JP3462722B2 - Polymer electrolyte battery - Google Patents

Polymer electrolyte battery

Info

Publication number
JP3462722B2
JP3462722B2 JP19802997A JP19802997A JP3462722B2 JP 3462722 B2 JP3462722 B2 JP 3462722B2 JP 19802997 A JP19802997 A JP 19802997A JP 19802997 A JP19802997 A JP 19802997A JP 3462722 B2 JP3462722 B2 JP 3462722B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
polymer
microporous membrane
experimental examples
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19802997A
Other languages
Japanese (ja)
Other versions
JPH1140197A (en
Inventor
誠 上杉
丸男 神野
正久 藤本
俊之 能間
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19802997A priority Critical patent/JP3462722B2/en
Priority to US09/119,608 priority patent/US6132904A/en
Publication of JPH1140197A publication Critical patent/JPH1140197A/en
Application granted granted Critical
Publication of JP3462722B2 publication Critical patent/JP3462722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高分子電解質を
空孔中に充填させた微多孔膜が正極と負極との間に設け
られた高分子電解質電池に係り、特に、充放電によって
正極や負極が体積変化する場合に、この体積変化を抑制
することなく、充放電が十分に行なえるようにした高分
子電解質電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte battery having a microporous membrane in which pores are filled with a polymer electrolyte provided between a positive electrode and a negative electrode. The present invention relates to a polymer electrolyte battery in which, when the volume of a negative electrode changes, charging / discharging can be sufficiently performed without suppressing this volume change.

【0002】[0002]

【従来の技術】従来より、電池における電解質として
は、一般に水系或は非水系の電解液が使用されていた
が、近年、このような液体の電解質に代えて、高分子で
構成された高分子電解質を用いた高分子電解質電池が注
目されるようになった。
2. Description of the Related Art Conventionally, an aqueous or non-aqueous electrolytic solution has been generally used as an electrolyte in a battery, but in recent years, a polymer composed of a polymer has been used instead of such a liquid electrolyte. Polymer electrolyte batteries using electrolytes have come to the fore.

【0003】すなわち、このように高分子電解質を用い
た高分子電解質電池においては、電解液を使用したもの
に比べて、漏液の心配や腐食の問題も少なく、また電池
の構造が簡単で、その組立ても容易になる等の利点があ
った。
That is, in the polymer electrolyte battery using the polymer electrolyte as described above, there is less concern about leakage and corrosion, and the battery structure is simpler than that using the electrolyte solution. There is an advantage that the assembly becomes easy.

【0004】ここで、このような高分子電解質電池にお
いては、高分子中にリチウム塩等の溶質を含有させた高
分子電解質や、高分子中にリチウム塩に溶媒を加えた電
解液を含有させた高分子電解質を、正極と負極の間に設
けるようにしたものの他に、上記のような高分子電解質
を微多孔膜の空孔中に充填させ、この微多孔膜を正極と
負極との間に設けるようにしたものが存在した。
Here, in such a polymer electrolyte battery, a polymer electrolyte in which a solute such as a lithium salt is contained in the polymer or an electrolytic solution in which a solvent is added to the lithium salt in the polymer is contained. In addition to the polymer electrolyte provided between the positive electrode and the negative electrode, the polymer electrolyte as described above is filled in the pores of the microporous membrane, and the microporous membrane is placed between the positive electrode and the negative electrode. There was one that was set up in.

【0005】ここで、上記のように高分子電解質を微多
孔膜の空孔中に充填させて、この微多孔膜を正極と負極
との間に設けた高分子電解質電池において、充放電によ
って上記の正極や負極が体積変化する場合、この体積変
化が上記の高分子電解質を充填させた微多孔膜によって
抑制され、正極や負極へのリチウムイオン等の吸蔵が十
分に行なわれなくなり、この高分子電解質電池における
充放電容量が低下したり、サイクル特性が劣化するとい
う問題があった。
Here, in the polymer electrolyte battery in which the pores of the microporous membrane are filled with the polyelectrolyte as described above and the microporous membrane is provided between the positive electrode and the negative electrode, the When the positive electrode and the negative electrode of the volume change, this volume change is suppressed by the microporous membrane filled with the above-mentioned polymer electrolyte, storage of lithium ions and the like to the positive electrode and the negative electrode is not sufficiently performed, this polymer There are problems that the charge and discharge capacity of the electrolyte battery is reduced and the cycle characteristics are deteriorated.

【0006】[0006]

【発明が解決しようとする課題】この発明は、高分子電
解質を空孔中に充填させた微多孔膜を正極と負極との間
に設けた高分子電解質電池における上記のような問題を
解決することを課題とするものであり、充放電によって
正極や負極が体積変化する場合において、この正極や負
極における体積変化が、高分子電解質を空孔中に充填さ
せた上記の微多孔膜によって抑制されるのを少なくし、
十分な充放電容量を有すると共に、サイクル特性にも優
れた高分子電解質電池が得られるようにすることを課題
とするものである。
SUMMARY OF THE INVENTION The present invention solves the above problems in a polymer electrolyte battery in which a microporous membrane having a polymer electrolyte filled in the pores is provided between a positive electrode and a negative electrode. That is, when the volume of the positive electrode or the negative electrode changes due to charge / discharge, the volume change of the positive electrode or the negative electrode is suppressed by the microporous membrane in which the pores are filled with the polymer electrolyte. Less,
An object of the present invention is to obtain a polymer electrolyte battery having a sufficient charge / discharge capacity and excellent cycle characteristics.

【0007】[0007]

【課題を解決するための手段】この発明の請求項1にお
ける高分子電解質電池においては、上記のような課題を
解決するため、高分子電解質空孔中に充填された微多
孔膜が正極と負極との間に設けられてなる高分子電解質
電池において、上記の微多孔膜として、ポリエチレン又
はポリプロピレンで構成され、空孔率が80%以上にな
ったものを用いると共に、この微多孔膜の空孔に対し
て、上記の高分子電解質を体積比で20〜90%の範囲
で充填させるようにした。
Means for Solving the Problems] In the polymer electrolyte battery in claim 1 of the present invention, to solve the above problems, the microporous membrane polymer electrolyte is filled into pores positive In the polymer electrolyte battery provided between the negative electrode and the negative electrode , polyethylene or
Is made of polypropylene and has a porosity of 80% or more.
In addition to the above, the polymer electrolyte was filled in the pores of the microporous membrane in a volume ratio of 20 to 90%.

