JPH06302337A - Battery - Google Patents

Battery

Info

Publication number
JPH06302337A
JPH06302337A JP5124590A JP12459093A JPH06302337A JP H06302337 A JPH06302337 A JP H06302337A JP 5124590 A JP5124590 A JP 5124590A JP 12459093 A JP12459093 A JP 12459093A JP H06302337 A JPH06302337 A JP H06302337A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
electrolytic solution
solvent
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5124590A
Other languages
Japanese (ja)
Inventor
Toru Nagaura
亨 永浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIBARU KK
Original Assignee
HAIBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIBARU KK filed Critical HAIBARU KK
Priority to JP5124590A priority Critical patent/JPH06302337A/en
Publication of JPH06302337A publication Critical patent/JPH06302337A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To make an electrolyte pouring operation easy by impregnating a solvent which is a component of an electrolyte in a positive electrode or a negative electrode, then forming a battery element with a separator interposed between the electrodes. CONSTITUTION:At least one solvent which is a component of an electrolyte is impregnated in a positive electrode 2 or a negative electrode 1, then a separator 3 is interposed between the electrodes to form a battery element. The solvent is impregnated in the battery element, the battery element is accommodated into a battery container. The battery container is a battery can 4 made of nickel plated steel, and an insulating plate 5 is placed on the bottom of the battery can 4. A negative lead 6 from the battery element is welded to the bottom of the battery can 4, and the electrolyte is poured into the battery can 4. An insulating plate 5 is placed on the top of the battery element, a gasket 7 is fitted, and an explosion prevention valve 8 is installed inside a battery. A positive lead 9 is welded to the explosion prevention valve 9, then the battery is covered with a sealing cover 10. The electrolyte capable of providing maximum performance is simply selected and the electrolyte is easily poured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非水電解液電池の作
成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化が進められる
中、その電源としての電池にも高エネルギー密度の電池
の要望が強まっている。その要望に答えるべく、非水電
解液電池は高エネルギー密度電池としての可能性の高さ
から、その実用化が試みられている。既存のアルカリ電
池、ニッケルカドミウム電池、鉛電池等は重負荷特性に
優れており、これらの既存の電池にとって代わるために
は非水電解液次電池においても充分な重負荷特性が要求
される。非水電解液電池に使用される電解液は、既存の
ニッケルカドミウム電池や鉛電池に使用される水溶液系
の電解液に比べ50倍以上も抵抗が高い。この電解液の
ハンディを補って充分な重負荷特性を得るには、非水電
解液電池の場合は極めて薄い電極を使用し、出来るだけ
電極枚数を増やして電極面積を増やしている。筒型電池
の場合であれば、出来るだけ長い電極を幾重にもロール
状に巻き上げた巻回体として電池素子を構成する。しか
しそのような非水電解液電池の電池素子には電解液の浸
透が困難で、非水電解液電池の製造において、その電解
液注入工程が大きなネックとなっている。具体的には、
電解液注入工程では必要量の電解液を一度に注入する
と、電池素子への電解液の浸透が悪いので電池容器から
溢れる。したがって少しの電解液を注入しては減圧状態
に保つなどの手段で電池素子への電解液浸透を促進さ
せ、また少しの電解液を注入しては同操作を、注入量が
予定の電解液量に達するまで繰り返す。やや大きい電池
の場合はその回数が10回以上にもおよぶ。さらに最近
ではカーボンへのリチウムイオンの出入りを利用するカ
ーボン電極を負極とする非水電解液二次電池も開発中で
ある。この電池はリチウムイオンタイプ、あるいはロッ
キングチェアータイプの二次電池と言われ、代表的には
正極材料にLiCoO、LiMn,などを用
い、負極にはコークスやグラファイトなどの炭素質材料
が用いられる。カーボン負極は、充電においては電極中
のカーボンヘリチウムイオンがドープされ、放電ではそ
のカーボンからリチウムイオンが脱ドープされるだけ
で、カーボン自身は充放電に際して大きな結晶構造の変
化を伴わないので、極めて安定した充放電特性を示し、
充放電に伴う特性劣化が少なく、具体的には1000回
以上の充放電の繰り返しも可能である。特に炭素材料と
してグラファイトを使用した場合は放電電圧が平坦で高
いため、非常に大きなエネルギー密度の電池となりう
る。ところがグラファイトを負極とする電池は充電効率
が極めて悪い。これはリチウムがドープされた状態の炭
素は基本的には電解液と反応する為であるが、幸いにも
電解液中にエチレンカーボネート(EC)を混入すれば
充電効率は飛躍的に改善される。しかし、エチレンカー
ボネート(EC)を混入した電解液は、電解液注入工程
で、前記電極素子へ電解液の浸透性の悪さに加え、さら
に不具合な問題が加わる。つまり電池製造工程では一般
に電解液は精密ポンプでその一定量を細いノズルを通し
て注入する。このときエチレンカーボネート(EC)は
融点が39℃と高いため、電解液注入ノズルの先端にエ
チレンカーボネート(EC)がすぐに析出し、電解液注
入が不能となる。
2. Description of the Related Art As electronic devices are being made smaller and lighter, there is an increasing demand for batteries having high energy density as batteries for their power sources. In order to meet the demand, non-aqueous electrolyte batteries are being put into practical use because of their high potential as high energy density batteries. Existing alkaline batteries, nickel-cadmium batteries, lead batteries, etc. are excellent in heavy load characteristics, and in order to replace these existing batteries, sufficient non-aqueous electrolyte secondary batteries are also required to have heavy load characteristics. The electrolyte used in the non-aqueous electrolyte battery has a resistance that is 50 times higher than that of the aqueous electrolyte used in the existing nickel-cadmium battery and lead battery. In order to compensate for this handicap of the electrolytic solution and obtain sufficient heavy load characteristics, in the case of a non-aqueous electrolytic solution battery, an extremely thin electrode is used, and the number of electrodes is increased to increase the electrode area. In the case of a cylindrical battery, the battery element is configured as a wound body in which an electrode as long as possible is rolled up in multiple layers. However, it is difficult for the electrolyte solution to permeate the battery element of such a non-aqueous electrolyte battery, and the electrolyte injection step is a major bottleneck in the manufacture of the non-aqueous electrolyte battery. In particular,
In the electrolytic solution injecting step, if the required amount of electrolytic solution is injected at one time, the electrolytic solution does not permeate the battery element so badly that it overflows from the battery container. Therefore, inject a small amount of electrolytic solution to maintain a decompressed state to promote the permeation of the electrolytic solution into the battery element, and inject a small amount of electrolytic solution to perform the same operation. Repeat until the amount is reached. In the case of a slightly large battery, the number of times reaches 10 or more. Furthermore, recently, a non-aqueous electrolyte secondary battery having a negative electrode of a carbon electrode that utilizes the inflow / outflow of lithium ions from / to carbon has been under development. This battery is said to be a lithium-ion type or rocking chair type secondary battery. Typically, LiCoO 2 , LiMn 2 O 4 , etc. are used for the positive electrode material, and carbonaceous materials such as coke and graphite are used for the negative electrode. Used. The carbon negative electrode is extremely stable because the carbon helium ion in the electrode is doped during charging and the lithium ion is undoped from the carbon during discharging, and the carbon itself does not undergo a large change in crystal structure during charging and discharging. Shows the charged and discharged characteristics,
Characteristic deterioration due to charging and discharging is small, and specifically, it is possible to repeat charging and discharging 1000 times or more. In particular, when graphite is used as the carbon material, the discharge voltage is flat and high, so that the battery can have a very large energy density. However, batteries having graphite as a negative electrode have extremely poor charging efficiency. This is because the carbon doped with lithium basically reacts with the electrolytic solution. Fortunately, if ethylene carbonate (EC) is mixed into the electrolytic solution, the charging efficiency is dramatically improved. . However, the electrolytic solution mixed with ethylene carbonate (EC) not only has poor permeability of the electrolytic solution into the electrode element in the electrolytic solution injecting step, but also causes a problem. That is, in the battery manufacturing process, a certain amount of electrolyte is generally injected by a precision pump through a thin nozzle. At this time, since the melting point of ethylene carbonate (EC) is as high as 39 ° C., ethylene carbonate (EC) is immediately deposited at the tip of the electrolyte solution injection nozzle, and the electrolyte solution injection becomes impossible.

【0003】[0003]

【発明が解決しようとする課題】従って、本発明におい
ては、非水電解液電池製造での電解液注入工程の問題を
解決しようとするものである。
Therefore, the present invention is intended to solve the problem of the electrolytic solution injecting step in the production of the non-aqueous electrolytic solution battery.

【0004】[0004]

【課題を解決するための手段】上記課題を解決する手段
は、電解液を構成する少なくとも1種の溶媒を、少なく
とも正負何れかの電極中に含浸させた後、正負極間にセ
パレータを挟んで電池素子を作成するか、あるいは正負
極間にセパレータを挟んで構成された電池素子に、これ
を電池容器内に納める前に電解液を構成する少なくとも
1種の溶媒を含浸するかによって、電池素子に溶媒を含
有させたのち電池容器内に納め、残りの組成要素で構成
された電解液を電池容器内に注入して非水電解液電池を
作成する。
The means for solving the above-mentioned problems is to impregnate at least one of positive and negative electrodes with at least one solvent constituting an electrolytic solution, and then sandwich a separator between the positive and negative electrodes. Depending on whether a battery element is prepared or a battery element constituted by sandwiching a separator between positive and negative electrodes is impregnated with at least one solvent constituting an electrolytic solution before putting the battery element in a battery container. After containing the solvent in the battery container, it is placed in a battery container, and an electrolytic solution composed of the remaining composition elements is injected into the battery container to prepare a non-aqueous electrolyte battery.

【0005】[0005]

【作用】一般に非水電池用電解液は、実際には種々の電
池特性を改善するために2種類以上の溶媒を混合して使
用する場合が殆どである。本発明においてはその電解液
を構成する溶媒のうちで、エチレンカーボネートのよう
に融点が高い溶媒やプロピレンカーボネートのように電
池素子への浸透性が悪い溶媒を電池容器内に納める前の
電池素子に含有させるので、電池製造工程における電解
液注入時点では、より浸透性の良い溶媒で構成された電
解液、あるいは高融点溶媒を含有しない電解液が注入さ
れるため、電解液の電池素子への含浸も速く、電解液注
入ノズル先端の詰まりもなく、電解液注入工程での問題
が解消される。
In general, most non-aqueous battery electrolytes are actually used as a mixture of two or more kinds of solvents in order to improve various battery characteristics. In the present invention, among the solvents constituting the electrolytic solution, a solvent having a high melting point such as ethylene carbonate or a solvent having poor permeability to the battery element such as propylene carbonate is used in the battery element before being stored in the battery container. Since it is contained, at the time of injecting the electrolytic solution in the battery manufacturing process, the electrolytic solution composed of a solvent having better permeability or the electrolytic solution containing no high melting point solvent is injected, so that the electrolytic solution is impregnated into the battery element. Also, the electrolyte injection nozzle tip is not clogged, and problems in the electrolyte injection process are eliminated.

【0006】[0006]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。
The present invention will be described in more detail with reference to the following examples.

【0007】実施例1 図1を参照しながら本発明の具体的な電池について説明
する。本発明を実施するための発電要素である電池素子
は次のようにして用意される。市販の粉末状のグラファ
イト85重量部と結着剤としてポリフッ化ビニリデン
(PVDF)15重量部を溶剤であるN−メチル−2−
ピロリドンと湿式混合してスラリー(ペースト状)にす
る。次に、このスラリーを負極集電体となる厚さ0.0
1mmの銅箔の両面に均一に塗布し、乾燥後ロールプレ
ス機で加圧成型して帯状の負極体とする。この帯状負極
体は100℃に加熱されたエチレンカーボネート(E
C)の中に浸せきし、エチレンカーボネート(EC)を
含浸した帯状負極帯(1a)を得る。又正極は次のよう
にして用意される。市販の二酸化マンガン(MnO
と炭酸リチウム(LiCO)のモル比1:0.25
からなる混合物を空気中800℃で5時間焼成してLi
Mnを調整する。次に、LiMnを86重
量部、導電剤としてグラファイトを10重量部、結合剤
としてポリフッ化ビニリデン4重量部をN−メチル−2
−ピロリドンと湿式混合し、ペーストを作成する。この
ペーストを厚さ0.02mmのアルミニウム集電体の両
面に均一に塗布し、乾燥後ローラープレス機で加圧成型
して帯状のLiMn電極(2a)を作成する。続
いて負極(1a)と正極(2a)をその間に多孔質ポリ
プロピレン製セパレータ(3)を挟んでロール状に巻き
上げて、平均外径15.7mmの電池素子を作成する。
ニッケルメッキを施した鉄製の電池缶(4)の底部に絶
縁板(5)を設置し、上記電池素子を収納する。電池素
子より取り出した負極リード(6)を上記電池缶の底に
溶接し、電池缶の中に電解液として1モル/リットルの
LiPFを溶解したジエチルカーボネート(DEC)
溶液を注入する。その後、電池素子の上部にも絶縁板
(5)を設置し、ガスケット(7)を嵌め、防爆弁
(8)を図1に示すように電池内部に設置する。電池素
子より取り出した正極リード(9)はこの防爆弁に溶接
し、防爆弁の上には正極外部端子となる閉塞蓋体(1
0)をドーナツ型PTCスイッチ(11)を挟んで重
ね、電池缶の縁をかしめて、図1に示す電池構造で外径
16.5mm、高さ65mmの電池(A)が完成する。
Example 1 A specific battery of the present invention will be described with reference to FIG. A battery element which is a power generation element for carrying out the present invention is prepared as follows. 85 parts by weight of commercially available powdery graphite and 15 parts by weight of polyvinylidene fluoride (PVDF) as a binder are used as a solvent N-methyl-2-
Wet mix with pyrrolidone to form a slurry (paste form). Next, this slurry is used as a negative electrode current collector in a thickness of 0.0
A 1 mm copper foil is evenly applied on both sides, dried, and then pressure-molded by a roll press machine to obtain a strip-shaped negative electrode body. This strip-shaped negative electrode body was prepared by heating ethylene carbonate (E
It is dipped in C) to obtain a strip-shaped negative electrode strip (1a) impregnated with ethylene carbonate (EC). The positive electrode is prepared as follows. Commercially available manganese dioxide (MnO 2 )
And lithium carbonate (Li 2 CO 3 ) molar ratio 1: 0.25
The mixture consisting of
Adjust Mn 2 O 4 . Next, 86 parts by weight of LiMn 2 O 4 , 10 parts by weight of graphite as a conductive agent, and 4 parts by weight of polyvinylidene fluoride as a binder were N-methyl-2.
Wet mix with pyrrolidone to form a paste. This paste is uniformly applied to both surfaces of an aluminum current collector having a thickness of 0.02 mm, dried and pressure-molded with a roller press to form a strip-shaped LiMn 2 O 4 electrode (2a). Subsequently, the negative electrode (1a) and the positive electrode (2a) are wound into a roll with a porous polypropylene separator (3) sandwiched between them to prepare a battery element having an average outer diameter of 15.7 mm.
An insulating plate (5) is installed on the bottom of a nickel-plated iron battery can (4) to house the battery element. Negative electrode lead (6) taken out from the battery element was welded to the bottom of the battery can, and 1 mol / liter of LiPF 6 was dissolved in the battery can as an electrolytic solution diethyl carbonate (DEC).
Inject the solution. Then, the insulating plate (5) is also installed on the upper part of the battery element, the gasket (7) is fitted, and the explosion-proof valve (8) is installed inside the battery as shown in FIG. The positive electrode lead (9) taken out from the battery element is welded to this explosion-proof valve, and the closing lid body (1
0) are stacked with a doughnut-type PTC switch (11) sandwiched therebetween and the edges of the battery can are crimped to complete a battery (A) having an outer diameter of 16.5 mm and a height of 65 mm with the battery structure shown in FIG.

