JPS634887B2 - - Google Patents

Info

Publication number
JPS634887B2
JPS634887B2 JP10837285A JP10837285A JPS634887B2 JP S634887 B2 JPS634887 B2 JP S634887B2 JP 10837285 A JP10837285 A JP 10837285A JP 10837285 A JP10837285 A JP 10837285A JP S634887 B2 JPS634887 B2 JP S634887B2
Authority
JP
Japan
Prior art keywords
alloy
fuse
present
electrical conductivity
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10837285A
Other languages
Japanese (ja)
Other versions
JPS61266539A (en
Inventor
Seiji Kumagai
Kuniaki Yoshikawa
Juji Hatagishi
Shigemi Hashizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Yazaki Corp
Original Assignee
Mitsubishi Shindoh Co Ltd
Yazaki Sogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd, Yazaki Sogyo KK filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP10837285A priority Critical patent/JPS61266539A/en
Publication of JPS61266539A publication Critical patent/JPS61266539A/en
Publication of JPS634887B2 publication Critical patent/JPS634887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/06Fusible members characterised by the fusible material

Landscapes

  • Conductive Materials (AREA)
  • Fuses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の目的 〔産業上の利用分野〕 本発明は、安定な溶断特性を示し、大電流用に
使用するのに適したヒユーズ用合金に関する。 〔従来の技術〕 従来、自動車の電気配線等に使用する大電流用
ヒユーズ合金として、Fe:0.5〜3.5%、P:0.01
〜0.15%、Zn:0.01〜1.0%、残部Cuから成る合
金が提案されている(特開昭58−163127号)。 通常、Cuの強度不足をFe、Snによつて補強し
ているが、上記合金の場合はFeだけで強度を補
なつている。このため、Feを2%以上にしない
と必要な強度を確保できず、実際には2〜3.5%
の範囲で使用されている。しかし、Feが2%を
越えると、Cuに固溶しないFeが生じ、熱サイク
ルなどを行なうと、Feの表面析出が起りやすい。
その結果、導電率や溶断特性が変化し、腐食しや
すくなる。また、融点も1090℃と高いために、発
熱時間も長く、安全性に欠けるという問題があつ
た。 さらに、上記成分の合金は、導電率が65%と高
いために、プレス公差による抵抗変化が大きく、
溶断特性にバラツキが生じ、また、バネ限界値が
23Kg・f/mm2と低いから、端子用バネ部材として
は不向きである。 そして、前述のCuに固溶しないFeの影響で、
合金材料の生産時においても、導電率に±5%程
度のバラツキが生じ、溶断特性が変動する。 〔発明が解決しようとする問題点〕 本発明の目的は、上記の問題点を解決し、発熱
から溶断に至るまでの時間が短かく、生産および
熱サイクル時における導電率と溶断特性のバラツ
キが小さく安定しており、しかもバネ性およびプ
レス性の改善されたヒユーズ用合金を提供するに
ある。 発明の構成 〔問題点を解決するための手段〕 本発明のヒユーズ用合金は、Fe:0.5〜1.5%、
Sn:3.5〜4.9%、P:0.004〜0.03%、Zn:0.005
〜0.3%を含有し、残部が実質的にCuから成るこ
とを特徴とする。 まず材料について説明すれば、各成分のはたら
きと組成の限定理由は次のとおりである。 Fe:0.5〜1.5% 必要な機械的強度を確保するためには0.5%以
上含有しなければならず、Feの巨大析出物の発
生および強度低下を防止すると共に、この析出物
による導電率の変化と腐食を抑えるためには1.5
%を越えることができない。 Sn:3.5%〜4.9% Snは合金の強度、延性および耐食性を向上さ
せ、また、溶断時の赤熱時間を短縮し、融点を下
げる効果がある。しかし、3.5%未満でもこれら
の効果が得られず、4.9%を越えると熱間脆性が
あらわれ、圧延欠陥が発生する。 P:0.004〜0.03% 脱酸剤としてはたらき、この効果を得るために
は0.004%以上の含有を必要とする。0.03%を越
えると、熱間脆性の原因となるCu−Sn−P相の
生成がみられ、熱間圧延ができなくなる。 Zn:0.005〜0.3% Pとともに脱酸剤として作用するが、0.005%
以上にしないとこの効果が得られず、0.3%を越
えると、応力腐食割れに対する感受性の増大がみ
られ、かえつて加工性が低下する。 〔作用〕 上記した成分の組み合わせにより、以下の実施
例にみるとおり、導電率が低く、導電率と溶断特
性の安定したヒユーズ用合金が得られる。しか
も、引張強さ、延性などの機械的強度と共に、バ
ネ限界値が大巾に向上するので、強いバネ性を要
請されるヒユーズ付端子をプレス、折曲加工等に
より一体で成形することができる。さらに、赤熱
から溶断するまでの時間が短縮するから、安全な
ヒユーズ材として使用することができる。 〔実施例〕 第1表に示す組成の合金を溶製し、つぎの条件
で圧延した。 加熱温度 850℃ 仕上温度 400℃ サイズ 平板(厚さ 0.4mm) この圧延材を400×1500mmに截断して、融点、
導電率、引張強さなどの諸特性を測定した。
OBJECT OF THE INVENTION [Field of Industrial Application] The present invention relates to an alloy for a fuse that exhibits stable fusing characteristics and is suitable for use in large current applications. [Prior art] Conventionally, high current fuse alloys used for electrical wiring in automobiles, Fe: 0.5 to 3.5%, P: 0.01
An alloy consisting of ~0.15% Zn, 0.01~1.0% Zn, and the balance Cu has been proposed (Japanese Unexamined Patent Publication No. 163127/1983). Normally, the lack of strength of Cu is reinforced with Fe and Sn, but in the case of the above alloys, the strength is compensated for only with Fe. For this reason, the necessary strength cannot be secured unless the Fe content is 2% or more, and in reality it is 2 to 3.5%.
used within the range. However, when Fe exceeds 2%, Fe that does not dissolve in Cu is generated, and surface precipitation of Fe is likely to occur when thermal cycling is performed.
