JPS6348778A - Manufacture of cell - Google Patents

Manufacture of cell

Info

Publication number
JPS6348778A
JPS6348778A JP61193515A JP19351586A JPS6348778A JP S6348778 A JPS6348778 A JP S6348778A JP 61193515 A JP61193515 A JP 61193515A JP 19351586 A JP19351586 A JP 19351586A JP S6348778 A JPS6348778 A JP S6348778A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
battery case
pressure
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61193515A
Other languages
Japanese (ja)
Inventor
Shinichi Toyosawa
真一 豊澤
Takashi Kitamura
隆 北村
Tadashi Nakajima
正 中島
Kinya Suzuki
欽也 鈴木
Tadaaki Miyazaki
忠昭 宮崎
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP61193515A priority Critical patent/JPS6348778A/en
Publication of JPS6348778A publication Critical patent/JPS6348778A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:A high-performance battery with a practical size is easily and surely manufactured by reducing the pressure in a battery case, and injecting and charging the decompressed battery case with an electrolyte. CONSTITUTION:First of all, a three way cock 4 is operated to open a passage 5 and close a passage 9 and a vacuum pump 6 is operated to reduce the pressure in a battery case 1 until it reaches the prescribed reduced pressure. When the pressure reaches the prescribed pressure the three way cock 4 is changed over to close the passage 5 and open the passage 9. Thus, a electrolyte 7 charged in a container 8 is made not to flow to the vacuum pump 6 side, and it is immediately injected into the battery case 1.

Description

【発明の詳細な説明】 産業上の利用分j更 本発明は正極、負極の少なくとも一方のWl電極活物質
導電性高分子材料を用いると共に、正極。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application The present invention uses a conductive polymer material as a Wl electrode active material for at least one of a positive electrode and a negative electrode.

負極及び電解液を電池ケース内に収容してなる電池を製
造する方法に関し、更に詳述すると、電池性能に優れた
実用サイズの電池を簡単かつ確実に製造し得る電池の製
造方法に関する。
The present invention relates to a method of manufacturing a battery in which a negative electrode and an electrolyte are housed in a battery case, and more specifically, to a method of manufacturing a battery that can easily and reliably manufacture a practical-sized battery with excellent battery performance.

蕨曝(9−術 び Uが 3しようとする。J題1近年
、電池の小型化、軽量化等を目的として導電性高分子材
料を正極、負極の少なくとも一方の電極活物質に応用し
た電池の開発が盛んに行なわれており、中でもポリアニ
リンは放電容量が大きい電池を形成し得、また充放電の
繰返し寿命に優れた二次電池を形成し得る電極活物質と
して注目され、このためポリアニリンを正極活物質に用
いてエネルギー密度の大きなリチウム二次電池等の電池
を形成する試みがなされている。
Warabi Exposure (9-Techniques and U tries to do 3. J Title 1) In recent years, batteries have been developed in which conductive polymer materials are used as electrode active materials for at least one of the positive and negative electrodes in order to make the batteries smaller and lighter. Among them, polyaniline is attracting attention as an electrode active material that can form batteries with a large discharge capacity and a secondary battery with an excellent repeated charging and discharging life. Attempts have been made to use positive electrode active materials to form batteries such as lithium secondary batteries with high energy density.

他方、こうした試みと同時に電池の?I!極活物質等の
電子材料として好適な導電性高分子材料の開発も盛んに
行なわれており、その結果、木兄明考らも繊維状も1造
を有するポリアニリン(特願昭6l−17162)等の
電子材料として好適なポリアニリンを提案している。
On the other hand, at the same time as these attempts, what about batteries? I! The development of conductive polymer materials suitable as electronic materials such as polar active materials has been actively carried out, and as a result, Akiko Kinie et al. We have proposed polyaniline suitable as an electronic material such as.

