JPH0145611B2 - - Google Patents

Info

Publication number
JPH0145611B2
JPH0145611B2 JP55163603A JP16360380A JPH0145611B2 JP H0145611 B2 JPH0145611 B2 JP H0145611B2 JP 55163603 A JP55163603 A JP 55163603A JP 16360380 A JP16360380 A JP 16360380A JP H0145611 B2 JPH0145611 B2 JP H0145611B2
Authority
JP
Japan
Prior art keywords
resist
molecular weight
pattern
sensitivity
resist layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55163603A
Other languages
Japanese (ja)
Other versions
JPS5786831A (en
Inventor
Yasuhiro Yoneda
Tateo Kitamura
Jiro Naito
Toshisuke Kitakoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16360380A priority Critical patent/JPS5786831A/en
Publication of JPS5786831A publication Critical patent/JPS5786831A/en
Publication of JPH0145611B2 publication Critical patent/JPH0145611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/008Azides
    • G03F7/012Macromolecular azides; Macromolecular additives, e.g. binders

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Description

【発明の詳細な説明】 本発明はIC,LSI等半導体素子のパターン形成
材料すなわちレジストに係り露光エネルギー線と
して電子線、X線、イオンビーム等の高エネルギ
ー線を用いてパターン形成する時のネガ型レジス
ト材料及びそれを用いるパターン形成方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to pattern forming materials for semiconductor devices such as ICs and LSIs, that is, resists, and is applied to negatives when forming patterns using high energy beams such as electron beams, X-rays, and ion beams as exposure energy beams. The present invention relates to a mold resist material and a pattern forming method using the same.

電子線、X線レジストとしてはネガではグリシ
ジルメタクリレート(PGMA)、グリシジルメタ
クリレート−エチルアクリレート共重合体〔P
(GMA−EA)〕、などまた、ポジ型ではポリメチ
ルメタクリレート(PMMA)、PMMAと他種ア
クリルモノマーとの共重合体、ポリ(ブデン−1
−スルホン)(pBs)などが提案されている。し
かしドライエツチングによるSi,SiO2,PolySi,
Al等半導体基板、配線材料の微細加工技術が実
用化されるに至り、従来のレジストでは基板ある
いは配線材料を完全にエツチングする以前にレジ
ストがなくなつたり、パターンエツジが虫くい状
態になつたりするという問題が生じている。
For negative electron beam and X-ray resists, glycidyl methacrylate (PGMA) and glycidyl methacrylate-ethyl acrylate copolymer [P
(GMA-EA)], etc. Also, positive types include polymethyl methacrylate (PMMA), copolymers of PMMA and other acrylic monomers, poly(butene-1
-sulfone) (pBs), etc. have been proposed. However, Si, SiO 2 , PolySi,
As microfabrication technology for semiconductor substrates and wiring materials such as Al has been put into practical use, it has been reported that with conventional resists, the resist runs out before the substrate or wiring material is completely etched, or the pattern edges become hollow. There's a problem.

本発明は上述の問題点に鑑みなされたもので、
ドライエツチングに対するレジストの耐性を向上
するには化学的に安定な芳香族環をレジスト分子
中に組みこむことで達成される。本発明ではフエ
ノール類とホルムアルデヒドの縮合反応にて作ら
れたノボラツク型フエノール樹脂がCF4.C3F8
等のフツ素系エツチングガスあるいはCCl4
BCl3,PCl3等の塩素系エツチングガスでのプラ
ズマに対しきわめて耐性が高いことより、レジス
ト基材に選び、その分子量、分散度の適正化とビ
スアジド化合物の適正量の添加にて、耐ドライエ
ツチング性が高く、電子線露光あるいはイオンビ
ーム露光時の実用的感度を有し、しかも高い解像
性(2μm line/Space解像)を持つ電離放射線
用ネガ型レジストを用いるパターン形成方法を提
供するものである。
The present invention was made in view of the above-mentioned problems.
Improving the resist's resistance to dry etching is achieved by incorporating chemically stable aromatic rings into the resist molecule. In the present invention, the novolac type phenolic resin made by the condensation reaction of phenols and formaldehyde is CF 4 .C 3 F 8 ,
Fluorine-based etching gas such as CCl4 ,
It was selected as a resist base material because it has extremely high resistance to plasma using chlorine-based etching gases such as BCl 3 and PCl 3 , and by optimizing its molecular weight and dispersion degree and adding an appropriate amount of bisazide compound, it has excellent dry resistance. To provide a pattern forming method using a negative resist for ionizing radiation that has high etching properties, has practical sensitivity during electron beam exposure or ion beam exposure, and has high resolution (2 μm line/space resolution). It is something.