As a result, the electrical conductivity and fusing characteristics change, making it more susceptible to corrosion. Furthermore, since the melting point is as high as 1090°C, the heat generation time is long and there is a problem of lack of safety. Furthermore, since the alloy with the above components has a high conductivity of 65%, the resistance change due to press tolerance is large.
There are variations in the fusing characteristics, and the spring limit value is
Since it has a low value of 23 kg/f/mm 2 , it is not suitable as a spring member for terminals. And, due to the influence of Fe that does not dissolve in Cu mentioned above,
Even during production of alloy materials, variations in electrical conductivity of about ±5% occur, resulting in fluctuations in fusing characteristics. [Problems to be Solved by the Invention] The purpose of the present invention is to solve the above problems, to shorten the time from heat generation to melting, and to reduce variations in conductivity and melting characteristics during production and thermal cycles. To provide an alloy for a fuse that is small and stable and has improved spring properties and pressability. Structure of the Invention [Means for Solving the Problems] The alloy for a fuse of the present invention contains Fe: 0.5 to 1.5%,
Sn: 3.5-4.9%, P: 0.004-0.03%, Zn: 0.005
~0.3%, with the remainder essentially consisting of Cu. First, the materials will be explained. The functions of each component and the reasons for limiting the composition are as follows. Fe: 0.5 to 1.5% In order to ensure the necessary mechanical strength, it must be contained at 0.5% or more, to prevent the generation of large Fe precipitates and decrease in strength, and to prevent changes in electrical conductivity due to these precipitates. and 1.5 to suppress corrosion.
% cannot be exceeded. Sn: 3.5% to 4.9% Sn improves the strength, ductility, and corrosion resistance of the alloy, and also has the effect of shortening the red-hot time during fusing and lowering the melting point. However, if it is less than 3.5%, these effects cannot be obtained, and if it exceeds 4.9%, hot brittleness appears and rolling defects occur. P: 0.004-0.03% Works as a deoxidizing agent, and in order to obtain this effect, the content must be 0.004% or more. If it exceeds 0.03%, the formation of Cu-Sn-P phase, which causes hot brittleness, is observed, making hot rolling impossible. Zn: 0.005-0.3% Acts as a deoxidizing agent together with P, but 0.005%
This effect cannot be obtained unless the content is above 0.3%, and if it exceeds 0.3%, susceptibility to stress corrosion cracking increases, and workability deteriorates on the contrary. [Operation] By combining the above-mentioned components, an alloy for a fuse having low electrical conductivity and stable electrical conductivity and fusing characteristics can be obtained, as shown in the following examples. Moreover, as well as mechanical strength such as tensile strength and ductility, the spring limit value is greatly improved, so terminals with fuses that require strong spring properties can be formed in one piece by pressing, bending, etc. . Furthermore, since the time from red heat to melting is shortened, it can be used as a safe fuse material. [Example] Alloys having the compositions shown in Table 1 were melted and rolled under the following conditions. Heating temperature 850℃ Finishing temperature 400℃ Size Flat plate (thickness 0.4mm) Cut this rolled material into 400 x 1500mm, melting point,
Various properties such as electrical conductivity and tensile strength were measured.