しかしながら、上記ポリアニリン等の導電性高分子材料
を正極、負極の少なくとも一方の電(ニ活物質に用いて
、正極、負極及び電解液を電池ケー入内に収容して二次
電池を構成した場合、ビーカーセル等の実験室レベルの
ものは電池電圧や放電容量が高く、また充放電の繰返し
寿命に優れているものの、同様の構成部材で円筒型電池
やコイン型電池等の実用サイズの二次電池を構成すると
、実験室レベルの二次電池に比し電池電圧、放電容量や
充放電の繰返し寿命が大幅に低下するといった問題が発
生した。
However, when a conductive polymer material such as polyaniline is used as an active material for at least one of a positive electrode and a negative electrode, and a secondary battery is constructed by housing the positive electrode, negative electrode, and electrolyte in a battery case, Although laboratory-grade batteries such as beaker cells have high battery voltage and discharge capacity, and have excellent charge/discharge cycle life, practical-sized secondary batteries such as cylindrical batteries and coin-shaped batteries with similar components cannot be used. However, when configuring this type of battery, a problem arose in that the battery voltage, discharge capacity, and charge/discharge cycle life were significantly lower than those of laboratory-grade secondary batteries.

本発明は上記事情に鑑みなされたもので、ビーカーセル
等の二次電池に比しても遜色のない電池電圧、放電容量
、充放電の繰返し寿命を有する円筒型やコイン型電池が
得られるなど、高性能の実用サイズの電池を簡単かつ確
実に得ることができる導電性高分子材料を電極活物質と
する電池の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to obtain a cylindrical or coin-shaped battery that has a battery voltage, discharge capacity, and charge/discharge cycle life comparable to that of secondary batteries such as beaker cells. The object of the present invention is to provide a method for manufacturing a battery using a conductive polymer material as an electrode active material, which can easily and reliably produce a high-performance, practical-sized battery.

U点を解゛するための手y及び作用 本発明者らは上記目的を達成するため、まず実験室レベ
ルのビーカーセル型二次電池と、これと同様の構成部材
で構成した円筒型電池やコイン型電池等の実用サイズの
二次電池との間に生じた電池電圧、放電容量、充放電の
繰返し寿命等の電池性能の差異の原因を究明すべく、両
二次電池を詳細に′a察した。その結果、上記実験室レ
ベルのビーカーセル型二次電池においては電極活物質に
用いた導電性高分子材料に対して電解液量が充分に豊富
であるために電解液量の減少が観察さ九なかったのに対
し、実用サイズの二次電池においては、後述する比較例
からも明らかなように、正極、負極を配設した電池ケー
ス内に電解液を注液して充填しても、十分量の電解液が
注入さ九理く、時間の経過と共に液不足が生じて電極と
電解液との間に非接触部が生じるなど、電極と電解液と
の接触が不充分になることがB祭された。なお、この時
間の経過と共に生じる液不足は、金属材料や粉末状の導
電性物質をペースト状の結着剤等で固化して得られた導
電性材料をffi極活極貧物質いた場合にはほとんど発
生しないのに対し、特に繊維状構造を有するポリアニリ
ン等の実質的に多孔体と見なし得る導電性高分子材料を
電極活物質に用いた場合に顕著に観察され、更に例えば
電池のエネルギー密度を大きくするために2〜5モル/
Qの高′a度電解質を含有した非水電解液のような粘度
や表面張力が通常の電解質水溶液しこ比して著しく高い
電解液を用いた場合には、上述した経時における液不足
の増大がより一層顕著に観察された。
Methods and actions for solving point U In order to achieve the above object, the present inventors first developed a laboratory-level beaker cell type secondary battery, and a cylindrical battery constructed from similar components. In order to investigate the causes of differences in battery performance, such as battery voltage, discharge capacity, and repeated charging/discharging life, between the two batteries and a practical-sized secondary battery such as a coin-type battery, we investigated the two batteries in detail. I guessed it. As a result, in the laboratory-grade beaker cell type secondary battery mentioned above, a decrease in the amount of electrolyte was observed because the amount of electrolyte was sufficiently rich relative to the conductive polymer material used for the electrode active material. On the other hand, in a practical-sized secondary battery, as is clear from the comparative example described later, even if the electrolyte is poured into the battery case with the positive and negative electrodes, it is sufficient. B: When a large amount of electrolyte is injected, the contact between the electrode and the electrolyte may become insufficient, such as a shortage of liquid over time and the formation of a non-contact area between the electrode and the electrolyte. It was enshrined. In addition, this liquid shortage that occurs with the passage of time is almost impossible if the conductive material obtained by solidifying a metal material or powdered conductive substance with a paste binder is used as an ffi extremely active extremely poor substance. However, it is particularly noticeable when a conductive polymer material that can be considered to be substantially porous, such as polyaniline with a fibrous structure, is used as the electrode active material. 2 to 5 mol/
When using an electrolyte with a significantly higher viscosity and surface tension than a normal electrolyte aqueous solution, such as a non-aqueous electrolyte containing a high a degree electrolyte, the above-mentioned increase in liquid shortage over time occurs. was observed even more clearly.