【0008】ここで、この請求項1における高分子電解
質電池のように、高分子電解質を微多孔膜の空孔中に充
填させるにあたって、微多孔膜として空孔率が80%以
上のものを用いると共に、この微多孔膜の空孔中に高分
子電解質を体積比で20〜90%の範囲で充填させるよ
うにすると、高分子電解質が微多孔膜中に十分に充填さ
れて、高分子電解質が正極や負極と十分に接触してリチ
ウムイオン等の移動がスムーズに行なえる一方、上記の
微多孔膜中に高分子電解質が充填されていない空孔の部
分が存在するため、充放電によって正極や負極が体積変
化する場合においても、この体積変化が上記の微多孔膜
によって抑制されるということが少なくなり、十分な充
放電容量が得られると共に、サイクル特性も向上する。
When filling the pores of the microporous membrane with the polymer electrolyte as in the polymer electrolyte battery according to the first aspect, a microporous membrane having a porosity of 80% or more is used. At the same time, when the pores of the microporous membrane are filled with the polymer electrolyte in a volume ratio of 20 to 90%, the polymer electrolyte is sufficiently filled in the microporous membrane, While sufficient contact with the positive electrode and the negative electrode allows smooth movement of lithium ions and the like, on the other hand, since there are pores not filled with the polymer electrolyte in the above microporous membrane, the positive electrode or Even when the volume of the negative electrode changes, the volume change is less likely to be suppressed by the microporous film, and sufficient charge / discharge capacity is obtained and the cycle characteristics are improved.

【0009】ここで、上記の高分子電解質としては、高
分子中にリチウム塩等の溶質を含有させただけの高分子
電解質を用いることもできるが、この高分子電解質と正
極や負極との接触性を高めて、リチウムイオン等の移動
性を向上させるため、リチウム塩等の溶質を溶媒に溶解
させた電解液を高分子中に含有させたものを用いること
が好ましく、特に、十分なリチウムイオン等の移動性が
得られるようにすると共に、高分子中に含有させた電解
液が正極や負極と反応するのを抑制するため、高分子に
対する電解液の割合(電解液/高分子)が重量比で0.
1〜1.9の範囲になった高分子電解質を用いることが
好ましい。
Here, as the above-mentioned polymer electrolyte, it is also possible to use a polymer electrolyte in which a solute such as a lithium salt is contained in a polymer, but this polymer electrolyte is contacted with a positive electrode or a negative electrode. In order to improve the mobility and improve the mobility of lithium ions and the like, it is preferable to use a polymer containing an electrolyte solution in which a solute such as a lithium salt is dissolved in a solvent. The ratio of the electrolyte solution to the polymer (electrolyte solution / polymer) is weight in order to obtain the mobility of the polymer and to prevent the electrolyte solution contained in the polymer from reacting with the positive electrode and the negative electrode. The ratio is 0.
It is preferable to use a polymer electrolyte in the range of 1 to 1.9.

【0010】また、上記のような高分子電解質において
使用する高分子としては、従来より一般に使用されてい
る高分子を用いることができるが、上記の正極や負極の
体積変化に追随できるような体積弾性をもつ高分子を用
いることが好ましく、例えば、ポリスチレン鎖を主鎖と
し、ポリエチレンオキサイドを側鎖に有する高分子を用
いることが好ましい。そして、このような高分子を用い
ると、高分子電解質電池における充放電容量やサイクル
特性がさらに向上する。
As the polymer used in the above-mentioned polymer electrolyte, a polymer which has been generally used in the past can be used, but a volume which can follow the above-mentioned volume change of the positive electrode and the negative electrode. It is preferable to use a polymer having elasticity, for example, a polymer having a polystyrene chain as a main chain and polyethylene oxide as a side chain. When such a polymer is used, the charge / discharge capacity and cycle characteristics of the polymer electrolyte battery are further improved.

【0011】また、上記のようにポリエチレン又はポリ
プロピレンで構成された微多孔膜を用いると、この微多
孔膜が十分な強度を有し、その膜厚を薄くしても正極や
負極の体積変化によって破れたりせず、リチウムイオン
等の移動性がスムーズに行なわれて、充放電容量が更に
向上し、また化学的に安定で電解液等と反応するのも抑
制されるようになる。
Further, as described above, polyethylene or poly
If a microporous membrane composed of propylene is used, this
The porous film has sufficient strength, and even if the film thickness is reduced,
Does not break due to the volume change of the negative electrode,
And the like, and the charge and discharge capacity is further improved.
It is also chemically stable and suppresses reaction with electrolytes.
Will be controlled.

【0012】ここで、上記の高分子電解質電池におい
て、リチウムイオンを活物質として使用する場合におい
て、その正極に使用する正極材料としては、従来より一
般に使用されている公知の正極材料を使用することがで
き、例えば、マンガン,コバルト,ニッケル,鉄,バナ
ジウムの少なくとも1種を含むリチウム−遷移金属複合
酸化物等を使用することができる。
Here, in the above polymer electrolyte battery, when lithium ions are used as an active material, as a positive electrode material used for the positive electrode, a well-known positive electrode material which has been generally used in the past should be used. For example, a lithium-transition metal composite oxide containing at least one of manganese, cobalt, nickel, iron and vanadium can be used.

【0013】また、その負極を構成する負極材料として
は、例えば、金属リチウム、リチウム合金、リチウムイ
オンの吸蔵,放出が可能な黒鉛,コークス,有機物焼成
体等の炭素材料、SnO2 ,SnO,TiO2 ,Nb2
3 等の電位が正極材料よりも低い金属酸化物等を使用
することができる。
As the negative electrode material constituting the negative electrode, for example, metallic lithium, lithium alloys, carbon materials capable of inserting and extracting lithium ions, carbon materials such as coke, organic material fired bodies, SnO 2 , SnO, TiO 2 are used. 2 , Nb 2
A metal oxide or the like having a lower potential such as O 3 than the positive electrode material can be used.