【表】【table】

【表】 第1表から明らかなように、本発明合金は従来
品よりも融点および導電率が低いから、溶断時の
安定性が向上し、プレス公差による抵抗値のバラ
ツキが小さくなる。また、伸びやバネ限界値が格
段に向上しているから、プレス性および端子性能
(圧延材で端子を成形した場合の相手側端子との
接触圧)が向上する。 第1図イ,ロは上記圧延材の3ケ月間に於ける
製品の導電率のバラツキを示す。イは本発明品、
ロは従来品である。本発明品はFeの含有量が少
なく、Feがすべて固溶するので、製造時におけ
る導電率のバラツキが小さく、安定した溶断特性
をもつ材料を提供することができる。 第2図は許容電流15Aとしたヒユーズの溶断特
性とケース溶損区域示す。イは本発明品、ロは従
来品をあらわし、ヒユーズは上記圧延材をそれぞ
れ、第3図のような寸法に截断したものである。
第2図中、Aは従来品の溶損区域を示し、22〜
42Aで200秒以上通電すると溶損が起き、Bは本
発明品の溶損区域であつて、28〜30Aで500秒以
上の通電で起きる。第2図から、本発明品では、
ケース溶損率を約80%(B/A)減少させる効果
がある。 第4図はプレス公差による溶断特性のバラツキ
を示す。イは本発明品、ロは従来品であつて、下
付のmax、minはそれぞれ寸法および導電率の最
大、最小時をあらわす。図から明らかなように、
本発明品は導電率のバラツキが小さいため、寸法
差による溶断特性のバラツキを従来品の1/2以下
に抑えることができる。 発明の効果 以上のように、本発明のヒユーズ用合金は、導
電率および溶断特性のバラツキが小さく安定して
いる。また、発熱から溶断までの時間が短かく、
たとえばケース溶損でしめされら周囲部品への影
響が少ない。さらに、バネ性およびプレス性が著
しく向上するので、端子の製作も可能となる。
[Table] As is clear from Table 1, the alloy of the present invention has a lower melting point and electrical conductivity than conventional products, so the stability during fusing is improved and the variation in resistance value due to press tolerance is reduced. Furthermore, since the elongation and spring limit value are significantly improved, pressability and terminal performance (contact pressure with a mating terminal when the terminal is formed from rolled material) are improved. Figures 1A and 1B show the variation in electrical conductivity of the rolled material over a three-month period. A is the product of the present invention,
B is a conventional product. Since the product of the present invention has a low Fe content and all Fe is dissolved in solid solution, it is possible to provide a material with small variations in conductivity during manufacturing and stable fusing characteristics. Figure 2 shows the fuse blowing characteristics and the case melting area with an allowable current of 15A. A represents a product of the present invention, B represents a conventional product, and the fuses are obtained by cutting the above-mentioned rolled material into dimensions as shown in FIG. 3.
In Figure 2, A indicates the erosion area of the conventional product, 22~
Erosion damage occurs when current is applied at 42A for 200 seconds or more, and B is the area where the corrosion damage occurs when electricity is applied at 28 to 30A for 500 seconds or more. From FIG. 2, it can be seen that in the product of the present invention,
It has the effect of reducing the case corrosion rate by approximately 80% (B/A). FIG. 4 shows variations in fusing characteristics due to press tolerances. A is a product of the present invention, B is a conventional product, and the subscripts max and min represent the maximum and minimum dimensions and conductivity, respectively. As is clear from the figure,
Since the product of the present invention has small variations in conductivity, it is possible to suppress variations in fusing characteristics due to dimensional differences to less than half that of conventional products. Effects of the Invention As described above, the alloy for fuses of the present invention is stable with small variations in conductivity and fusing characteristics. In addition, the time from heat generation to melting is short,
For example, there is less impact on surrounding parts due to case melting. Furthermore, since the springiness and pressability are significantly improved, it becomes possible to manufacture terminals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロはそれぞれ本発明合金と従来品の
製造後3ケ月経過したときの導電率のバラツキを
示すグラフ、第2図は定格電流15Aとしたヒユー
ズの溶断特性およびケース溶損区域を示すグラ
フ、第3図は第2図のヒユーズの寸法説明図、第
4図はプレス公差による溶断特性のバラツキを示
すグラフである。
Figure 1 (a) and (b) are graphs showing the variation in electrical conductivity of the inventive alloy and the conventional product after 3 months of manufacture, respectively. Figure 2 shows the fusing characteristics of a fuse with a rated current of 15 A and the melted area of the case. FIG. 3 is a diagram illustrating the dimensions of the fuse in FIG. 2, and FIG. 4 is a graph showing variations in fusing characteristics due to press tolerances.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe:0.5〜1.5%、Sn:3.5〜4.9%、P:0.004
〜0.03%、Zn:0.005〜0.3%を含有し、残部が実
質的にCuから成ることを特徴とするヒユーズ用
合金。
1 Fe: 0.5-1.5%, Sn: 3.5-4.9%, P: 0.004
~0.03%, Zn: 0.005~0.3%, and the balance essentially consists of Cu.
JP10837285A 1985-05-22 1985-05-22 Alloy for fuse Granted JPS61266539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10837285A JPS61266539A (en) 1985-05-22 1985-05-22 Alloy for fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10837285A JPS61266539A (en) 1985-05-22 1985-05-22 Alloy for fuse