そこで、実用サイズの電池製造過程において、繊維状構
造を有するポリアニリン等の実質的に多孔体と見なし得
る導電性高分子材料を電極活物質に用い、更に高濃度の
電解質を含有する高粘度の非水電解液を用いた場合にも
、電池製造当初から電極活物質に対する電解液の濡れや
浸透がスムーズに進行して十分量の電解液を注入、充填
し得、経時に電池内部に液不足が発生増大するのを未然
に防止し得る方法につき鋭意検討を行なった結果、正極
及び負極を収容した電池ケース内を減圧にし。
Therefore, in the manufacturing process of practical-sized batteries, a conductive polymer material that can be considered as a substantially porous material such as polyaniline with a fibrous structure is used as the electrode active material, and a highly viscous non-woven material containing a high concentration of electrolyte is used as the electrode active material. Even when an aqueous electrolyte is used, wetting and permeation of the electrolyte into the electrode active material proceed smoothly from the beginning of battery manufacture, making it possible to inject and fill a sufficient amount of the electrolyte, and over time, there is no shortage of electrolyte inside the battery. As a result of intensive research on ways to prevent the increase in occurrence, we decided to reduce the pressure inside the battery case that houses the positive and negative electrodes.

次いで該減圧電池ケース内に電解液を注液して充填する
と、減圧を施さずに電解液を注液して充填する従来法に
比し、充填に至るまでに多量の電解液を速やかに注液す
ることができ、しかも得られた電池は従来法により製造
した電池しこ比較して電池電圧、放電容量、充放電の繰
返し寿命に優れた二次電池が得られるなど、数段電池性
能が向上した電池が得られることを知見し、本発明を完
成するに至ったものである。
Next, when the electrolyte is injected into the reduced pressure battery case to fill it, a large amount of electrolyte is quickly injected before filling, compared to the conventional method in which electrolyte is injected and filled without applying reduced pressure. In addition, the resulting battery has several levels of battery performance, such as a secondary battery with superior battery voltage, discharge capacity, and charge/discharge cycle life compared to batteries manufactured using conventional methods. It was discovered that an improved battery could be obtained, and the present invention was completed.

従って1本発明は、正極、負極の少なくとも一方の電極
活物質に導電性高分子材料を用いると共に、正極、負極
及び電解液を電池ケース内に収容してなる電池を製造す
る方法において、V「記電池ケース内を減圧し、次いで
該減圧電池ケース内に電解液を注液して充填する電池の
製造方法3堤供するものである。
Therefore, the present invention provides a method for manufacturing a battery in which a conductive polymer material is used as an electrode active material for at least one of a positive electrode and a negative electrode, and the positive electrode, the negative electrode, and an electrolyte are housed in a battery case. Three methods of manufacturing a battery are provided, in which the pressure inside the battery case is reduced, and then an electrolyte is injected into the reduced pressure battery case to fill it.

以下1本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明は、正極、負極の少なくとも一方の1活物質に導
電性高分子材料を用いると共に、正極。
The present invention uses a conductive polymer material as one active material of at least one of a positive electrode and a negative electrode, and also uses a conductive polymer material as an active material of at least one of a positive electrode and a negative electrode.

負極及び電解液を電池ケース内に収容して電池を製造す
る場合、電解液の注液充填工程において。
When manufacturing a battery by housing the negative electrode and electrolyte in a battery case, in the electrolyte injection filling process.

電解液を電池ケース内に注液充填する前に予め電池ケー
ス内を減圧にしておき、次いで該減圧′電池ケース内に
電解液を注液充填するものであり、これにより十分量の
電解液が充填され、放電容量が大きく、充放電の繰返し
寿命に優れた円筒型電池、コイン型電池等の実用サイズ
の電池が得られるものである。
Before injecting electrolyte into the battery case, the pressure inside the battery case is reduced in advance, and then the electrolyte is injected into the battery case under the reduced pressure, thereby ensuring that a sufficient amount of electrolyte is Practical-sized batteries such as cylindrical batteries and coin-shaped batteries, which are filled, have a large discharge capacity, and have an excellent charge/discharge cycle life can be obtained.

ここで、電解液を電池ケース内に注液充填する前に行な
う電池ケース内の減圧は1円筒型電池、コイン型電池等
の製造する電池の種類に応じた電池ケースのサイズ、電
池ケース内の収容物などや電極活物質に用いた導電性高
分子材料の種類、電解液の成分及び組成等により減圧方
法、減圧度等が適宜選定され、特に限定されるものでは
ないが、減圧方法の具体例としては、電極活物質に導電
性高分子材料を用いた電極を収容した電池ケースに中空
管を取り付けた蓋体を気密に被着し、この中空管に直接
又は調圧器を介して真空ポンプを接続し、この真空ポン
プを作動させて電池ケース内を所定の減圧度に減圧する
方法や、電池ケースを大きな容器内に複数個収容し、こ
の容器を中空管を取り付けた蓋体で密閉し、この中空管
に前記同様真空ポンプを接続して、容器内を減圧すると
共に。
Here, the pressure reduction inside the battery case before filling the electrolyte into the battery case depends on the size of the battery case and the pressure inside the battery case depending on the type of battery being manufactured, such as a cylindrical battery or a coin type battery. The pressure reduction method, degree of pressure reduction, etc. are selected as appropriate depending on the contents, the type of conductive polymer material used for the electrode active material, the components and composition of the electrolyte, etc., and the specifics of the pressure reduction method are not particularly limited. For example, a battery case containing an electrode using a conductive polymer material as the electrode active material is airtightly covered with a lid with a hollow tube attached to it, and the battery is connected to the hollow tube directly or through a pressure regulator. There is a method of connecting a vacuum pump and operating the vacuum pump to reduce the pressure inside the battery case to a predetermined degree of decompression, or a method of storing multiple battery cases in a large container and using the container as a lid with a hollow tube attached. Connect the hollow tube to the same vacuum pump as above to reduce the pressure inside the container.

この容器内に収容された複数個の電池ケース内を同時に
所定の減圧度に減圧する方法などが挙げられる。また、
減圧度としては、通常20 圏Hg以下、特にIQnn
Hg以下とすることが好ましい。
Examples include a method of simultaneously reducing the pressure in a plurality of battery cases housed in this container to a predetermined degree of pressure reduction. Also,
The degree of decompression is usually less than 20 Hg, especially IQnn.
It is preferable to set it to Hg or less.

なお1本発明の方法は、電池ケース内を上記減圧後、更
に減圧電池ケース内に電解液を注液して充填するもので
あり、電解液の注液は減圧電池ケース内に行なうため、
汁液後、経時の液不足が発生・増大することがなく、所
定の充填量に達するまで確実にしかも速やかに電解液の
注入が行なわれるため、特別の注液操作を必要としない
が、電解液の粘稠性が高い場合などに加圧注液を行なう
など、常法に従い適宜な注液操作を採用し得る。
Note that in the method of the present invention, after the pressure inside the battery case is reduced, the electrolyte is further injected into the reduced pressure battery case to fill it.
After the electrolyte is filled, the electrolyte is reliably and quickly injected until the predetermined filling amount is reached, without causing or increasing liquid shortage over time, so no special injection operation is required. Appropriate liquid injection operations can be adopted according to conventional methods, such as pressurized liquid injection when the viscosity of the liquid is high.

ここで、本発明においては、正極及び負極の少なくとも
一方の電極活物質として導電性高分子材料を使用するも
のであるが、導電性高分子材料としては特に制限はなく
、例えば重合により得られるポリアセチレン、ポリアニ
リン、ポリピロール等或いは有機物を焼成して得られる
グラファイト。
Here, in the present invention, a conductive polymer material is used as an electrode active material for at least one of the positive electrode and the negative electrode, but the conductive polymer material is not particularly limited, and for example, polyacetylene obtained by polymerization is used. , polyaniline, polypyrrole, etc., or graphite obtained by firing organic materials.

ボリアセン、アモルファス炭素等が挙げられる。Examples include boriacene and amorphous carbon.

しかしながら、フィブリルが緻密にがらみ合った繊維状
構造を有するポリアニリンなど、従来法では電解液の浸
み込みが悪い導電性高分子材料を有効に使用することが
でき、このような高分子材料を使用した場合でも本発明
によれば電解液の浸み込みを良好にし得て高性能の電池
を得ることができる。この場合、導電性高分子材料を一
方の電極の活物質として使用した場合、他方の電極の活
物質としては公知の電極活物質材料が用いられる6また
。電池の電解液の電解質や溶媒の種類にも制限がなく、
種々選択使用されるが1本発明においては2〜5モル/
Q程度の電解質を含む高粘度。
However, it is possible to effectively use conductive polymer materials, such as polyaniline, which has a fibrous structure in which fibrils are densely intertwined, and which are difficult to penetrate with electrolyte in conventional methods. Even in such a case, according to the present invention, penetration of the electrolyte can be improved and a high-performance battery can be obtained. In this case, when a conductive polymer material is used as the active material of one electrode, a known electrode active material is used as the active material of the other electrode. There are no restrictions on the types of electrolytes or solvents used in battery electrolytes.
Although various selections may be used, in the present invention, 2 to 5 mol/
High viscosity containing electrolyte of Q grade.

高表面張力の非水電解液をも有効に使用することができ
、このような非水電解液を用いても確実かつ速やかに電
池ケース内に十分量の電解液を注入充填でき、これによ
りエネルギー密度の大きい電池を容易に製造することが
できる。
Non-aqueous electrolytes with high surface tension can also be used effectively, and even with such non-aqueous electrolytes, a sufficient amount of electrolyte can be reliably and quickly filled into the battery case, thereby saving energy. Batteries with high density can be easily manufactured.

なお、その他の電池構成材料も電池の種類等に応じて適
宜選定される。
Note that other battery constituent materials are also appropriately selected depending on the type of battery, etc.

また、本発明方法は、上述した電解液の注液充填工程を
除き、この工程の前工程で行なわれる電池組立工程や後
工程で行なわれる封缶工程などについては特に制限され
ることなはく1通常の電池製造の際に行なわれている方
法を採用し得る。
In addition, the method of the present invention is not particularly limited to the battery assembly process that is performed before this process and the can sealing process that is performed after this process, except for the above-mentioned electrolyte injection filling process. 1. The method used in normal battery manufacturing can be adopted.

見匪立夏来 以上説明したように、本発明によれば、正極。Natsuki Miiri As explained above, according to the present invention, a positive electrode.

負極の少なくとも一方の電極活物質に導電性高分子材料
を使用し、正、負極及び電解液を電池ケース内に収容し
た電池を製造する場合、簡単かつ確実に十分量の電解液
を電池ケース内に注入、充填でき、導電性高分子材料材
料に電解液を十分に浸み込ますことができ、このため従
来生じた経時の電解液の液不足及びこの液不足に基づく
電池性能の低下が導電性高分子材料の種類や電解液の成
分。
When manufacturing a battery in which a conductive polymer material is used as the electrode active material for at least one of the negative electrodes and the positive and negative electrodes and electrolyte are housed in a battery case, it is easy and reliable to place a sufficient amount of electrolyte in the battery case. The electrolyte can be injected and filled into the conductive polymer material, and the electrolyte can be sufficiently soaked into the conductive polymer material. types of polymeric materials and components of electrolyte.

組成等によらず解消され、従ってポリアセチレン。It is resolved regardless of the composition etc. Therefore, it is polyacetylene.

ポリアニリン、ポリピロール等の有機導電性高分子材料
やポリチアジル、有機物を焼成して得られるグラファイ
ト、ボリアセン、アモルファス炭素等の無機導電性高分
子材料を電極活物質に用い、かつ高濃度の電解質を含有
した非水電解質溶液等の電解液を用いて電池性能に優れ
た円筒型電池、コイン型電池等の実用サイズの電池を得
ることができるものであり、更には電池ケース内にff
i′M、液の液不足が起ってから液不足に相当する電解
液を補給する必要がないので、上記高性能の実用サイズ
の電池を能率よく製造し得るものである。
Organic conductive polymer materials such as polyaniline and polypyrrole, polythiazyl, and inorganic conductive polymer materials such as graphite, boriacene, and amorphous carbon obtained by firing organic materials are used as electrode active materials, and they contain a high concentration of electrolyte. It is possible to obtain practical-sized batteries such as cylindrical batteries and coin-type batteries with excellent battery performance by using electrolytes such as non-aqueous electrolyte solutions.
i'M, since there is no need to replenish the electrolyte corresponding to the shortage after the occurrence of a shortage of the solution, the above-mentioned high-performance, practical-sized battery can be manufactured efficiently.

以下、実施例と比較例を示し、本発明を具体的に説明す
るが、本発明は下記の実施例に制限されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples.

〔実施例〕〔Example〕

正極活物質としてポリアニリン3.6gを用いた正極と
負極活物質としてリチウム1.6gを用いた負極との間
にポリプロピレン不織布からなるセパレーターを介在さ
せ、これらを渦巻状に巻き上げて内径21.5mmφ、
高さ40mの電池ケース内に収容した。
A separator made of polypropylene nonwoven fabric was interposed between a positive electrode using 3.6 g of polyaniline as a positive electrode active material and a negative electrode using 1.6 g of lithium as a negative electrode active material, and these were wound into a spiral shape to form an inner diameter of 21.5 mmφ.
It was housed in a battery case with a height of 40 m.

この電池ケース内を図面に示した減圧注液装置によりl
mHgに減圧し、次いで減圧された電池ケース内に電解
液(3モルL x B F 4 /プロピレンカーボネ
ート)を注液したところ、約6秒間で8.0ccを充填
することができ、また充填後の封口作業も確実に実施で
きた。
The inside of this battery case is l
When the pressure was reduced to mHg and then an electrolytic solution (3 mol L x B F 4 /propylene carbonate) was injected into the reduced pressure battery case, 8.0 cc could be filled in about 6 seconds, and after filling. The sealing work was also carried out reliably.

ここで、図面の減圧注液装置は、電池ケース1の上端開
口部を閉塞してシリコーン栓2を取り付け、この栓2の
ほぼ中央部を貫通して中空管3を取り付けると共に、こ
の中空管3に三方コック4を取り付け、この三方コック
4の一方に流路5を介して真空ポンプ6を、他方に電解
液7を収容した容器8を流路9を介してそれぞれ取り付
けたもので、この装置による減圧汁液操作は、まず、三
方コック4を操作して流路5を開放すると共に、流路9
を閉塞した状態で真空ポンプ6を作動させ、電池ケース
1の内部を所定の減圧度に達するまで減圧を行なう。次
いで、所定の減圧に達した時点で三方コック4を切換え
、流路5を閉塞すると共に流路9を開放する。これによ
り容器8内に収容された電解液7が真空ポンプ6側に流
れることなく、減圧された電池ケース1内に速やかに汁
液される。そして電池ケース1内の電解液の液量が充填
量に達したら、再び三方コック4を切換えて流路9を閉
塞するものである。なお、図中10は正極、11は負極
、12はセパレーターである。
Here, in the reduced pressure liquid injection device shown in the drawings, the upper end opening of the battery case 1 is closed, a silicone stopper 2 is attached, a hollow tube 3 is attached to the stopper 2 through approximately the center thereof, and a A three-way cock 4 is attached to a pipe 3, a vacuum pump 6 is attached to one side of the three-way cock 4 via a channel 5, and a container 8 containing an electrolyte 7 is attached to the other via a channel 9. To operate the reduced-pressure juice using this device, first open the flow path 5 by operating the three-way cock 4, and then open the flow path 9.
With the battery case 1 closed, the vacuum pump 6 is operated to reduce the pressure inside the battery case 1 until a predetermined degree of pressure reduction is reached. Next, when a predetermined reduced pressure is reached, the three-way cock 4 is switched to close the flow path 5 and open the flow path 9. As a result, the electrolytic solution 7 contained in the container 8 does not flow toward the vacuum pump 6, and is quickly poured into the depressurized battery case 1. When the amount of electrolyte in the battery case 1 reaches the filling amount, the three-way cock 4 is switched again to close the flow path 9. In addition, in the figure, 10 is a positive electrode, 11 is a negative electrode, and 12 is a separator.

以上の方法により製造した電池を40mAの充電電流で
3.8vまで充電した後、40mAの放電電流で2.5
vまで放電して放電容量を測定したところ放電容量は4
00 m Aであった。
The battery manufactured by the above method was charged to 3.8V with a charging current of 40mA, and then 2.5V with a discharge current of 40mA.
When I discharged to v and measured the discharge capacity, the discharge capacity was 4.
00 mA.

次いで、上記充放電を1サイクルとする充放電を10サ
イクル繰返して行ない、この時点での放電容量を測定し
たところ、10サイクル繰返しても放電容量の低下はみ
られなかった。
Next, 10 cycles of charging and discharging were performed, with the above charging and discharging being one cycle, and the discharge capacity at this point was measured. No decrease in the discharge capacity was observed even after 10 cycles.

〔比較例〕[Comparative example]

実施例と同様の電池を減圧注液を施さずに常法に従って
製造することを試みた。
An attempt was made to manufacture a battery similar to that of the example according to a conventional method without performing vacuum injection.

その結果、実施例と同様の収容物を収容した電池ケース
内は約2.5じの注液をしたところで満杯となった。し
かしながら、その後、気泡の発生と共に電解液の液不足
の発生・増加がみられたので、液不足を補充するための
注液を継続したが、1時間経過後の電解液の注液量は6
.9ccであり、依然として電池ケース内の電解液から
気泡の発生がみられ、封口すると電池性能に支障をきた
す恐れのあるものであった。
As a result, the inside of the battery case containing the same contents as in the example became full after approximately 2.5 liters of liquid was injected. However, after that, as bubbles were generated, electrolyte shortage occurred and increased, so injection was continued to replenish the shortage, but the amount of electrolyte injected after 1 hour was 6.
.. 9 cc, bubbles were still observed to be generated from the electrolyte in the battery case, and sealing the battery case could impede battery performance.

しかしながら、この時点で封口して電池を製造し、得ら
れた電池を40mAの充電電流で充電したところ、充電
電圧は3.75VT飽和に達した。次いで、3.75V
から2.5■に至るまで40mAの放電電流で放電した
ところ放電容量は180mAであった。
However, when a battery was manufactured by sealing at this point and the resulting battery was charged with a charging current of 40 mA, the charging voltage reached 3.75 VT saturation. Then 3.75V
When the battery was discharged at a discharge current of 40 mA from 2.5 to 2.5, the discharge capacity was 180 mA.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る減圧注液装置の一実施例を示す概略
図である。 1・・・電池ケース、2・・・蓋体、4・・・三方コッ
ク、6・・・真空ポンプ、7・・・電解液、8・・・容
器。
The drawing is a schematic diagram showing an embodiment of a reduced pressure liquid injection device according to the present invention. DESCRIPTION OF SYMBOLS 1... Battery case, 2... Lid body, 4... Three-way cock, 6... Vacuum pump, 7... Electrolyte, 8... Container.

Claims (1)

【特許請求の範囲】 1、正極、負極の少なくとも一方の電極活物質に導電性
高分子材料を用いると共に、正極、負極及び電解液を電
池ケース内に収容してなる電池の製造方法において、前
記電池ケース内を減圧し、次いで該減圧電池ケース内に
電解液を注液して充填することを特徴とする電池の製造
方法。 2、導電性高分子材料がポリアニリンである特許請求の
範囲第1項記載の製造方法。
[Scope of Claims] 1. A method for manufacturing a battery in which a conductive polymer material is used as an electrode active material for at least one of a positive electrode and a negative electrode, and the positive electrode, negative electrode, and electrolyte are housed in a battery case, A method of manufacturing a battery, comprising reducing the pressure inside the battery case, and then injecting and filling the reduced pressure battery case with an electrolyte. 2. The manufacturing method according to claim 1, wherein the conductive polymer material is polyaniline.
JP61193515A 1986-08-19 1986-08-19 Manufacture of cell Pending JPS6348778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193515A JPS6348778A (en) 1986-08-19 1986-08-19 Manufacture of cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193515A JPS6348778A (en) 1986-08-19 1986-08-19 Manufacture of cell

Publications (1)

Publication Number Publication Date
JPS6348778A true JPS6348778A (en) 1988-03-01

Family

ID=16309345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193515A Pending JPS6348778A (en) 1986-08-19 1986-08-19 Manufacture of cell

Country Status (1)

Country Link
JP (1) JPS6348778A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041263A1 (en) * 1998-12-28 2000-07-13 Mitsubishi Denki Kabushiki Kaisha Thin battery and method of manufacturing
EP1045463A1 (en) * 1999-04-14 2000-10-18 Alcatel A method of fabricating an electrochemical cell battery and an improved cell package
JP2004349011A (en) * 2003-05-20 2004-12-09 Sharp Corp Secondary battery and its manufacturing method
US7033405B2 (en) * 2001-09-15 2006-04-25 Samsung Sdi Co., Ltd. Lithium secondary battery and method for manufacturing thereof
JP2010062163A (en) * 2009-12-15 2010-03-18 Sharp Corp Manufacturing method of secondary battery
JP2013098167A (en) * 2011-11-04 2013-05-20 Samsung Sdi Co Ltd Secondary battery
WO2015111665A1 (en) * 2014-01-23 2015-07-30 株式会社豊田自動織機 Power storage device manufacturing method, manufacturing device, liquid injection device, and liquid injection method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041263A1 (en) * 1998-12-28 2000-07-13 Mitsubishi Denki Kabushiki Kaisha Thin battery and method of manufacturing
US6485862B1 (en) * 1998-12-28 2002-11-26 Mitsubishi Denki Kabushiki Kaisha Thin battery and method of manufacturing
CN1316668C (en) * 1998-12-28 2007-05-16 三菱电机株式会社 Thin battery and method for manufacturing
EP1045463A1 (en) * 1999-04-14 2000-10-18 Alcatel A method of fabricating an electrochemical cell battery and an improved cell package
US6379838B1 (en) 1999-04-14 2002-04-30 Alcatel Cell package
US7033405B2 (en) * 2001-09-15 2006-04-25 Samsung Sdi Co., Ltd. Lithium secondary battery and method for manufacturing thereof
JP2004349011A (en) * 2003-05-20 2004-12-09 Sharp Corp Secondary battery and its manufacturing method
JP4601917B2 (en) * 2003-05-20 2010-12-22 シャープ株式会社 Secondary battery and manufacturing method thereof
JP2010062163A (en) * 2009-12-15 2010-03-18 Sharp Corp Manufacturing method of secondary battery
JP2013098167A (en) * 2011-11-04 2013-05-20 Samsung Sdi Co Ltd Secondary battery
WO2015111665A1 (en) * 2014-01-23 2015-07-30 株式会社豊田自動織機 Power storage device manufacturing method, manufacturing device, liquid injection device, and liquid injection method
JPWO2015111665A1 (en) * 2014-01-23 2017-03-23 株式会社豊田自動織機 Storage device manufacturing method, manufacturing device, liquid injection device, and liquid injection method

Similar Documents

Publication Publication Date Title
JP3815774B2 (en) Electrochemical element including electrolyte
US6195252B1 (en) Capacitor with dual electric layer
EP2144325A1 (en) Air cell system
KR980012684A (en) Sealed Lead Acid Battery
CN102171853A (en) Liquid-electrolyte storage battery and filling process
JPS6348778A (en) Manufacture of cell
US4629665A (en) Cylindrical battery
JP2000123860A (en) Electrolyte filling method of lithium secondary battery and electrode terminal structure
KR102715868B1 (en) The Method For Manufacturing Secondary Battery
KR101475918B1 (en) secondary battery & electrode assembly adopted thereto
JPH0554910A (en) Manufacture of nonaqueous secondary battery
JPH05303978A (en) Sealed nickel-zinc battery
JP2002343337A (en) Method of infusion and draining of electrolytic solution for lithium secondary battery
JP3462722B2 (en) Polymer electrolyte battery
JPS6119056A (en) Separator for battery
JP2002110216A (en) Cylindrical secondary battery
JPS635866B2 (en)
JP2000260463A (en) Liquid injection method into battery
JPH0298056A (en) Inorganic nonaqueous electrolyte battery
JPH05325934A (en) Lithium secondary battery
JPH06302337A (en) Battery
JP2019192439A (en) Manufacturing method of lithium ion secondary battery
JPS5916394B2 (en) Zinc alkaline secondary battery
JPH02262276A (en) Manufacture of nonaqueous electrolyte secondary battery
JPS60218765A (en) Formation of wound type lead-acid battery