下記一般式(1)で示されるノボラツク型フエノー
ル樹脂 (R:H又はC1〜C5のアルキル基、又はフエ
ニル基、ただし、重量平均分子量(Mw)が2×
104以上で、数平均分子量(Mn)との比、分散度
(Mw/Mn)が3以下である)に、4,4′−ジア
ジドカルコン、2,6−ビス(4′−アジドベンザ
ル)シクロヘキサノン、2,6−ビス(4′−アジ
ドスチリル)アセトン、アジドスチリル、アジド
アゾメチン、4,4′−ジアジドスチルベン−2,
2′−ジスルホン酸アニリドから選択されるビスア
ジド化合物を、該ノボラツク型フエノール樹脂に
対して3〜7重量%添加したパターン形成材料よ
りなるレジスト層を基板上に形成する工程と、該
レジスト層を電離放射線でパターン露光し、露光
部のレジストを架橋させる工程と、該レジスト層
を有機溶剤よりなる現像液で現像する工程とを有
するパターン形成方法により達成され、更に、形
成されたレジストパターンをマスクに基板をドラ
イエツチングして、パターンを形成することがで
きる。
Novolac type phenolic resin represented by the following general formula (1) (R: H or a C1 to C5 alkyl group, or a phenyl group, provided that the weight average molecular weight (Mw) is 2×
10 4 or more, and the ratio to the number average molecular weight (Mn) and the degree of dispersion (Mw/Mn) are 3 or less), 4,4'-diazidochalcone, 2,6-bis(4'-azidobenzal) Cyclohexanone, 2,6-bis(4'-azidostyryl)acetone, azidostyryl, azidoazomethine, 4,4'-diazidostilbene-2,
forming on a substrate a resist layer made of a pattern forming material to which a bisazide compound selected from 2'-disulfonic acid anilide is added in an amount of 3 to 7% by weight based on the novolak type phenolic resin; and ionizing the resist layer. This is achieved by a pattern forming method that includes the steps of exposing the resist to a pattern with radiation, crosslinking the resist in the exposed areas, and developing the resist layer with a developer made of an organic solvent. The substrate can be dry etched to form a pattern.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

(1) ノボラツク型フエノール樹脂 従来のノボラツク樹脂はその平均分子量が500
〜3000程度である。この電子線感度は(電子線の
加速電圧10〜30kV)10-4〜10-3クーロン/cm2
である。電子線露光時の実用感度としては同条件
にて1×10-5クーロン/cm2が最低必要である。こ
れよりみて、従来法にて作られたノボラツク樹脂
はレジストとはなり得ない。電子線レジストの感
度はその分子量が大きくなるほど高くなる。した
がつて、分子量の高いノボラツク樹脂を作る必要
がある。ノボラツクの高分子化として従来、常法
によつて作つたノボラツクにホルムアルデヒドを
さらに加え加熱縮合させる方法がとられている。
しかしこの方法では高分子化はできるが、その分
数度が著しく大きくなり、レジストの解像性が悪
くなる。本発明では、上記のように作られたノボ
ラツクを分別精製することにより、さらに平均分
子量を大きくし、しかも分散度の小さいものを
(3以下)作り、用いることを大きな特徴とする。
(1) Novolac type phenolic resin Conventional novolac resin has an average molecular weight of 500.
It is about ~3000. The electron beam sensitivity is on the order of 10 -4 to 10 -3 coulombs/cm 2 (accelerating voltage of electron beam 10 to 30 kV). The minimum practical sensitivity during electron beam exposure is 1×10 −5 coulombs/cm 2 under the same conditions. In view of this, novolak resin made by the conventional method cannot be used as a resist. The sensitivity of an electron beam resist increases as its molecular weight increases. Therefore, it is necessary to make novolak resins with high molecular weights. Conventionally, a method has been used to polymerize novolac by adding formaldehyde to novolac prepared by a conventional method and condensing it under heating.
However, although polymerization is possible with this method, the fractional degree becomes significantly large and the resolution of the resist deteriorates. A major feature of the present invention is that by fractionating and refining the novolak produced as described above, a product with a higher average molecular weight and a smaller degree of dispersion (3 or less) is produced and used.