Publications (2)

Publication Number Publication Date
JPS61266539A JPS61266539A (en) 1986-11-26
JPS634887B2 true JPS634887B2 (en) 1988-02-01

Family

ID=14483101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10837285A Granted JPS61266539A (en) 1985-05-22 1985-05-22 Alloy for fuse

Country Status (1)

Country Link
JP (1) JPS61266539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290U (en) * 1989-05-24 1991-01-07

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433230A (en) * 1990-05-29 1992-02-04 Mitsubishi Materials Corp Chip type fuse
CN100424805C (en) * 2006-12-14 2008-10-08 王有杰 Fuse for AC high voltage current limiting fuse and its structure
CN104051202B (en) * 2014-05-30 2016-06-29 安徽三和电力技术有限公司 High and low voltage electric distribution system fuse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290U (en) * 1989-05-24 1991-01-07

Also Published As

Publication number Publication date
JPS61266539A (en) 1986-11-26

Similar Documents

Publication Publication Date Title
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JPS634887B2 (en)
JP2521879B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JP2020002439A (en) Copper alloy for fuse
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JPS63307232A (en) Copper alloy
JPS61257443A (en) Cu alloy as lead material for semiconductor device
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JP3222550B2 (en) Manufacturing method of high strength and high conductivity copper alloy
US4710349A (en) Highly conductive copper-based alloy
WO2020145397A1 (en) Copper alloy material
JPH10324935A (en) Copper alloy for lead frame, and its production
JP4348444B2 (en) Zinc alloy for fuse, fuse and manufacturing method thereof
JP2001073050A (en) Conductor for fuse and tantalum chip capacitor
JPS6251503B2 (en)
JPS5821018B2 (en) Copper alloy for high strength conductivity with good heat resistance
JPS5832220B2 (en) Softening resistant copper alloy
JP2851262B2 (en) Method for producing copper alloy for fuse material with excellent migration resistance
JP4406746B2 (en) Manufacturing method of zinc alloy for fuse
JPS63161134A (en) Copper alloy for electrical parts
Taubenblat et al. High Strength High Conductivity AMZIRC Copper & AMAX-MZC Alloy
JPH0627296B2 (en) Zinc alloy for fuses
JPH088056B2 (en) Copper alloy for fuse terminal material
JPS58163127A (en) Material for fuse
JPH0247228A (en) Copper alloy for terminal and connector having excellent strength and conductivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees