に注ぎ込み、再沈
精製を行なつた。得られたポリマーの分子量をゲ
ルパーミエイーシヨンクロマトグラフイ(以下
GPCと略す)を用いて測定したところ、Mw26.7
万であつた。このポリマーをメチルセロソルブア
セテート(以下MCAと略す)に溶解し、13重量
%溶液とした。これを0.2μmのフイルターでろ過
し、レジスト溶液とした。この溶液を熱酸化シリ
コンウエハ上に滴下し、回転塗布法で1μm厚の
レジスト被膜を形成した。この基板を120℃で30
分間熱処理し、試料Aとした。 実施例 2 実施例1と同様に、MIPK50重量部、GMA50
重量部をベンゼン90重量部に溶解させ、
AIBN0.03重量部を重合開始剤として添加し、封
管中で90℃において5時間重合させた。重合後20
倍量のメタノール中に注ぎ込み、再沈精製を行な
つた。得られたポリマーの分子量をGPCにて測
定すると、Mw45.2万であつた。このポリマーを
MCAに溶解し、10%溶液とした。これを0.2μm
のフイルターでろ過し、レジスト溶液とした。こ
の溶液を熱酸化シリコンウエハ上に滴下し、回転
塗布法にて1μm厚のレジスト被膜を形成した。
この基板を120℃で30分間熱処理し、試料Bとし
た。 実施例 3 実施例1と同様に、MIPK30重量部、GMA70
重量部をベンゼン90重量部に溶解させ、
AIBN0.09重量部を重合開始剤として添加し、封
管中で90℃において5時間重合させた。重合後20
倍量のメタノール中に注ぎ込み、再沈精製を行な
つた。得られたポリマーの分子量をGPCにて測
定すると、Mw31.7万であつた。このポリマーを
MCAに溶解し、13重量%溶液とした。これを
0.2μmのフイルターでろ過し、レジスト溶液とし
た。この溶液を熱酸化シリコンウエハ上に滴下
し、回転塗布法にて、1μm厚のレジスト被膜を
形成した。この基板を120℃で30分間熱処理し、
試料Cとした。 比較例 減圧蒸留して精製したメタクリル酸メチル100
重量部を精製したベンゼン100重量部に溶解させ、
AIBN0.01重量部を重合開始剤として添加し、封
管中で90℃において2時間重合させた。重合後、
20倍量のメタノール中に注ぎ込み再沈精製を行な
つた。得られたポリマーの分子量をGPCを用い
て測定すると63.4万であつた。このポリマーをエ
チルセロソルブアセテートに溶解し、5重量%溶
液とした。これを0.2μmのフイルターでろ過し、
レジスト溶液とした。この溶液を熱酸化シリコン
ウエハ上に滴下し、回転塗布法にて、1μm厚の
レジスト被膜を形成し、試料Dとした。 上記で作成した試料A〜Dに、遠紫外線露光装
置で、種々の露光時間で露光した。露光後、試料
A〜Cについては、メチルイソブチルケトン10重
量部とメチルエチルケトン1重量部からなる現像
液、またはシクロペンタノン3重量部とブチルセ
ロソルブ2重量部に浸漬して現像し、試料Dにつ
いては、酢酸イソアミル3重量部、酢酸エチル1
重量部からなる現像液に浸漬して現像処理を行な
い、感度測定を行なつた。 また、平行平板型反応性スパツタエツチング装
置を用い、試料A〜Dのドライエツチング特性を
評価した。エツチングガスとしてはCF4を用い、
ガス圧0.1Torr、出力0.45W/cm2の条件で3分間
エツチングを行なつた。 また、試料A〜Dを、フツ化アンモニウム6重
量部とフツ化水素酸1重量部の混合溶液に浸漬
し、酸化シリコンのウエツトエツチングを行なつ
た。 次表に、感度、耐ドライエツチング特性、耐ウ
エツトエツチング特性の評価結果を示す。
The present invention relates to a resist sensitive to deep ultraviolet rays, and is suitable for forming ultra-fine patterns for semiconductor elements, integrated circuits, and the like. Conventionally, in the manufacturing process of integrated circuits, mask transfer technology using ultraviolet rays has been used when producing circuit patterns. However, when ultraviolet rays are used, the resolution is practically limited due to diffraction development, etc.
2 μm is the limit, and in manufacturing processes that require even finer patterns, such as those for ultra-LSIs, transfer technology that uses ultraviolet light has reached its limit. Therefore, in order to cope with the increasing density of integrated circuits, mask transfer technology that uses far ultraviolet light (wavelength 200 to 350 nm), which causes less diffraction, is attracting attention. For this reason, there is an urgent need to develop resists that are sensitive to deep ultraviolet rays, that is, resist materials for exposure to deep ultraviolet rays. Conventionally, resist materials for deep ultraviolet exposure include:
Polymethyl methacrylate, polymethyl isopropenyl ketone, and diazide photoresists, which have been used as resists for ultraviolet exposure, have been studied, but they are insufficient in sensitivity, resolution, and dry etching resistance. Various problems still remain before it can be put into practical use. The present invention provides a positive type (solubilized in a developer after exposure to deep ultraviolet rays) far ultraviolet resist material that is highly sensitive, has dry etching resistance, and has excellent adhesion. It is made of acid glycidyl copolymer. To explain an example of the method of forming a resist pattern using the resist material of the present invention, first, methyl isopropenyl ketone (hereinafter abbreviated as MIPK)/glycidyl methacrylate (hereinafter abbreviated as GMA) copolymer (hereinafter P (MIPK- (abbreviated as GMA)) from 10 to 13
Dissolve in methyl cellosolve acetate to a concentration of % by weight, filter through a 0.2 μm filter, and prepare a resist solution. Other solvents that can be used include toluene, xylene, and ethyl cellosolve acetate. Approximately 5 cc of this resist solution is dropped onto a thermally oxidized silicon wafer, and a 1 μm thick resist thin film is formed on the wafer by spin coating. Next, after heat-treating this substrate, a mask material (a quartz plate with a thin chromium film) having a predetermined pattern is placed on the substrate and exposed to deep ultraviolet rays for several tens of seconds. The part exposed to deep ultraviolet rays becomes solubilized by a photoreaction. When this substrate is immersed in a developer, the resist in exposed areas dissolves at a higher rate than in unexposed areas, and after a certain period of development,
Only the unexposed portions remain as a pattern on the substrate. The substrate on which the resist pattern was formed in this way was
When dry etching was performed using GF 4 gas, it was found that the dry etching resistance was two to three times that of polymethyl methacrylate, which has been used conventionally. In addition, when a silicon wafer on which a resist pattern was formed in the same manner was immersed in a mixed solution of 6 parts by weight of ammonium fluoride and 1 part by weight of hydrofluoric acid to perform so-called wet etching of silicon oxide, the resist pattern was etched. It was found that the etching solution did not seep into the silicon oxide interface and had good adhesion. P (MIPK-GMA) used in the present invention has a copolymerization composition of 80 to 50 mol% of MIPK and 20 to 50 mol% of GMA. MIPK is 50 mol% or less (GMA
(50 mol% or more), the sensitivity decreases. Also,
MIPK component is 80 mol% or more (GMA is 20% or less)
In this case, dry etching resistance and adhesion properties are reduced. Furthermore, it is effective for P (MIPK-GMA) used in the present invention to have a weight average molecular weight (hereinafter abbreviated as Mw) of 10,000 to 1,000,000, preferably 100,000 to 600,000. If the Mw is less than 10,000, the properties as a polymer will be low and a resist film with sufficient hardness cannot be obtained.If the Mw is more than 1,000,000, the viscosity of the resist solution will become too high, so a uniform film cannot be obtained by spin coating. It is difficult to obtain thick resist coatings. Examples of the present invention will be described in detail below. Example 1 70 parts by weight of MIPK purified by vacuum distillation,
30 parts by weight of GMA was dissolved in 90 parts by weight of purified benzene, and azobisisobutyronitrile (hereinafter referred to as
0.09 parts by weight (abbreviated as AIBN) was added as a polymerization initiator, and polymerization was carried out at 90° C. for 5 hours in a sealed tube.
After polymerization, it was poured into 20 times the amount of methanol and purified by reprecipitation. The molecular weight of the obtained polymer was determined by gel permeation chromatography (hereinafter referred to as
When measured using GPC), Mw26.7
It was ten thousand. This polymer was dissolved in methyl cellosolve acetate (hereinafter abbreviated as MCA) to form a 13% by weight solution. This was filtered through a 0.2 μm filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1 μm thick resist film was formed by spin coating. This board was heated at 120℃ for 30 minutes.
Sample A was obtained by heat treatment for a minute. Example 2 Similar to Example 1, 50 parts by weight of MIPK, 50 parts by weight of GMA
parts by weight are dissolved in 90 parts by weight of benzene,
0.03 parts by weight of AIBN was added as a polymerization initiator, and polymerization was carried out at 90° C. for 5 hours in a sealed tube. 20 after polymerization
It was poured into twice the amount of methanol and purified by reprecipitation. When the molecular weight of the obtained polymer was measured by GPC, it was Mw 452,000. This polymer
It was dissolved in MCA to make a 10% solution. This is 0.2μm
It was filtered through a filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1 μm thick resist film was formed by spin coating.
This substrate was heat-treated at 120° C. for 30 minutes to obtain Sample B. Example 3 Similar to Example 1, MIPK 30 parts by weight, GMA 70
parts by weight are dissolved in 90 parts by weight of benzene,
0.09 parts by weight of AIBN was added as a polymerization initiator, and polymerization was carried out at 90° C. for 5 hours in a sealed tube. 20 after polymerization
It was poured into twice the amount of methanol and purified by reprecipitation. When the molecular weight of the obtained polymer was measured by GPC, it was Mw 317,000. This polymer
It was dissolved in MCA to make a 13% by weight solution. this
It was filtered through a 0.2 μm filter to obtain a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a 1 μm thick resist film was formed by spin coating. This substrate was heat treated at 120℃ for 30 minutes,
It was designated as sample C. Comparative example Methyl methacrylate purified by vacuum distillation 100
Part by weight is dissolved in 100 parts by weight of purified benzene,
0.01 part by weight of AIBN was added as a polymerization initiator, and polymerization was carried out at 90° C. for 2 hours in a sealed tube. After polymerization,
It was poured into 20 times the volume of methanol and purified by reprecipitation. The molecular weight of the obtained polymer was measured using GPC and was found to be 634,000. This polymer was dissolved in ethyl cellosolve acetate to form a 5% by weight solution. Filter this with a 0.2μm filter,
This was used as a resist solution. This solution was dropped onto a thermally oxidized silicon wafer, and a resist film with a thickness of 1 μm was formed using a spin coating method to form a sample D. Samples A to D prepared above were exposed to light at various exposure times using a deep ultraviolet exposure device. After exposure, samples A to C were developed by immersion in a developer consisting of 10 parts by weight of methyl isobutyl ketone and 1 part by weight of methyl ethyl ketone, or 3 parts by weight of cyclopentanone and 2 parts by weight of butyl cellosolve, and for sample D, 3 parts by weight of isoamyl acetate, 1 part by weight of ethyl acetate
The film was developed by immersing it in a developer consisting of parts by weight, and the sensitivity was measured. Further, the dry etching characteristics of Samples A to D were evaluated using a parallel plate type reactive sputter etching apparatus. CF4 was used as the etching gas,
Etching was carried out for 3 minutes at a gas pressure of 0.1 Torr and an output of 0.45 W/cm 2 . Further, samples A to D were immersed in a mixed solution of 6 parts by weight of ammonium fluoride and 1 part by weight of hydrofluoric acid to perform wet etching of silicon oxide. The following table shows the evaluation results of sensitivity, dry etching resistance, and wet etching resistance.

【表】 以上のように、本発明は高感度で、耐ドライエ
ツチング特性および接着性の優れたレジストを提
供するものであり、半導体工業に大きく貢献する
ものである。
[Table] As described above, the present invention provides a resist with high sensitivity, excellent dry etching resistance and adhesive properties, and greatly contributes to the semiconductor industry.

Claims (1)

【特許請求の範囲】[Claims] 1 メチルイソプロペニルケトン90〜50モル%、
メタクリル酸グリシジル10〜50モル%の共重合組
成をもつ、メチルイソプロペニルケトン・メタク
リル酸グリシジル共重合体からなる遠紫外線露光
用レジスト材料。
1 90-50 mol% methyl isopropenyl ketone,
A resist material for deep ultraviolet exposure consisting of a methyl isopropenyl ketone/glycidyl methacrylate copolymer with a copolymer composition of 10 to 50 mol% of glycidyl methacrylate.
JP14759681A 1981-09-17 1981-09-17 Resist material used for far ultraviolet ray exposure Granted JPS58134630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14759681A JPS58134630A (en) 1981-09-17 1981-09-17 Resist material used for far ultraviolet ray exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14759681A JPS58134630A (en) 1981-09-17 1981-09-17 Resist material used for far ultraviolet ray exposure

Publications (2)

Publication Number Publication Date
JPS58134630A JPS58134630A (en) 1983-08-10
JPH0353623B2 true JPH0353623B2 (en) 1991-08-15

Family

ID=15433917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14759681A Granted JPS58134630A (en) 1981-09-17 1981-09-17 Resist material used for far ultraviolet ray exposure

Country Status (1)

Country Link
JP (1) JPS58134630A (en)

Also Published As

Publication number Publication date
JPS58134630A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
US4289845A (en) Fabrication based on radiation sensitive resists and related products
JPS5872139A (en) Photosensitive material
JPS6048022B2 (en) electronic sensitive resist
JPS64689B2 (en)
US4430419A (en) Positive resist and method for manufacturing a pattern thereof
JPS60119550A (en) Pattern forming material and pattern forming method
US4701342A (en) Negative resist with oxygen plasma resistance
US4476217A (en) Sensitive positive electron beam resists
JPS6349210B2 (en)
EP0064864B1 (en) Method of making sensitive positive electron beam resists
JPS6349211B2 (en)
US4415653A (en) Method of making sensitive positive electron beam resists
JPH0353623B2 (en)
JPS5983157A (en) Method of increasing sensitivity and contrast of positive type polymer resist
JPH0353622B2 (en)
JPS63199715A (en) Copolymer having o-nitrocarbinol ester, double-layer resist using the same and production of semiconductive element
US4414313A (en) Sensitive positive electron beam resists
JPS59198446A (en) Photosensitive resin composition and using method thereof
US4617254A (en) Process for forming detailed images
JPS62258449A (en) Making of two-layer resist image
JPH0369098B2 (en)
JPS59121042A (en) Negative type resist composition
JPH05257285A (en) Radiosensitive material and formation of pattern using the same
JPH0381143B2 (en)
EP0007976A1 (en) Lithographic resist and device processing utilizing same