ノボラツクのの分子量はw=2×104以上が
必要である。すなわちw=2×104のノボラツ
ク樹脂にビスアジド化合物を添加して増感すると
その感度は実用感度(1×10-5クーロン/cm2Vac
=10kV)の下限に当たる。分散度(w/n)
はレジストの膜厚1μmにて2μmline/Spaceパタ
ーンを作るために3以下望ましくは2以下であ
り、3以上の分散度では解像しない。
The molecular weight of novolac must be w=2×10 4 or more. In other words, when a bisazide compound is added to a novolac resin with w=2×10 4 to sensitize it, the sensitivity becomes the practical sensitivity (1×10 −5 coulomb/cm 2 Vac
= 10kV). Dispersion degree (w/n)
is 3 or less, preferably 2 or less in order to create a 2 μm line/space pattern with a resist film thickness of 1 μm, and a dispersion of 3 or more will not resolve.

(2) ビスアジド化合物 ノボラツク樹脂と相溶性のある溶剤に可溶なビ
スアジド化合物として4,4′−ジアジドカルコ
ン、2,6−ビス(4′−アジドベンザル)シクロ
ヘキサノン、2,6−ビス(4′−アジドスチリ
ル)アセトン、アジドスチリル、アジドアゾメチ
ン、4,4′−ジアジドスチルベン−2,2′−ジス
ルホン酸アニリドなどがある。
(2) Bisazide compounds Bisazide compounds soluble in solvents that are compatible with novolak resin include 4,4'-diazide chalcone, 2,6-bis(4'-azidobenzal)cyclohexanone, and 2,6-bis(4'). -azidostyryl) acetone, azidostyryl, azidoazomethine, 4,4'-diazidostilbene-2,2'-disulfonic acid anilide, and the like.

ビスアジド化合物は(1)項で示す分別されたノボラ
ツクのの感電子(X線)架橋剤として添加され、
感度を向上する。
The bisazide compound is added as an electron-sensitive (X-ray) crosslinking agent to the fractionated novolac shown in item (1),
Improve sensitivity.

添加量はノボラツク樹脂に対して3〜7wt%で
あり、3wt%以下では増感効果は少なく7wt%以
上では添量を増しても増感されない(飽和する)
また基板との密度性が低下する。
The amount added is 3 to 7wt% based on the novolak resin, and if it is less than 3wt%, the sensitizing effect will be small and if it is more than 7wt%, no sensitization will occur even if the amount added is increased (it will become saturated).
Furthermore, the density with the substrate is reduced.

実施例 1 原料のノボラツク樹脂(明和化成#100)80g
を500gのメチルエチルケトン(MEK)に溶解し
た後、2の分液ロートに移した。これに沈殿剤
としてシクロヘキサン420mlを注ぎ1昼夜静置す
ることで高分子量ノボラツクを沈澱させた(第1
分割)、この沈殿を常法により流出させた後さら
に40mlのシクロヘキサンを添加し1昼夜静置する
ことにて沈澱を生成した(第2分割)。この第2
分割目の沈澱を回収した試料とした。収量9.5g
であつた。第1分割目はゲル分、極めて高い高分
子量分子を含むため使用できない。
Example 1 Raw material novolak resin (Meiwa Kasei #100) 80g
was dissolved in 500 g of methyl ethyl ketone (MEK), and then transferred to No. 2 separating funnel. 420 ml of cyclohexane was poured into this as a precipitant, and the mixture was allowed to stand for a day and night to precipitate high molecular weight novolak (first step).
After the precipitate was drained out using a conventional method, 40 ml of cyclohexane was added and left to stand for one day to form a precipitate (second division). This second
The precipitate from each division was collected and used as a sample. Yield 9.5g
It was hot. The first fraction cannot be used because it contains a gel fraction and extremely high molecular weight molecules.

分子量、分子量分布は液体クロマトグラフイー
(du Pont 830島津製作所 HSG 30+60カラム)
にて測定した。溶媒、及び移動層にはテトラヒド
ロフランを用い、試料量500μl、試料濃度0.5%、
カラム圧35Kg/cm2測定温度30℃にて測定した。重
量平均分子量(w)、数平均分子量(n)は
標準ポリスチレンの検量線を基に、線分法にて算
出した。
Molecular weight and molecular weight distribution were determined by liquid chromatography (du Pont 830 Shimadzu HSG 30+60 column)
Measured at Tetrahydrofuran was used as the solvent and mobile phase, the sample volume was 500 μl, the sample concentration was 0.5%,
Measurement was carried out at a column pressure of 35 Kg/cm 2 and a measurement temperature of 30°C. The weight average molecular weight (w) and number average molecular weight (n) were calculated by the line segment method based on a standard polystyrene calibration curve.

第1図に原料と上記方法にて作製したノボラツ
ク樹脂の分子量分布を示す。原料ノボラツク樹脂
はn=2.0×103,w=3.0×104,w/n
=15.0、作製したノボラツク樹脂はn=3.3×
104,w=5.0×104 w/n=1.5であつた。
FIG. 1 shows the molecular weight distribution of the raw materials and the novolak resin produced by the above method. The raw material novolak resin is n=2.0×10 3 , w=3.0×10 4 , w/n
= 15.0, the produced novolak resin is n = 3.3×
10 4 , w=5.0×10 4 w/n=1.5.

この作製したノボラツクを16.7wt%のシクロヘ
キサノン溶液としさらにノボラツク樹脂に対し
4wt%の4,4′−ジアジドカルコンを添加し溶解
した後、シリコンウエーハに1.4〜1.6μmの膜厚
になるように塗布し60℃、10分間プリベイクした
ものを試料としこれに加速電圧10kVの電子線を
照射した。現像は、現像液に酢酸nブチル/モノ
クロルベンゼン=1/5混合液を用い液温23〜25℃
で80秒から100秒の間浸漬し続いて酢酸nブチ
ル/モノクロルベンゼン=1/6混合液に30秒間リ
ンスすることにて行なつた。第2図に原料ノボラ
ツク樹脂、分別ノボラツク樹脂、4,4′−ジアジ
ドカルコン4wt%添加ノボラツク樹脂の感度曲線
を示す。感度をDg0.5(正規化残存膜厚0.5におけ
る電子線露光量)で比較すると分別ノボラツクは
原料の約25倍、ジアジドカルコン添加ノボラツク
樹脂では約125倍高感度となつている。また、ジ
アジドカルコン添加ノボラツク型樹脂の感度は
Dg0.5で1.6×10-6クーロン/cm2であり電子線露光
における実用的感度を備えている。
This prepared novolak was made into a 16.7wt% cyclohexanone solution and further added to the novolak resin.
After adding and dissolving 4wt% 4,4'-diazide chalcone, the sample was coated on a silicon wafer to a film thickness of 1.4 to 1.6 μm and prebaked at 60°C for 10 minutes. was irradiated with an electron beam. For development, use a mixture of n-butyl acetate/monochlorobenzene = 1/5 as the developer at a solution temperature of 23 to 25°C.
This was done by immersing it in water for 80 to 100 seconds and then rinsing it in a 1/6 mixture of n-butyl acetate/monochlorobenzene for 30 seconds. FIG. 2 shows the sensitivity curves of the raw novolac resin, the fractionated novolac resin, and the novolac resin containing 4% by weight of 4,4'-diazide chalcone. Comparing the sensitivity at Dg 0.5 (the amount of electron beam exposure at a normalized residual film thickness of 0.5), fractionated novolak is about 25 times more sensitive than the raw material, and diazide chalcone-added novolak resin is about 125 times more sensitive. In addition, the sensitivity of the novolak type resin containing diazide chalcone is
At Dg 0.5 , it is 1.6×10 -6 coulombs/cm 2 and has practical sensitivity in electron beam exposure.

ジアジドカルコンは4wt%の添加量まで感度が
向上するがそれ以上になると飽和する傾向があ
る。また7wt%以上の添加量では密着性が悪くな
りパターンがはく離するものもでてくる。
The sensitivity of diazide chalcone improves up to an addition amount of 4 wt%, but it tends to become saturated when the amount is more than 4 wt%. Furthermore, if the amount added is more than 7 wt%, the adhesion may deteriorate and the pattern may peel off.

解像性は1/eが0.2μmの電子ビームにてベク
トルスキヤンすることでline and spaceパターン
を描画したところ1μml/Sパターンを(初期
レジスト膜厚1.4μm)解像することがわかつた。
Regarding the resolution, when a line and space pattern was drawn by vector scanning with an electron beam with a 1/e of 0.2 μm, it was found that a 1 μml/S pattern (initial resist film thickness 1.4 μm) could be resolved.

実施例 2 実施例1の添加剤4,4′−ジアジドカルコンの
かわりに2.6−ビス(4′−アジドベンサル)シク
ロヘキサノン5wt%に変え全く同様に処理した。
このレジストの電子線感度は2×10-6クーロン/
cm2(Dg0.5)であつた。また、解像度1μml/S
であつた。
Example 2 The same procedure as in Example 1 was carried out except that 5 wt % of 2,6-bis(4'-azidobenthal)cyclohexanone was used instead of 4,4'-diazidochalcone.
The electron beam sensitivity of this resist is 2×10 -6 coulombs/
cm 2 (Dg 0.5 ). In addition, the resolution is 1μml/S
It was hot.

実施例 3 実施例1の添加剤4,4′−ジアジドカルコンの
かわりに2,6−ビス(4′−アジドスチリル)ア
セトン5wt%に変え全く同様に処理した。電子線
感度は2.5×10-6クーロン/cm2(Dg0.5)であり、
1μml/Sを解像する。
Example 3 The same procedure as in Example 1 was carried out except that 5 wt % of 2,6-bis(4'-azidostyryl)acetone was used instead of the additive 4,4'-diazidochalcone. The electron beam sensitivity is 2.5×10 -6 coulombs/cm 2 (Dg 0.5 ),
Resolves 1μml/S.

実施例 4 実施例1と同じ原料のノボラツク樹脂(明和化
成#100)80gを500gのMEK500gに溶解した後
2分液ロートに移した。これにシクロヘキサノ
ン500mlを注ぎ1昼夜放置することで第1分割目
のノボラツクを沈澱させた。これを流出除去した
後、さらにシクロヘキサン50mlを注ぎ1昼夜放置
することにより第2分割目を沈澱させた。この第
2分割目のノボラツクを試料として回収した。分
子量はn=1.2×104w=2.1×104w/n
=1.8であつた。
Example 4 80 g of novolac resin (Meiwa Kasei #100), which was the same raw material as in Example 1, was dissolved in 500 g of MEK and then transferred to a 2-separating funnel. 500 ml of cyclohexanone was poured into this, and the mixture was left to stand for a day and night to precipitate the novolac in the first division. After this was drained and removed, 50 ml of cyclohexane was added and left to stand for 1 day to precipitate the second portion. This second divided novolak was collected as a sample. The molecular weight is n=1.2×10 4 w=2.1×10 4 w/n
It was =1.8.