【0008】実施例2 実施例1とはやや異なる本発明の他の方法における実施
例を示す。本実施例のため電池素子は従来法によって作
成される電池のための電池素子と変わるところはない。
つまり、粉末状のグラファイト85重量部に結着剤とし
てポリフッ化ビニリデ(PVDF)15重量部を加え、
溶剤であるN−メチル−2−ピロリドンと湿式混合して
スラリー(ペースト状)にする。このスラリーを負極集
電体となる厚さ0.01mmの銅箔の両面に均一に塗布
し、乾燥後ロールプレス機で加圧成型して帯状の負極
(1b)を作成する。後は、この負極(1b)と実施例
1で作成したと同じ正極(2a)をその間に多孔質ポリ
プロピレン製セパレータ(3)を挟んでロール状に巻き
上げて、平均外径15.7mmの電池素子を作成する。
ここまでは何ら従来法と変わるところはないが、ここで
作成した電池素子をエチレンカーボネート(EC)とジ
エチルカーボネート(DEC)の重量比3:7の混合溶
媒に浸せきし、減圧下でこの混合溶媒を電池素子に充分
含浸した後、30℃に保った真空乾燥機内にて充分に乾
燥する。乾燥後の電極素子には約1.5gのエチレンカ
ーボネートが含浸されている。乾燥後の電極素子はニッ
ケルメッキを施した鉄製の電池缶(4)の底部に絶縁板
(5)を設置し、その中に収納する。その後は実施例1
と同じにして電池(B)を作成する。
Example 2 An example of another method of the present invention, which is slightly different from Example 1, will be shown. For this embodiment, the battery element is no different from the battery element for batteries made by conventional methods.
That is, 15 parts by weight of polyvinylidene fluoride (PVDF) as a binder was added to 85 parts by weight of powdered graphite,
Wet mix with a solvent, N-methyl-2-pyrrolidone, to form a slurry (paste). This slurry is uniformly applied to both surfaces of a 0.01-mm-thick copper foil serving as a negative electrode current collector, dried, and pressure-molded with a roll press to form a strip-shaped negative electrode (1b). After that, the negative electrode (1b) and the same positive electrode (2a) as that prepared in Example 1 were wound into a roll with a porous polypropylene separator (3) interposed therebetween, and a battery element having an average outer diameter of 15.7 mm. To create.
So far, there is no difference from the conventional method, but the battery element prepared here is immersed in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a weight ratio of 3: 7, and this mixed solvent is depressurized. After being sufficiently impregnated into the battery element, it is sufficiently dried in a vacuum dryer kept at 30 ° C. The dried electrode element is impregnated with about 1.5 g of ethylene carbonate. The dried electrode element is installed in an insulating plate (5) provided on the bottom of a nickel-plated iron battery can (4). After that, Example 1
A battery (B) is prepared in the same manner as in.