【0014】また、上記の高分子電解質において、高分
子中に含有させるリチウム塩としては、例えば、トリフ
ルオロメタンスルホン酸リチウム、リチウムトリフルオ
ロメタンスルホン酸イミド、リチウムトリフルオロメタ
ンスルホン酸メチド、ヘキサフルオロリン酸リチウム、
ヘキサフルオロヒ酸リチウム、テトラフルオロホウ酸リ
チウム等を使用することができる。
In the above-mentioned polymer electrolyte, examples of the lithium salt contained in the polymer include lithium trifluoromethanesulfonate, lithium trifluoromethanesulfonate imide, lithium trifluoromethanesulfonate methide and lithium hexafluorophosphate. ,
Lithium hexafluoroarsenate, lithium tetrafluoroborate and the like can be used.

【0015】また、上記のリチウム塩を溶媒に溶解させ
た電解液を高分子中に含有させる場合においては、その
溶媒として、例えば、エチレンカーボネート、プロピレ
ンカーボネート、ブチレンカーボネート、ビニレンカー
ボネート、シクロペンタノン、スルホラン、ジメチルス
ルホラン、3−メチル−1,3−オキサゾリジン−2−
オン、γ−ブチロラクトン、ジメチルカーボネート、ジ
エチルカーボネート、エチルメチルカーボネート、メチ
ルプロピルカーボネート、ブチルメチルカーボネート、
エチルプロピルカーボネート、ブチルエチルカーボネー
ト、ジプロピルカーボネート、1,2−ジメトキシエタ
ン、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等
の溶媒を1種又は2種以上組み合わせて用いることがで
きる。
When the electrolyte solution containing the lithium salt dissolved in a solvent is contained in the polymer, the solvent may be, for example, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, Sulfolane, dimethylsulfolane, 3-methyl-1,3-oxazolidine-2-
ON, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate,
Solvents such as ethylpropyl carbonate, butylethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate are used alone or in combination of two or more. be able to.

【0016】[0016]

【実施例】以下、この発明に係る高分子電解質電池につ
いて実験例を挙げて具体的に説明すると共に、この発明
の条件を満たす高分子電解質電池の場合、この発明の条
件を満たさない高分子電解質電池に比べて、充放電容量
やサイクル特性が向上することを明らかにする。なお、
この発明における高分子電解質電池は、下記の実験例に
示したものに限定されるものではなく、その要旨を変更
しない範囲において適宜変更して実施できるものであ
る。
EXAMPLES Hereinafter, the polymer electrolyte battery according to the present invention will be specifically described with reference to experimental examples. In the case of the polymer electrolyte battery satisfying the conditions of the present invention, the polymer electrolytes not satisfying the conditions of the present invention will be described. It is clarified that the charge and discharge capacity and cycle characteristics are improved compared to batteries. In addition,
The polymer electrolyte battery according to the present invention is not limited to those shown in the following experimental examples, and can be implemented by appropriately changing it without departing from the scope of the invention.

【0017】(実験例1〜10)これらの実験例におい
ては、図1に示すように、正極1と負極2との間に高分
子電解質を空孔中に充填させた微多孔膜3を設けて、扁
平なコイン形になった高分子電解質電池を製造するよう
にした。
(Experimental Examples 1 to 10) In these experimental examples, as shown in FIG. 1, a microporous membrane 3 having pores filled with a polymer electrolyte was provided between a positive electrode 1 and a negative electrode 2. Then, a flat coin-shaped polymer electrolyte battery was manufactured.

【0018】[正極の作製]正極1を作製するにあたっ
ては、正極材料にリチウム含有二酸化コバルトLiCo
2 の粉末を用い、このLiCoO2 粉末と、導電剤で
ある炭素粉末と、結着剤であるポリフッ化ビニリデン粉
末をN−メチル−2−ピロリドン(NMP)に溶解させ
た溶液とを混合し、LiCoO2 粉末と炭素粉末とポリ
フッ化ビニリデン粉末とが85:10:5の重量比にな
ったスラリーを調製し、このスラリーをフェライト系ス
テンレス鋼からなる厚さ20μmの正極集電体5の片面
にドクターブレード法により塗布し、これを150℃で
乾燥させて、直径10mmの円板状で厚みが約80μm
になった正極1を作製した。
[Preparation of Positive Electrode] In preparing the positive electrode 1, lithium-containing cobalt dioxide LiCo was used as a positive electrode material.
Using O 2 powder, this LiCoO 2 powder, carbon powder that is a conductive agent, and a solution of polyvinylidene fluoride powder that is a binder dissolved in N-methyl-2-pyrrolidone (NMP) are mixed. , A LiCoO 2 powder, a carbon powder, and a polyvinylidene fluoride powder in a weight ratio of 85: 10: 5 were prepared, and this slurry was prepared from one surface of a positive electrode current collector 5 made of ferritic stainless steel and having a thickness of 20 μm. It is applied to the surface by the doctor blade method and dried at 150 ° C. to form a disc with a diameter of 10 mm and a thickness of about 80 μm.
A positive electrode 1 having

【0019】[負極の作製]負極を作製するにあたって
は、負極材料に黒鉛粉末を用い、この黒鉛粉末と結着剤
であるポリフッ化ビニリデン粉末をNMPに溶解させた
溶液とを混合し、黒鉛粉末とポリフッ化ビニリデン粉末
とが95:5の重量比になったスラリーを調製し、この
スラリーをフェライト系ステンレス鋼からなる厚さ20
μmの負極集電体6の片面にドクターブレード法により
塗布し、これを150℃で乾燥させて、直径10mmの
円板状で厚みが約60μmになった負極2を作製した。
[Preparation of Negative Electrode] In preparing the negative electrode, graphite powder was used as a negative electrode material, and the graphite powder was mixed with a solution of polyvinylidene fluoride powder as a binder in NMP to obtain graphite powder. And a polyvinylidene fluoride powder in a weight ratio of 95: 5 were prepared, and this slurry was made to have a thickness of 20 made of ferritic stainless steel.
A negative electrode current collector 6 having a thickness of 10 μm was coated on one surface by a doctor blade method, and dried at 150 ° C. to prepare a negative electrode 2 having a disk shape with a diameter of 10 mm and a thickness of about 60 μm.