この試料を実施例1と同様に4,4′−ジアジド
カカルコンを添加し感度を測定したところ1.1×
10-5クーロン/cm2(Dg0.5)であつた。
4,4'-Diazidocachalcone was added to this sample in the same manner as in Example 1, and the sensitivity was measured.
It was 10 -5 coulombs/cm 2 (Dg 0.5 ).

これは電子線露光に要する感度の下限に相当す
る。第3図に分別したノボラツク樹脂と分別ノボ
ラツク樹脂に4wt%の4,4′−ジアジドカルコン
を添加したレジストの感度(Dg0.5)とwの関
係を示す。この図より1×10-5クーロン/cm2を得
るにはwが2×104以上必要であり、分子量が
大きくなるほど感度が高くなることがわかる。ま
た他のビスアジド化合物を添加した場合も同様な
傾向を示し、実用的感度を得るためにはwが2
×104以上必要である。
This corresponds to the lower limit of sensitivity required for electron beam exposure. FIG. 3 shows the relationship between the sensitivity (Dg 0.5 ) and w of the fractionated novolac resin and the resist obtained by adding 4 wt % of 4,4'-diazide chalcone to the fractionated novolac resin. From this figure, it can be seen that in order to obtain 1×10 −5 coulombs/cm 2 , w is required to be 2×10 4 or more, and the sensitivity increases as the molecular weight increases. A similar tendency is observed when other bisazide compounds are added, and in order to obtain practical sensitivity, w must be 2.
×10 4 or more is required.

実施例 5 実施例1の試料作成において第2分割ノボラツ
ク樹脂を得たのにシクロヘキサンの添加量を種々
変えることで分散度の異なるものを得た。
Example 5 Although the second split novolak resin was obtained in the sample preparation of Example 1, samples with different degrees of dispersion were obtained by varying the amount of cyclohexane added.

これらを、レジスト膜厚1.4μmにてline and
Spaceパターンを電子線にて描画し、現像後その
パターンを観察することにより評価した。この結
果、従来のレジストと同様に分散度が小さくなる
につれて解像性が高くなる傾向があり、分散度
1.5のものでは1μm line and Spaceを解像する。
また2μm line and Spaceを解像するには分
散度2以下が必要であり、3μm line and
Space では分散度3以下が必要である。したが
つて、IC,LSI等で用いられる配線の線幅は3μm
程度、VLSIでは1μm程度であることよりノボラ
ツク樹脂の分散度は3以下が必要となる。
These are line and
Evaluation was made by drawing a Space pattern with an electron beam and observing the pattern after development. As a result, as with conventional resists, resolution tends to increase as the degree of dispersion decreases;
The 1.5 resolution resolves 1μm line and space.
Also, to resolve 2μm line and space, a dispersion degree of 2 or less is required, and 3μm line and
Space requires a dispersion degree of 3 or less. Therefore, the line width of wiring used in IC, LSI, etc. is 3μm.
The degree of dispersion of the novolac resin must be 3 or less since the diameter is about 1 μm in VLSI.

以上の説明から明らかな如く、本発明の重量平
均分子量(w)が2×104以上で分散度(
w/Mn)が3以下であるノボラツク型フエノー
ル樹脂に、ノボラツク樹脂と相溶性のある溶剤に
可溶なビスアジド化合物を、添加量が3〜7wt%
添加したパターン形成材料を用いることによりド
ライエツチング性が高く実用的感度を持ち、高い
解像性を示すレジスト材料を提供することができ
る。
As is clear from the above explanation, when the weight average molecular weight (w) of the present invention is 2×10 4 or more, the degree of dispersion (
A bisazide compound soluble in a solvent that is compatible with the novolak resin is added in an amount of 3 to 7 wt% to the novolak type phenolic resin whose w/Mn) is 3 or less.
By using the added pattern forming material, it is possible to provide a resist material that has high dry etching properties, has practical sensitivity, and exhibits high resolution.

なお本実施例ではエネルギー線として電子線を
用いる例を上げたが各々のエネルギー線を用いた
ときのレジストの官能性すななわち感度は多少異
なる、たとえば電子線とイオンビームではイオン
ビームの方が10倍高い感度となる。(同エネルギ
ーを与えたときイオンビーム露光の方がレジスト
の化学変化が大きい)いずれの場合もたとえば電
子線での感度を基準とするとそれにある倍率を掛
けることで表現しうるので、イオンビーム等をエ
ネルギー線として用いることができる。
In this example, an example is given in which an electron beam is used as the energy beam, but the sensitivity of the resist when using each energy beam is somewhat different. For example, between an electron beam and an ion beam, the ion beam is better. is 10 times more sensitive. (When the same energy is given, ion beam exposure causes a larger chemical change in the resist.) In either case, for example, if the sensitivity with an electron beam is used as a standard, it can be expressed by multiplying it by a certain magnification. It can be used as an energy beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原料及び分別したノボラツク樹脂の分
子量分布を示す図、第2図は原料ノボラツク樹脂
分別ノボラツク樹脂、4,4′−ジアジドカルコン
4wt%添加ノボラツク樹脂の感度曲線を示す図、
第3図は分別したノボラツクと4,4′−ジアジド
カルコン4wt%添加ノボラツクの電子線感度と重
量平均分子量(w)の関係を示す図である。
Figure 1 shows the molecular weight distribution of the raw material and fractionated novolak resin, Figure 2 shows the raw material novolak resin, the fractionated novolak resin, and 4,4'-diazide chalcone.
Diagram showing the sensitivity curve of 4wt% added novolak resin,
FIG. 3 is a diagram showing the relationship between the electron beam sensitivity and the weight average molecular weight (w) of the fractionated novolac and the novolac containing 4 wt % of 4,4'-diazide chalcone.

Claims (1)

【特許請求の範囲】 1 下記一般式(1)で示されるノボラツク型フエノ
ール樹脂 (R:H又はC1〜C5のアルキル基、又はフエ
ニル基、ただし、重量平均分子量(Mw)が2×
104以上で、数平均分子量(Mn)との比、分散度
(Mw/Mn)が3以下である)に、4,4′−ジア
ジドカルコン、2,6−ビス(4′−アジドベンザ
ル)シクロヘキサノン、2,6−ビス(4′−アジ
ドスチリル)アセトン、アジドスチリル、アジド
アゾメチン、4,4′−ジアジドスチルベン−2,
2′−ジスルホン酸アニリドから選択されるビスア
ジド化合物を、該ノボラツク型フエノール樹脂に
対して3〜7重量%添加したパターン形成材料よ
りなりレジスト層を基板上に形成する工程と、該
レジスト層を電離放射線でパターン露光し、露光
部のレジストを架橋させる工程と、該レジスト層
を有機溶剤よりなる現像液で現像する工程とを有
することを特徴とするパターン形成方法。
[Claims] 1. Novolac type phenolic resin represented by the following general formula (1) (R: H or a C1 to C5 alkyl group, or a phenyl group, provided that the weight average molecular weight (Mw) is 2×
10 4 or more, and the ratio to the number average molecular weight (Mn) and the degree of dispersion (Mw/Mn) are 3 or less), 4,4'-diazidochalcone, 2,6-bis(4'-azidobenzal) Cyclohexanone, 2,6-bis(4'-azidostyryl)acetone, azidostyryl, azidoazomethine, 4,4'-diazidostilbene-2,
A step of forming a resist layer on a substrate made of a pattern forming material in which 3 to 7% by weight of a bisazide compound selected from 2'-disulfonic acid anilide is added to the novolak type phenolic resin, and ionizing the resist layer. A method for forming a pattern, comprising the steps of exposing the resist layer in a pattern to radiation and crosslinking the resist in the exposed areas, and developing the resist layer with a developer made of an organic solvent.
JP16360380A 1980-11-20 1980-11-20 Pattern forming material Granted JPS5786831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16360380A JPS5786831A (en) 1980-11-20 1980-11-20 Pattern forming material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16360380A JPS5786831A (en) 1980-11-20 1980-11-20 Pattern forming material

Publications (2)

Publication Number Publication Date
JPS5786831A JPS5786831A (en) 1982-05-31
JPH0145611B2 true JPH0145611B2 (en) 1989-10-04

Family

ID=15777058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16360380A Granted JPS5786831A (en) 1980-11-20 1980-11-20 Pattern forming material

Country Status (1)

Country Link
JP (1) JPS5786831A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097347A (en) * 1983-11-01 1985-05-31 Hitachi Chem Co Ltd Image forming photosensitive composition
CA1279430C (en) * 1985-12-06 1991-01-22 Takashi Kubota High-molecular-weight soluble novolak resin and process for preparation thereof
CA2106231A1 (en) * 1993-09-15 1995-03-16 Sambasivan Venkat Eswaran Negative photoresist and a process therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074427A (en) * 1973-10-23 1975-06-19
JPS54155826A (en) * 1978-05-23 1979-12-08 Western Electric Co Method of producing radiation sensitive resist and product therefor
JPS55163602A (en) * 1979-06-05 1980-12-19 Pioneer Electronic Corp Arm pipe
JPS6248211A (en) * 1985-08-27 1987-03-02 松下電工株式会社 Cord reel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074427A (en) * 1973-10-23 1975-06-19
JPS54155826A (en) * 1978-05-23 1979-12-08 Western Electric Co Method of producing radiation sensitive resist and product therefor
JPS55163602A (en) * 1979-06-05 1980-12-19 Pioneer Electronic Corp Arm pipe
JPS6248211A (en) * 1985-08-27 1987-03-02 松下電工株式会社 Cord reel

Also Published As

Publication number Publication date
JPS5786831A (en) 1982-05-31

Similar Documents

Publication Publication Date Title
EP0005775B1 (en) Article comprising a substrate and an overlying processing layer of actinic radiation-sensitive material and process for fabrication of the article
JPS6048022B2 (en) electronic sensitive resist
US4289842A (en) Negative-working polymers useful as electron beam resists
JPH02191957A (en) Resist composition
EP0119017B1 (en) Electron-beam and x-ray sensitive polymers and resists
JPH0145611B2 (en)
US7399573B2 (en) Method for using negative tone silicon-containing resist for e-beam lithography
JPS58207041A (en) Radiosensitive polymer resist
US3669662A (en) Cyclic polyisoprene photoresist compositions
JPH0145610B2 (en)
US6586156B2 (en) Etch improved resist systems containing acrylate (or methacrylate) silane monomers
US4795692A (en) Negative-working polymers useful as X-ray or E-beam resists
JPS617835A (en) Resist material
US4617254A (en) Process for forming detailed images
JPH0339964A (en) Manufacture of semiconductor device and pattern-forming coating solution to be used for the same
JPS58122531A (en) Formation of pattern
JPS6234908A (en) Alpha-methylstyrene polymer containing silicon and vinyl group, composition containing same and use thereof
JPS59121042A (en) Negative type resist composition
JP2593310B2 (en) Resist material
JP2584806B2 (en) Resist material
Hong et al. PEB sensitivity studies of ArF resists: II. Polymer and solvent effects
JPS6364771B2 (en)
JPS5848046A (en) Resist material for use in far ultraviolet exposure
JPS6349210B2 (en)
JPH0381143B2 (en)