【0009】比較例1 本発明の効果確認のため、従来法による電池(E)およ
び電池(F)を作成する。電池(E)は実施例2で作成
した電池素子を使用し、全くその後は実施例1と同じに
して電池(E)を作成する。つまり従来法による電池
(E)は実施例1とは負極中にエチレンカーボネートを
含浸していない点のみ異なる。また従来法による電池
(F)は同じく実施例2で作成した電池素子を用いて、
電解液として1モル/リットルのLiPFを溶解した
エチレンカーボネート(EC)とジエチルカーボネート
(DEC)の混合溶液を使用する。その他は全て電池
(E)の作成と同じにして電池(F)を作成する。
Comparative Example 1 In order to confirm the effect of the present invention, a battery (E) and a battery (F) according to the conventional method are prepared. As the battery (E), the battery element prepared in Example 2 is used, and thereafter, the battery (E) is prepared in the same manner as in Example 1. That is, the battery (E) according to the conventional method is different from that of Example 1 only in that the negative electrode is not impregnated with ethylene carbonate. The battery (F) according to the conventional method is the same as the battery element prepared in Example 2,
As the electrolytic solution, a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol / liter of LiPF 6 is dissolved is used. Otherwise, the battery (F) is prepared in the same manner as the battery (E).

【0010】実施例3 粉末状のピッチコークス90重量部と、結着剤としてポ
リフッ化ビニリデン(PVDF)10重量部を溶剤であ
るN−メチル−2−ピロリドンと湿式混合してスラリー
(ペースト状)にする。次に、このスラリーを負極集電
体となる厚さ0.01mmの銅箔の両面に均一に塗布
し、乾燥後ロールプレス機で加圧成型して帯状の負極帯
を作成する。この帯状負極体はプロピレンカーボネート
(PC)の中に浸せきし、プロピレンカーボネート(P
C)を含浸した帯状負極帯(1c)を得る。又正極は次
のようにして用意される。市販の炭酸リチウム(Li
CO)と炭酸コバルト(CoCO)をLiとCoの
原子比が1.03:1の組成比になるように混合し、空
気中で900℃約5時間焼成してLiCoOを得る。
次にこのLiCoOを91重量部、導電剤としてグラ
ファイトを6重量部、結合剤としてホリフッ化ビニリデ
ン3重量部を溶剤であるN−メチル−2−ピロリドンと
湿式混合してスラリー(ペースト状)にする。次に、こ
のスラリーを正極集電体となる厚さ0.02mmのアル
ミニウム箔の両面に均一に塗布し、乾燥後ローラープレ
ス機で加圧成型して帯状の正極(2b)を作成する。続
いて負極(1c)と正極(2b)をその間に多孔質ポリ
プロピレン製セパレータ(3)を挟んでロール状に巻き
上げて、平均外径15.7mmの電池素子を作成する。
その後は全く実施例1と同じ手順で、同じ電解液(1モ
ル/リットルLiPFを溶解したジエチルカーボネー
ト溶液)を注入し、同じ電池構造で電池(C)を作成す
る。
Example 3 90 parts by weight of powdered pitch coke and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were wet-mixed with N-methyl-2-pyrrolidone as a solvent to form a slurry (paste form). To Next, this slurry is uniformly applied to both surfaces of a copper foil having a thickness of 0.01 mm, which serves as a negative electrode current collector, dried, and then pressure-molded by a roll press machine to form a strip-shaped negative electrode strip. This strip-shaped negative electrode body was dipped in propylene carbonate (PC) to obtain propylene carbonate (P
A strip-shaped negative electrode strip (1c) impregnated with C) is obtained. The positive electrode is prepared as follows. Commercially available lithium carbonate (Li 2
CO 3 ) and cobalt carbonate (CoCO 3 ) are mixed so that the atomic ratio of Li and Co is 1.03: 1, and the mixture is calcined in air at 900 ° C. for about 5 hours to obtain LiCoO 2 .
Next, 91 parts by weight of this LiCoO 2 , 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of vinylidene fluoride as a binder were wet-mixed with N-methyl-2-pyrrolidone as a solvent to form a slurry (paste form). To do. Next, this slurry is evenly applied to both sides of a 0.02 mm-thick aluminum foil serving as a positive electrode current collector, dried and pressure-molded with a roller press machine to form a strip-shaped positive electrode (2b). Subsequently, the negative electrode (1c) and the positive electrode (2b) are wound in a roll shape with a porous polypropylene separator (3) interposed therebetween to prepare a battery element having an average outer diameter of 15.7 mm.
After that, the same electrolytic solution (diethyl carbonate solution in which 1 mol / liter LiPF 6 was dissolved) was injected by the same procedure as in Example 1 to form a battery (C) with the same battery structure.

【0011】比較例2 本発明の実施例3の効果確認のため、従来法による電池
(G))を作成する。従来法による電池(G)は実施例
3とは使用する負極および電解液が異なり、他は全て実
施例3と同じに作成される。本比較例のための負極は次
のように用意される。粉末状のピッチコークス90重量
部と、結着剤としてポリフッ化ビニリデン(PVDF)
10重量部を溶剤であるN−メチル−2−ピロリドンと
湿式混合してスラリー(ペースト状)にする。次に、こ
のスラリーを負極集電体となる厚さ0.01mmの銅箔
の両面に均一に塗布し、乾燥後ロールプレス機で加圧成
型して帯状の負極(1d)を作成する。後は、この負極
(1d)と実施例2で作成したと同じ正極(2b)をそ
の間に多孔質ポリプロピレン製セパレータ(3)を挟ん
でロール状に巻き上げて、平均外径15.7mmの電池
素子を作成し、電解液としては1モル/リットルのLi
PFを溶解したプロピレンカーボネート(PC)とジ
エチルカーボネート(DEC)の混合溶液を使用し、そ
の他は実施例3と同じにして電池(G)を作成する。こ
うして作られる本発明による電池および比較例による電
池は、いずれも電池内部の安定化を目的に24時間のエ
ージング期間を経過させた後、電池(A)、電池
(B)、電池(E)、および電池(F)は充電電圧を
4.2Vに設定し、電池(C)および電池(G)は充電
電圧を4.0Vに設定しそれぞれ12時間の充電を行
い、放電は全ての電池について800mAの定電流放電
にて終止電圧2.5Vまで行い、それぞれの電池の放電
容量を求める。以上の結果は表1および表2の通りとな
る。本発明による電池(A)および電池(B)は注入す
る電解液中にエチレンカーボネートを含まないので電解
液注入ノズルの先端にエチレンカーボネートが析出する
こともなく、ノズルのつまりはない。さらに、注入する
電解液は溶媒がジエチルカーボネートのみの電解液であ
るため、電池素子への浸透性が良く、加えて電池内で最
終的な電解液を構成する溶媒のひとつ(EC)は既に電
池素子中に含浸されているので、注入電解液量はその分
少ないため、電解液注入回数は3回で必要電解液量を注
入でき、充分な電池容量が得られる。これに対し、従来
法による電池(E)および(F)では、電池素子には全
く電解液成分は含まれていない。したがって必要電解液
量の全は注入によって電池内に満たされるため、本発明
による電池(A)や電池(B)の場合に比べ、注入電解
液量は多い。加えて従来法による電池(F)では注入す
る電解液がエチレンカーボネートを含む電解液であるの
で電池容量は充分な値が得られが、電解液注入ノズルは
詰まり、何度もノズルの交換が必要である上に、電解液
の浸透性が悪く必要電解液量を注入するのに11回もの
注入回数に分割せざるを得ない。一方、本発明による電
池(A)や電池(B)と同じ電解液を注入する従来法に
よる電池(E)では、電解液の電池素子への浸透性は良
く、電解液注入回数は少なくて済み、4回で必要電解液
量を注入できているが、出来上がった電池は、その電池
内の電解液中にエチレンカーボネートを含有しないた
め、うまく充電されず、肝心の電池容量はまったく得ら
れない。負極活物質としてグラファイトを使用した場合
は電池内での最終的な電解液組成中にはエチレンカーボ
ネートは不可欠な溶媒である。 実施例2および比較例2における電池(B)や(G)の
ように、負極の活物質炭素にコークスを使用する場合は
エチレンカーボネートに代えてプロピレンカーボネート
が使用できる。プロピレンカーボネートの融点は充分に
低く、電解液注入ノズルが詰まる問題は起こらない。し
かし、プロピレンカーボネートを含む電解液は電池素子
への浸透性が悪く、本発明による電池(B)は従来法に
よる電池(G)に対してやはり電解液注入回数には大き
な削減を可能とする。
Comparative Example 2 In order to confirm the effect of Example 3 of the present invention, a battery (G) according to the conventional method is prepared. The battery (G) according to the conventional method is the same as that of the third embodiment except that the negative electrode and the electrolyte used are different from those of the third embodiment. The negative electrode for this comparative example is prepared as follows. 90 parts by weight of powdered pitch coke and polyvinylidene fluoride (PVDF) as a binder
10 parts by weight of N-methyl-2-pyrrolidone, which is a solvent, is wet mixed to form a slurry (paste). Next, this slurry is uniformly applied to both surfaces of a 0.01-mm-thick copper foil that serves as a negative electrode current collector, dried, and then pressure-molded with a roll press to form a strip-shaped negative electrode (1d). After that, the negative electrode (1d) and the same positive electrode (2b) prepared in Example 2 were wound into a roll with a porous polypropylene separator (3) interposed therebetween, and a battery element having an average outer diameter of 15.7 mm. To prepare 1 mol / l of Li as an electrolytic solution
A battery (G) is prepared in the same manner as in Example 3, except that a mixed solution of propylene carbonate (PC) and diethyl carbonate (DEC) in which PF 6 is dissolved is used. Each of the battery according to the present invention and the battery according to the comparative example produced in this way is subjected to an aging period of 24 hours for the purpose of stabilizing the inside of the battery, and then the battery (A), the battery (B), the battery (E), And the battery (F) set the charging voltage to 4.2V, the battery (C) and the battery (G) set the charging voltage to 4.0V, and charged for 12 hours each, and the discharge was 800mA for all the batteries. The discharge capacity of each battery is determined by performing constant current discharge up to a final voltage of 2.5 V. The above results are shown in Tables 1 and 2. The batteries (A) and (B) according to the present invention do not contain ethylene carbonate in the electrolyte to be injected, so that ethylene carbonate does not deposit at the tip of the electrolyte injection nozzle and the nozzle is not clogged. Furthermore, since the electrolyte solution to be injected is an electrolyte solution containing only diethyl carbonate, it has good penetrability into the battery element, and one of the solvents (EC) that constitutes the final electrolyte solution in the battery is already the battery. Since the element is impregnated, the amount of the injected electrolytic solution is small accordingly. Therefore, the required amount of electrolytic solution can be injected by repeating the injection of the electrolytic solution three times, and a sufficient battery capacity can be obtained. On the other hand, in the batteries (E) and (F) according to the conventional method, the battery element does not contain any electrolytic solution component. Therefore, since the required amount of the electrolytic solution is completely filled in the battery by the injection, the injected amount of the electrolytic solution is larger than that in the case of the battery (A) or the battery (B) of the present invention. In addition, in the conventional battery (F), the electrolyte to be injected is an electrolyte containing ethylene carbonate, so a sufficient battery capacity can be obtained, but the electrolyte injection nozzle is clogged and it is necessary to replace the nozzle many times. In addition, the permeability of the electrolytic solution is poor, and in order to inject the required amount of the electrolytic solution, the number of injections must be divided into 11 times. On the other hand, in the battery (E) according to the conventional method in which the same electrolytic solution as that of the battery (A) or the battery (B) according to the present invention is injected, the permeability of the electrolytic solution into the battery element is good, and the number of injections of the electrolytic solution is small. Although the required amount of electrolytic solution was injected four times, the completed battery does not contain ethylene carbonate in the electrolytic solution in the battery, so it is not charged well, and the essential battery capacity cannot be obtained at all. When graphite is used as the negative electrode active material, ethylene carbonate is an essential solvent in the final electrolytic solution composition in the battery. When coke is used as the active material carbon of the negative electrode as in the batteries (B) and (G) in Example 2 and Comparative Example 2, propylene carbonate can be used instead of ethylene carbonate. The melting point of propylene carbonate is sufficiently low, and the problem of clogging of the electrolyte injection nozzle does not occur. However, the electrolyte solution containing propylene carbonate has a poor permeability to the battery element, and thus the battery (B) according to the present invention can significantly reduce the number of times of electrolyte injection as compared with the battery (G) according to the conventional method.

【0012】[0012]

【発明の効果】本発明によれば、非水電解液電池におい
てその最高の性能を引き出すために選択される電解液
が、エチレンカーボネートのように融点が高い溶媒やプ
ロピレンカーボネートのように電池素子への浸透性が悪
い溶媒の使用が余儀なくされても、それらの溶媒は電池
容器外で電池素子に含浸させ、その後電池素子は電池容
器内に納められ、電池容器内への電解液注入はより浸透
性の良い溶媒で構成された電解液、あるいは高融点溶媒
を含まない電解液が注入可能となり、電解液の電池素子
への含浸も速く、電解液注入ノズル先端の詰まりもな
く、電解液注入が容易に行える。この結果、いかなる電
池システムの非水電解液電池においても、その最高の性
能を得るための最適溶媒組成の電解液が単純に選択で
き、広範囲な用途で使用できる優れた特性の電池を容易
に量産することが可能となり、その工業的価値は大であ
る。
EFFECTS OF THE INVENTION According to the present invention, the electrolyte selected to bring out the best performance in the non-aqueous electrolyte battery is applied to a battery element such as a solvent having a high melting point such as ethylene carbonate or propylene carbonate. Even if it is unavoidable to use a solvent with poor permeability, the solvent is impregnated into the battery element outside the battery container, and then the battery element is housed in the battery container, and the electrolyte injection into the battery container is more permeated. It is possible to inject an electrolyte solution composed of a solvent with good properties or an electrolyte solution that does not contain a high melting point solvent, the impregnation of the electrolyte solution into the battery element is fast, there is no clogging at the tip of the electrolyte solution injection nozzle, and the electrolyte solution is injected. Easy to do. As a result, even for non-aqueous electrolyte batteries of any battery system, the electrolyte with the optimum solvent composition can be simply selected to obtain the best performance, and batteries with excellent characteristics that can be used in a wide range of applications can be easily mass-produced. It is possible to do so, and its industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例における電池の構造を示し
た模式的断面図
FIG. 1 is a schematic cross-sectional view showing the structures of batteries in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1は負極、2は正極、3はセパレータ、4は電池缶、5
は絶縁板、6は負極リード、7はガスケット、8は防爆
弁、9は負極リード、10は閉塞蓋体である。
1 is a negative electrode, 2 is a positive electrode, 3 is a separator, 4 is a battery can, 5
Is an insulating plate, 6 is a negative electrode lead, 7 is a gasket, 8 is an explosion-proof valve, 9 is a negative electrode lead, and 10 is a closing lid.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極、負極、セパレータおよび非水電解液
を有する電池において、電解液を構成する少なくとも1
種の溶媒を、少なくとも正負何れかの電極中に含浸させ
た後、正負極間にセパレータを挟んで電池素子を作成す
ることを特徴とする非水電解液電池。
1. A battery having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolytic solution, and at least 1 constituting an electrolytic solution.
A non-aqueous electrolyte battery, wherein at least one of positive and negative electrodes is impregnated with a solvent of a seed, and a separator is sandwiched between the positive and negative electrodes to form a battery element.
【請求項2】正極、負極、セパレータおよび非水電解液
を有する電池において、正負極間にセパレータを挟んで
構成された電池素子に、これを電池容器内に納める前に
電解液を構成する少なくとも1種の溶媒を含浸し、その
後電池容器内にその電池素子を納め、残りの組成要素で
構成された電解液を電池容器内に注入して作成すること
を特徴とする非水電解液電池。
2. A battery having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte solution. A battery element having a separator sandwiched between positive and negative electrodes, and at least an electrolyte solution being contained therein before being housed in a battery container. A non-aqueous electrolyte battery, which is prepared by impregnating one type of solvent, then placing the battery element in a battery container, and injecting an electrolytic solution composed of the remaining composition elements into the battery container.
JP5124590A 1993-04-15 1993-04-15 Battery Pending JPH06302337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5124590A JPH06302337A (en) 1993-04-15 1993-04-15 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5124590A JPH06302337A (en) 1993-04-15 1993-04-15 Battery

Publications (1)

Publication Number Publication Date
JPH06302337A true JPH06302337A (en) 1994-10-28

Family

ID=14889227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5124590A Pending JPH06302337A (en) 1993-04-15 1993-04-15 Battery

Country Status (1)

Country Link
JP (1) JPH06302337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608293B2 (en) 2013-02-04 2017-03-28 Toyota Jidosha Kabushiki Kaisha Method of manufacturing lithium-ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608293B2 (en) 2013-02-04 2017-03-28 Toyota Jidosha Kabushiki Kaisha Method of manufacturing lithium-ion secondary battery

Similar Documents

Publication Publication Date Title
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
CN110943248B (en) Lithium secondary battery
EP1851814B1 (en) Secondary battery of improved lithium ion mobility and cell capacity
JP5005877B2 (en) Lithium ion secondary battery or battery, protection circuit thereof, electronic device, and charging device
EP2950370A1 (en) Lithium secondary battery
JP2001176558A (en) Non-aqueous electrolyte secondary battery
CN111971769A (en) Incorporation of lithium ion source materials into activated carbon electrodes for capacitor-assisted batteries
KR20010007465A (en) Nonaqueous Electrolyte Battery
KR102268078B1 (en) Designing method for electrode for lithium secondary battery and method for preparing electrode for lithium secondary battery comprising the same
JP3396696B2 (en) Rechargeable battery
JPH1131534A (en) Nonaqueous electrolyte secondary battery, and manufacture of electrode plate used for the nonaqueous electrolyte secondary battery
CN111527627B (en) Method for manufacturing negative electrode and negative electrode obtained thereby
JPH07153496A (en) Secondary battery
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JPH06310147A (en) Lithium secondary battery
KR102587972B1 (en) Method for Preparing Anode and Anode Prepared Therefrom
JPH06302337A (en) Battery
JPH11297299A (en) Thin secondary battery
JPH09259866A (en) Lithium secondary battery
JPH06203830A (en) Battery
JP2503541Y2 (en) Non-aqueous electrolyte secondary battery
CN113036225B (en) Method for manufacturing lithium ion battery
JPH10172601A (en) Cylindrical battery
KR102054266B1 (en) Active material separated type lithium-sulfur battery
JPS62283571A (en) Nonaqueous solvent secondary cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106