【0020】[高分子電解質を空孔中に充填させた微多
孔膜の作製]ここで、上記の微多孔膜3としては、空孔
率が90%で膜厚が30μmになったポリプロピレン製
の微多孔膜を用いる一方、高分子電解質における高分子
としては、ポリスチレン鎖が主鎖で側鎖にポリエチレン
オキサイドを有するものを用い、またこの高分子に含有
させる電解液には、エチレンカーボネイトとジメチルカ
ーボネートの混合溶媒に過塩素酸リチウムLiClO4
を1mol/lの割合で溶解させたものを用いた。
[Preparation of Microporous Membrane Filling Porosity with Polymer Electrolyte] Here, the microporous membrane 3 is made of polypropylene having a porosity of 90% and a thickness of 30 μm. While using a microporous membrane, as the polymer in the polymer electrolyte, one having a polystyrene chain as the main chain and polyethylene oxide in the side chain is used, and the electrolyte to be contained in this polymer includes ethylene carbonate and dimethyl carbonate. LiClO 4 lithium perchlorate as a mixed solvent of
Was used at a ratio of 1 mol / l.

【0021】そして、上記のポリスチレン鎖が主鎖で側
鎖にポリエチレンオキサイドを有する高分子を、溶媒の
ジエチルカーボネートに種々の濃度で溶解させた溶液を
準備し、上記の微多孔膜3を上記の各溶液にそれぞれ1
20分間浸漬させて、各微多孔膜3の空孔中に上記の各
溶液をそれぞれ含浸させた後、各微多孔膜3をそれぞれ
上記の正極1上に静置させ、各微多孔膜3中における溶
媒をそれぞれ蒸発させて、各微多孔膜3の空孔中に上記
の高分子を充填させた。
Then, a solution is prepared by dissolving the above-mentioned polymer having a polystyrene chain as the main chain and polyethylene oxide in the side chain in various concentrations in diethyl carbonate as a solvent to prepare the above-mentioned microporous membrane 3 as described above. 1 for each solution
After immersing for 20 minutes to impregnate the pores of each microporous membrane 3 with each of the above solutions, each microporous membrane 3 is allowed to stand on the above positive electrode 1, and The solvent in each was evaporated to fill the pores of each microporous membrane 3 with the above polymer.

【0022】その後、上記の各微多孔膜3の空孔中に充
填された高分子に対して、上記の電解液を1:1の重量
比になるように含有させて高分子電解質をゲル状にし
た。そして、このようにゲル状になった高分子電解質の
各微多孔膜3の空孔中における体積比率(充填率)を求
めて、その結果を下記の表1に示した。
Then, the above-mentioned electrolytic solution is added to the polymer filled in the pores of each of the microporous membranes 3 in a weight ratio of 1: 1 to form a gel polymer electrolyte. I chose Then, the volume ratio (filling ratio) of the gelled polymer electrolyte in the pores of each microporous membrane 3 was determined, and the results are shown in Table 1 below.

【0023】[電池の作製]次に、上記のようにして作
製した正極1と、負極2と、高分子電解質が空孔中に充
填された各微多孔膜3とを用いて高分子電解質電池を作
製するにあたっては、上記のようにして正極1上に形成
した各微多孔膜3の上にそれぞれ上記の負極2を重ね
て、正極1と負極2との間に微多孔膜3が挾まれるよう
にし、これを正極缶4aと負極缶4bとで形成される電
池ケース4内に収容させ、正極集電体5を介して正極1
を正極缶4aに接続させる一方、負極集電体6を介して
負極2を負極缶4bに接続させ、この正極缶4aと負極
缶4bとを絶縁パッキン7により電気的に絶縁させて、
上記のコイン形になった実験例1〜10の各高分子電解
質電池を製造した。
[Preparation of Battery] Next, a polymer electrolyte battery is prepared by using the positive electrode 1 prepared as described above, the negative electrode 2, and each microporous membrane 3 having pores filled with the polymer electrolyte. In producing the above, the above negative electrode 2 is overlaid on each microporous film 3 formed on the positive electrode 1 as described above, and the microporous film 3 is sandwiched between the positive electrode 1 and the negative electrode 2. Then, this is housed in a battery case 4 formed of a positive electrode can 4 a and a negative electrode can 4 b, and a positive electrode 1 is provided via a positive electrode current collector 5.
Is connected to the positive electrode can 4a while the negative electrode 2 is connected to the negative electrode can 4b through the negative electrode current collector 6, and the positive electrode can 4a and the negative electrode can 4b are electrically insulated by the insulating packing 7.
The polymer electrolyte batteries of Experimental Examples 1 to 10 in the form of coins were manufactured.

【0024】次に、上記の各高分子電解質電池をそれぞ
れ25℃の条件下において、充電電流密度100μA/
cm2 で充電終止電圧4.2Vまで充電した後、放電電
流密度100μA/cm2 で放電終止電圧2.75Vま
で放電し、これを1サイクルとして充放電を繰り返して
行ない、1サイクル目と200サイクル目とにおいて、
各高分子電解質電池における正極1cm2 あたりの放電
容量(mAh/cm2)を求め、その結果を下記の表1
に合わせて示した。
Next, each of the above polymer electrolyte batteries was charged at a charging current density of 100 μA / 25 ° C. under the condition of 25 ° C.
After charging with cm 2 until the charging end voltage 4.2 V, discharge current density 100 .mu.A / cm 2 in discharged to a discharge end voltage of 2.75 V, which repeatedly performed by the charge and discharge as 1 cycle, 1 cycle and 200 cycles In the eyes
The discharge capacity (mAh / cm 2 ) per 1 cm 2 of the positive electrode in each polymer electrolyte battery was determined, and the results are shown in Table 1 below.
It is also shown.

【0025】[0025]

【表1】 [Table 1]

【0026】この結果から明らかなように、微多孔膜3
の空孔中に充填された高分子電解質の空孔に対する充填
率が、この発明の条件を満たす20%〜90%の範囲に
なった実験例2〜9の各高分子電解質電池においては、
この発明の条件を満たさない実験例1,10の高分子電
解質電池に比べて、放電容量が大きく、容量のサイクル
劣化も少なくなっており、特に、上記の充填率が20%
〜60%の範囲になった実験例2〜6の高分子電解質電
池においては、さらに放電容量が大きく、サイクル特性
も向上していた。
As is clear from these results, the microporous membrane 3
In each of the polymer electrolyte batteries of Experimental Examples 2 to 9, in which the filling rate of the polymer electrolyte filled in the pores with respect to the pores was in the range of 20% to 90% satisfying the condition of the present invention,
Compared with the polymer electrolyte batteries of Experimental Examples 1 and 10 which do not satisfy the conditions of the present invention, the discharge capacity is large and the cycle deterioration of the capacity is small. In particular, the filling rate is 20%.
In the polymer electrolyte batteries of Experimental Examples 2 to 6 in which the range was up to 60%, the discharge capacity was further increased and the cycle characteristics were also improved.

【0027】(実験例11〜20)実験例11〜20に
おいては、上記の実験例1〜10における[高分子電解
質を空孔中に充填させた微多孔膜の作製]において、上
記のポリプロピレン製の微多孔膜3中に高分子を充填さ
せるにあたり、その高分子にポリフッ化ビニリデンを用
い、このポリフッ化ビニリデンを溶媒のNMPに種々の
濃度で溶解させた溶液を準備し、上記の微多孔膜3を上
記の各溶液にそれぞれ120分間浸漬させて、各微多孔
膜3の空孔中にポリフッ化ビニリデンを充填させるよう
にし、それ以外については、上記の実験例1〜10の場
合と同様にして、各高分子電解質電池を作製した。
(Experimental Examples 11 to 20) In Experimental Examples 11 to 20, in [Preparation of Microporous Membrane in which Pores are Filled with Polymer Electrolyte] in Experimental Examples 1 to 10 above, polypropylene In filling the polymer in the microporous membrane 3 of 1., polyvinylidene fluoride is used as the polymer, and solutions prepared by dissolving the polyvinylidene fluoride in NMP at various concentrations are prepared. 3 was immersed in each of the above-mentioned solutions for 120 minutes to fill the pores of each microporous membrane 3 with polyvinylidene fluoride, and otherwise, in the same manner as in the case of Experimental Examples 1 to 10 above. Then, each polymer electrolyte battery was produced.

【0028】そして、この実験例11〜20の各高分子
電解質電池についても、上記の実験例1〜10の場合と
同様にして、1サイクル目と200サイクル目とにおい
て、各高分子電解質電池における正極1cm2 あたりの
放電容量(mAh/cm2 )を求め、その結果を下記の
表2に合わせて示した。
Also, regarding each of the polymer electrolyte batteries of Experimental Examples 11 to 20, in the same manner as in the above-described Experimental Examples 1 to 10, in each of the polymer electrolyte batteries in the first cycle and the 200th cycle. The discharge capacity (mAh / cm 2 ) per 1 cm 2 of the positive electrode was determined, and the results are also shown in Table 2 below.

【0029】[0029]

【表2】 [Table 2]

【0030】この結果、この実験例11〜20において
も、上記の実験例1〜10の場合と同様に、微多孔膜3
の空孔中に充填された高分子電解質の空孔に対する充填
率が、この発明の条件を満たす20%〜90%の範囲に
なった実験例12〜19の各高分子電解質電池において
は、この発明の条件を満たさない実験例11,20の高
分子電解質電池に比べて、放電容量が大きく、容量のサ
イクル劣化も少なくなっており、特に、上記の充填率が
20%〜60%の範囲になった実験例12〜16の高分
子電解質電池においては、さらに放電容量が大きく、サ
イクル特性も向上していた。
As a result, also in Experimental Examples 11 to 20, as in the case of Experimental Examples 1 to 10 described above, the microporous membrane 3 was used.
In each of the polymer electrolyte batteries of Experimental Examples 12 to 19 in which the filling rate of the polymer electrolyte filled in the pores to the pores was in the range of 20% to 90% satisfying the conditions of the present invention, Compared with the polymer electrolyte batteries of Experimental Examples 11 and 20 which do not satisfy the conditions of the invention, the discharge capacity is large and the cycle deterioration of the capacity is small, and in particular, the filling rate is in the range of 20% to 60%. In the polymer electrolyte batteries of Experimental Examples 12 to 16, the discharge capacity was further increased and the cycle characteristics were also improved.

【0031】(実験例21〜30)実験例21〜30に
おいては、上記の実験例1〜10における[高分子電解
質を空孔中に充填させた微多孔膜の作製]において、上
記のポリプロピレン製の微多孔膜3中に高分子を充填さ
せるにあたり、その高分子にポリエチレンオキサイドを
用い、このポリエチレンオキサイドを溶媒のアセトニト
リルに種々の濃度で溶解させた溶液を準備し、上記の微
多孔膜3を上記の各溶液にそれぞれ120分間浸漬させ
て、各微多孔膜3の空孔中にポリフッ化ビニリデンを充
填させるようにし、それ以外については、上記の実験例
1〜10の場合と同様にして、各高分子電解質電池を作
製した。
(Experimental Examples 21 to 30) In Experimental Examples 21 to 30, in the above-mentioned Experimental Examples 1 to 10 [Preparation of Microporous Membrane Filled with Polymer Electrolyte in Pores] In filling the polymer into the microporous membrane 3 of 1., polyethylene oxide was used as the polymer, and solutions prepared by dissolving the polyethylene oxide in acetonitrile as solvent at various concentrations were prepared. Each of the above solutions was immersed for 120 minutes so that the pores of each microporous membrane 3 were filled with polyvinylidene fluoride, and other than that, in the same manner as in the case of Experimental Examples 1 to 10 above, Each polymer electrolyte battery was produced.

【0032】そして、実験例21〜30の各高分子電解
質電池についても、上記の実験例1〜10の場合と同様
にして、1サイクル目と200サイクル目とにおいて、
各高分子電解質電池における正極1cm2 あたりの放電
容量(mAh/cm2 )を求め、その結果を下記の表3
に合わせて示した。
Also, regarding each of the polymer electrolyte batteries of Experimental Examples 21 to 30, in the same manner as in the above Experimental Examples 1 to 10, in the first cycle and the 200th cycle,
The discharge capacity (mAh / cm 2 ) per positive electrode 1 cm 2 in each polymer electrolyte battery was determined, and the results are shown in Table 3 below.
It is also shown.

【0033】[0033]

【表3】 [Table 3]

【0034】この結果、この実験例21〜30において
も、上記の実験例1〜10の場合と同様に、微多孔膜3
の空孔中に充填された高分子電解質の空孔に対する充填
率が、この発明の条件を満たす20%〜90%の範囲に
なった実験例22〜29の各高分子電解質電池において
は、この発明の条件を満たさない実験例21,30の高
分子電解質電池に比べて、放電容量が大きく、容量のサ
イクル劣化も少なくなっており、特に、上記の充填率が
20%〜60%の範囲になった実験例22〜26の高分
子電解質電池においては、さらに放電容量が大きく、サ
イクル特性も向上していた。
As a result, also in Experimental Examples 21 to 30, as in the case of Experimental Examples 1 to 10 described above, the microporous membrane 3 was used.
In the polymer electrolyte batteries of Experimental Examples 22 to 29 in which the filling rate of the polymer electrolyte filled in the pores of the above with respect to the pores was in the range of 20% to 90% satisfying the conditions of the present invention, Compared with the polymer electrolyte batteries of Experimental Examples 21 and 30, which do not satisfy the conditions of the invention, the discharge capacity is large and the cycle deterioration of the capacity is small. In particular, the filling rate is in the range of 20% to 60%. In the polymer electrolyte batteries of Experimental Examples 22 to 26, the discharge capacity was further increased and the cycle characteristics were also improved.

【0035】また、上記の実験例1〜10、実験例11
〜20、実験例21〜30の各高分子電解質電池を比較
した場合、微多孔膜3の空孔中に充填される高分子電解
質における高分子に、ポリスチレン鎖が主鎖で側鎖にポ
リエチレンオキサイドを有する高分子を使用した実験例
1〜10の高分子電解質電池は、他の高分子を使用した
実験例11〜20や実験例21〜30の高分子電解質電
池に比べて、放電容量が大きく、容量のサイクル劣化も
少なくなっており、高分子電解質における高分子に、ポ
リスチレン鎖が主鎖で側鎖にポリエチレンオキサイドを
有する高分子を用いることが好ましかった。
Further, the above Experimental Examples 1 to 10 and Experimental Example 11
˜20 and each of the polymer electrolyte batteries of Experimental Examples 21 to 30 are compared, the polymer in the polymer electrolyte filled in the pores of the microporous membrane 3 has a polystyrene chain as a main chain and polyethylene oxide as a side chain. The polymer electrolyte batteries of Experimental Examples 1 to 10 using the polymer having the above have a larger discharge capacity than the polymer electrolyte batteries of Experimental Examples 11 to 20 and Experimental Examples 21 to 30 using other polymers. Also, the cycle deterioration of the capacity was reduced, and it was preferable to use, as the polymer in the polymer electrolyte, a polymer having a polystyrene chain as a main chain and polyethylene oxide as a side chain.

【0036】(実験例31〜41)実験例31〜41に
おいては、上記の実験例1〜10における[高分子電解
質を空孔中に充填させた微多孔膜の作製]において、高
分子電解質における高分子に、上記の実験例1〜10の
場合と同じポリスチレン鎖が主鎖で側鎖にポリエチレン
オキサイドを有する高分子を用い、この高分子を上記の
ポリプロピレン製の微多孔膜3の空孔中に充填させた
後、このように充填された高分子に前記の電解液を含有
させるにあたり、高分子に対する電解液の重量比(電解
液/高分子)を下記の表4に示すように調整し、このよ
うに電解液を含有させてゲル状になった各高分子電解質
が、上記の実験例5の場合と同様に、微多孔膜3の空孔
中に50%の充填率で充填されるようにして各高分子電
解質電池を作製した。
(Experimental Examples 31 to 41) In Experimental Examples 31 to 41,
In addition, [Polymer Electrolysis in Experimental Examples 1 to 10 above]
In the production of a microporous membrane in which the quality is filled in the pores]
For the polymer in the molecular electrolyte, the
The same polystyrene chain as the main chain and polyethylene on the side chain
A polymer containing oxide is used, and this polymer is
The microporous membrane 3 made of polypropylene was filled in the pores.
Afterwards, the polymer filled in this way contains the above electrolyte solution
In doing so, the weight ratio of the electrolytic solution to the polymer (electrolysis
Liquid / polymer) was adjusted as shown in Table 4 below.
Polymer electrolytes containing gel electrolyte containing gel
However, as in the case of Experimental Example 5 described above,
Each polymer electrolyte is filled with 50% filling rate.
A degradable battery was produced.

【0037】そして、この実験例31〜40の各高分子
電解質電池についても、上記の実験例1〜10の場合と
同様にして、1サイクル目と200サイクル目とにおい
て、各高分子電解質電池における正極1cm2 あたりの
放電容量(mAh/cm2 )を求め、その結果を下記の
表4に合わせて示した。
Also, regarding each of the polymer electrolyte batteries of Experimental Examples 31 to 40, in the same manner as in the above-mentioned Experimental Examples 1 to 10, in each of the polymer electrolyte batteries in the first cycle and the 200th cycle. The discharge capacity (mAh / cm 2 ) per 1 cm 2 of the positive electrode was determined, and the results are also shown in Table 4 below.

【0038】[0038]

【表4】 [Table 4]

【0039】この結果、微多孔膜3の空孔中に充填され
た高分子に電解液を含有させるにあたり、高分子に対す
る電解液の重量比(電解液/高分子)が0.1〜1.9
の範囲になった実験例5,33〜37の各高分子電解質
電池においては、放電容量が大きく、容量のサイクル劣
化も少なくなっていた。
As a result, when the electrolyte filled in the polymer filled in the pores of the microporous membrane 3, the weight ratio of the electrolyte to the polymer (electrolyte / polymer) is 0.1 to 1. 9
In each of the polymer electrolyte batteries of Experimental Examples 5 and 33 to 37 in which the range of 5 was satisfied, the discharge capacity was large and the cycle deterioration of the capacity was small.

【0040】(実験例41〜43)実験例41〜43に
おいては、上記の実験例1〜10における[高分子電解
質を空孔中に充填させた微多孔膜の作製]において、高
分子電解質を充填させる微多孔膜3の種類を変更させ、
下記の表5に示すように、実験例41では膜厚が30μ
mで空孔率が90%のポリエチレン微多孔膜を、実験例
42では膜厚が90μmで空孔率が90%のポリプロピ
レン不織布を、実験例43では膜厚が80μmで空孔率
が85%のポリフッ化ビニリデンを用いるようにし、そ
れ以外は、上記の実験例5の場合と同様して各高分子電
解質電池を作製した。
(Experimental Examples 41 to 43) In Experimental Examples 41 to 43, the polymer electrolyte was used in [Preparation of Microporous Membrane with Porous Electrolytes Filled] in Experimental Examples 1 to 10 above. By changing the type of microporous membrane 3 to be filled,
As shown in Table 5 below, in Experimental Example 41, the film thickness was 30 μm.
m is a polyethylene microporous membrane having a porosity of 90%, Experimental Example 42 is a polypropylene nonwoven fabric having a film thickness of 90 μm and a porosity of 90%, and Experimental Example 43 is a film having a thickness of 80 μm and a porosity of 85%. Each of the polymer electrolyte batteries was produced in the same manner as in Experimental Example 5 except that the polyvinylidene fluoride was used.

【0041】そして、この実験例41〜43の各高分子
電解質電池についても、上記の実験例1〜10の場合と
同様にして、1サイクル目と200サイクル目とにおい
て、各高分子電解質電池における正極1cm2 あたりの
放電容量(mAh/cm2 )を求め、その結果を下記の
表5に合わせて示した。
Also, regarding each of the polymer electrolyte batteries of Experimental Examples 41 to 43, in the same manner as in the above Experimental Examples 1 to 10, in each of the polymer electrolyte batteries in the first cycle and the 200th cycle. The discharge capacity (mAh / cm 2 ) per 1 cm 2 of the positive electrode was determined, and the results are also shown in Table 5 below.

【0042】[0042]

【表5】 [Table 5]

【0043】この結果、高分子電解質を充填させる微多
孔膜3にポリプロピレン微多孔膜やポリエチレン微多孔
膜を用いた実験例5,41の各高分子電解質電池の場
合、これらの微多孔膜3を薄くすることができ、放電容
量が大きくなっていたのに対して、ポリプロピレン不織
布やポリフッ化ビニリデンを用いた実験例42,43の
各高分子電解質電池においては、ポリプロピレン不織布
やポリフッ化ビニリデンの強度が弱いため、その膜厚を
大きくしなければならず、実験例5,41のものに比べ
て放電容量が大きく低下しており、またポリフッ化ビニ
リデンを用いた実験例43のものにおいては、電解液と
の反応によってサイクル特性も低下していた。
As a result, in the case of each polymer electrolyte battery of Experimental Examples 5 and 41 in which the polypropylene microporous membrane or the polyethylene microporous membrane was used as the microporous membrane 3 for filling the polymer electrolyte, these microporous membranes 3 were used. Although it was possible to reduce the thickness and increase the discharge capacity, in the polymer electrolyte batteries of Experimental Examples 42 and 43 using polypropylene non-woven fabric and polyvinylidene fluoride, the strength of polypropylene non-woven fabric and polyvinylidene fluoride was higher. Since it is weak, the film thickness must be increased, and the discharge capacity is greatly reduced as compared with those in Experimental Examples 5 and 41. In Experimental Example 43 using polyvinylidene fluoride, the electrolytic solution is The cycle characteristics were also deteriorated by the reaction with.

【0044】[0044]

【発明の効果】以上詳述したように、この発明の請求項
1における高分子電解質電池においては、高分子電解質
を空孔中に充填させた微多孔膜が正極と負極との間に設
けられてなる高分子電解質電池において、高分子電解質
を微多孔膜の空孔中に充填させるにあたり、微多孔膜と
して空孔率が80%以上のものを用いると共に、この微
多孔膜の空孔中に高分子電解質を体積比で20〜90%
の範囲で充填させるようにしたため、高分子電解質が正
極や負極と十分に接触してリチウムイオン等の移動がス
ムーズに行なえる一方、微多孔膜中に高分子電解質が充
填されていない空孔の部分が存在し、充放電によって正
極や負極が体積変化する場合においても、この体積変化
が上記の微多孔膜によって抑制されるということが少な
くなり、十分な充放電容量が得られると共に、サイクル
特性も向上した。さらに、この請求項1における高分子
電解質電池においては、上記の微多孔膜に、ポリプロピ
レンやポリエチレンの微多孔膜を用いるようにしたた
め、その膜厚を薄くしても正極や負極の体積変化によっ
て破れたりせず、また化学的にも安定で電解液等と反応
せず、サイクル特性が低下することなく、高分子電解質
電池における充放電容量が更に向上した。
As described above in detail, in the polymer electrolyte battery according to the first aspect of the present invention, the microporous membrane having the pores filled with the polymer electrolyte is provided between the positive electrode and the negative electrode. In filling the polymer electrolyte into the pores of the microporous membrane, a microporous membrane having a porosity of 80% or more is used, and the pores of the microporous membrane are filled with the polymer electrolyte. 20% to 90% by volume of polymer electrolyte
Since the polymer electrolyte is sufficiently filled with the positive electrode and the negative electrode, the movement of lithium ions and the like can be performed smoothly while the pores of the microporous membrane not filled with the polymer electrolyte are filled. Even when there is a portion and the positive electrode and the negative electrode change in volume due to charge and discharge, this change in volume is less likely to be suppressed by the microporous membrane, and sufficient charge and discharge capacity can be obtained, and cycle characteristics can be improved. Also improved. Further, the polymer according to claim 1
In an electrolyte battery, the above-mentioned microporous membrane has a polypropylene
Made to use a microporous membrane of ren or polyethylene
Therefore, even if the film thickness is reduced, it may be
Does not break and is chemically stable and reacts with electrolytes, etc.
Polymer electrolyte without deterioration of cycle characteristics
The charge / discharge capacity of the battery was further improved.

【0045】また、この発明の請求項2に示すように、
電解液を高分子中に含有させた高分子電解質を用い、こ
の高分子に対する電解液の割合(電解液/高分子)が重
量比で0.1〜1.9の範囲になるようにすると、この
高分子電解質と正極や負極との接触性が向上すると共
に、高分子中に含有させた電解液が正極や負極と反応す
るということもなく、高分子電解質電池における充放電
容量やサイクル特性がさらに向上した。
As described in claim 2 of the present invention,
When a polymer electrolyte containing an electrolytic solution in a polymer is used and the ratio of the electrolytic solution to the polymer (electrolyte / polymer) is in the range of 0.1 to 1.9 by weight, The contact property between the polymer electrolyte and the positive electrode or the negative electrode is improved, and the electrolytic solution contained in the polymer does not react with the positive electrode or the negative electrode, and the charge / discharge capacity and cycle characteristics in the polymer electrolyte battery are improved. Further improved.

【0046】また、この発明の請求項3に示すように、
高分子電解質における高分子に、ポリスチレン鎖を主鎖
とし、ポリエチレンオキサイドを側鎖に有する高分子を
用いると、この高分子が正極や負極の体積変化に追随し
て変形し、高分子電解質電池における充放電容量やサイ
クル特性がさらに向上した。
Further, as described in claim 3 of the present invention,
When a polymer having a polystyrene chain as a main chain and polyethylene oxide as a side chain is used as the polymer in the polymer electrolyte, the polymer is deformed following the volume change of the positive electrode or the negative electrode, and The charge / discharge capacity and cycle characteristics were further improved.

【0047】[0047]

【図面の簡単な説明】[Brief description of drawings]

【図1】実験例において作製した高分子電解質電池の内
部構造を示した断面説明図である。
FIG. 1 is an explanatory cross-sectional view showing the internal structure of a polymer electrolyte battery produced in an experimental example.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 微多孔膜 1 positive electrode 2 Negative electrode 3 Microporous membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平10−247521(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 2/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihan Hondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Koji Nishio, 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 within Sanyo Electric Co., Ltd. (56) Reference JP-A-10-247521 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 2/16

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高分子電解質空孔中に充填された微多
孔膜が正極と負極との間に設けられてなる高分子電解質
電池において、上記の微多孔膜として、ポリエチレン又
はポリプロピレンで構成され、空孔率が80%以上にな
ったものを用いると共に、この微多孔膜の空孔に対し
て、上記の高分子電解質が体積比で20〜90%の範囲
で充填されていることを特徴とする高分子電解質電池。
1. A polymer electrolyte battery thus provided between the microporous membrane polymer electrolyte is filled into pores positive and negative, as the microporous film of the polyethylene also
Is made of polypropylene and has a porosity of 80% or more.
With use of those Tsu, an empty hole of the microporous membrane, a polymer electrolyte battery, characterized in that said polymer electrolyte is filled in a range of 20% to 90% by volume.
【請求項2】 請求項1に記載した高分子電解質電池に
おいて、高分子中に電解液が含有された高分子電解質を
用い、この高分子電解質における高分子に対する電解液
の重量比が0.1〜1.9の範囲であることを特徴とす
る高分子電解質電池。
2. The polymer electrolyte battery according to claim 1, wherein a polymer electrolyte in which an electrolyte solution is contained in a polymer is used, and a weight ratio of the electrolyte solution to the polymer in the polymer electrolyte is 0.1. The polymer electrolyte battery is in the range of ˜1.9.
【請求項3】 請求項1又は2に記載した高分子電解質
電池において、上記の高分子電解質における高分子に、
ポリスチレン鎖を主鎖とし、ポリエチレンオキサイドを
側鎖に有する高分子を用いたことを特徴とする高分子電
解質電池。
3. The polymer electrolyte battery according to claim 1 or 2, wherein the polymer in the polymer electrolyte is
A polymer electrolyte battery comprising a polymer having a polystyrene chain as a main chain and polyethylene oxide as a side chain.
JP19802997A 1997-07-24 1997-07-24 Polymer electrolyte battery Expired - Fee Related JP3462722B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19802997A JP3462722B2 (en) 1997-07-24 1997-07-24 Polymer electrolyte battery
US09/119,608 US6132904A (en) 1997-07-24 1998-07-22 Polyelectrolytic battery having a polyelectrolyte based on a polystyrene main chain and polyethylene oxide side chain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19802997A JP3462722B2 (en) 1997-07-24 1997-07-24 Polymer electrolyte battery

Publications (2)

Publication Number Publication Date
JPH1140197A JPH1140197A (en) 1999-02-12
JP3462722B2 true JP3462722B2 (en) 2003-11-05

Family

ID=16384349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19802997A Expired - Fee Related JP3462722B2 (en) 1997-07-24 1997-07-24 Polymer electrolyte battery

Country Status (1)

Country Link
JP (1) JP3462722B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340260A (en) * 1999-05-27 2000-12-08 Toshiba Battery Co Ltd Polymer lithium secondary battery
JP2001319689A (en) * 2000-05-08 2001-11-16 Matsushita Electric Ind Co Ltd Lithium-polymer secondary battery
WO2008127829A2 (en) * 2007-04-15 2008-10-23 3M Innovative Properties Company Separator for an electrochemical cell
EP3043402B1 (en) * 2013-09-02 2020-12-09 W.L. Gore & Associates G.K. Protective film, separator using same, and secondary battery
WO2021225359A1 (en) * 2020-05-06 2021-11-11 주식회사 삼양사 Polymer-based solid electrolyte with improved mechanical strength, preparation method therefor, and lithium secondary battery comprising solid electrolyte

Also Published As

Publication number Publication date
JPH1140197A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
US6528212B1 (en) Lithium battery
JP3702318B2 (en) Non-aqueous electrolyte battery electrode and non-aqueous electrolyte battery using the electrode
JP4412778B2 (en) Polymer electrolyte battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP2003173770A (en) Nonaqueous electrolyte battery and manufacturing method of nonaqueous electrolyte battery
JPH0864238A (en) Nonaqueous electrolyte battery
JP2003308875A (en) Nonaqueous secondary battery
JP3525553B2 (en) Non-aqueous polymer battery
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JP3883726B2 (en) Non-aqueous electrolyte secondary battery
JP3443773B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3416440B2 (en) Anode for lithium battery and lithium battery
JP3831550B2 (en) Non-aqueous electrolyte battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP3462722B2 (en) Polymer electrolyte battery
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JP2000048862A (en) Charging method for nonaqueous secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP4127890B2 (en) Non-aqueous electrolyte battery
JP4449269B2 (en) Lithium battery
JPH08124597A (en) Solid electrolytic secondary cell
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3525921B2 (en) Cathode active material for non-aqueous secondary batteries
JP3516133B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2003157899A (en) Nonaqueous polymer battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees