JPS6348572B2 - - Google Patents

Info

Publication number
JPS6348572B2
JPS6348572B2 JP61227048A JP22704886A JPS6348572B2 JP S6348572 B2 JPS6348572 B2 JP S6348572B2 JP 61227048 A JP61227048 A JP 61227048A JP 22704886 A JP22704886 A JP 22704886A JP S6348572 B2 JPS6348572 B2 JP S6348572B2
Authority
JP
Japan
Prior art keywords
iodine
silver
concentration
gas
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61227048A
Other languages
Japanese (ja)
Other versions
JPS6380831A (en
Inventor
Takaaki Tamura
Norihiko Fujita
Mikiro Kumagai
Masami Kuishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO GENSHIRYOKU KYOKUCHO
Original Assignee
KAGAKU GIJUTSUCHO GENSHIRYOKU KYOKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO GENSHIRYOKU KYOKUCHO filed Critical KAGAKU GIJUTSUCHO GENSHIRYOKU KYOKUCHO
Priority to JP61227048A priority Critical patent/JPS6380831A/en
Priority to EP87113910A priority patent/EP0261662A3/en
Publication of JPS6380831A publication Critical patent/JPS6380831A/en
Publication of JPS6348572B2 publication Critical patent/JPS6348572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 技術分野: 本発明は、混合気体中からヨウ素及び/又はヨ
ウ素化合物をほぼ完全に除去する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field: The present invention relates to a method for almost completely removing iodine and/or iodine compounds from a gas mixture.

従来技術: 使用済み核燃料の再処理工場における、使用済
み核燃料の溶解工程から発生するオフガス(以
下、DOGと略称する)から、その中に含まれる
ヨウ素を除去する方法としては、既に種々の方法
が提案されている。
Conventional technology: Various methods have already been used to remove iodine contained in off-gas (hereinafter abbreviated as DOG) generated from the spent nuclear fuel melting process at spent nuclear fuel reprocessing plants. Proposed.

それら方法にはアルカリ洗浄法、メルキユレツ
クス(Mercurex)法、ヨードツクス(Iodox)
法などの湿式法と各種の固形吸着剤を用いる乾式
法とがある。先ず、湿式法については、アルカリ
洗浄法は、DOGを1―2Mの苛性ソーダ水溶液で
洗浄し、DOG中のヨウ素をNaI、NaOI、NaIO3
などに変えることにより、吸収除去する方法であ
る。この方法は生成ヨウ素化物の沈澱の外に、
DOG中に含まれているCO2やNOxと苛性ソーダ
との反応により、多量のスラツジが生成し、後処
理すべき放射性廃棄物の量が著しく増大し、その
処理のための負担が嵩むという欠点がある(参考
文献Holladay,D.W.,1979,A literature
survey:methods of the removal of iodine
species from off―gases and liquid waste
streams of nuclear power and nuclear fuel
reprocessing plants、with emphasis on solid
sorbents.ORNL/TM―6350;International
Atomic Energy Agency,1980,Radioiodine
removal in nuclear facillities.Technica
reports series No.201,IAEA,Vienna;
Benedict,M.,T.H.Pigford and H.W.Levi,
1981、Nuclear Chemical Engineering,
McGraw―Hill N.Y.) メルキユレツクス法は吸収液として、硝酸水銀
の硝酸溶液(1―14mol/l)を使用し、ヨウ素
をHgI2、Hg(IO32等に変えて、吸収除去する方
法である。この方法は水銀を使用する為、水銀に
よる公害を排除する為、十分な対策を必要として
いる(上記参照文献,及びを参照)。なお、
公開されているメルキユレツクス法によると、そ
の操作過程に於いて、ヨウ素を吸収した硝酸水銀
溶液は、電解槽に送られ、そこでヨウ素と水銀と
に分解され、ヨウ素はヨウ化銅として固定し、水
銀を循環使用している。このように、その操作過
程は極めて複雑に構成されなければならないとい
う、欠点を有している(参考文献Collad、G.E.
R.et al.,1978,Iodine trapping and
conditioning in the mercurex system,16th
DOE Nuclear Air Cleaning Conference,
p552.)。最後に、ヨードツクス法は、20―
22mol/lという高濃度の硝酸を吸収液として使
用し、ヨウ素をHI3O8として沈澱させ、分離回収
する方法である。この方法では、濃硝酸が用いら
れるため、その装置材料が腐蝕させるという好ま
しくない難点を有している(上記参考文献,
及びを参照)。
These methods include alkaline cleaning, Mercurex, and Iodox.
There are two methods: wet methods such as methane and dry methods using various solid adsorbents. First, regarding the wet method, in the alkaline cleaning method, DOG is washed with a 1-2M caustic soda aqueous solution, and the iodine in DOG is removed by NaI, NaOI, NaIO 3
This is a method of absorbing and removing it by changing it to something like In addition to precipitation of the iodide produced, this method
The reaction between CO 2 and NOx contained in DOG and caustic soda generates a large amount of sludge, which significantly increases the amount of radioactive waste that must be post-processed, which increases the burden of processing. (Reference Holladay, DW, 1979, A literature
survey:methods of the removal of iodine
species from off-gases and liquid waste
streams of nuclear power and nuclear fuel
reprocessing plants, with emphasis on solid
sorbents.ORNL/TM―6350;International
Atomic Energy Agency, 1980, Radioiodine
removal in nuclear facilities.Technica
reports series No.201, IAEA, Vienna;
Benedict, M., THPigford and HWLevi,
1981, Nuclear Chemical Engineering,
McGraw-Hill NY) Mercurex method uses a nitric acid solution of mercury nitrate (1-14 mol/l) as an absorption liquid, and converts iodine into HgI 2 , Hg(IO 3 ) 2, etc., and absorbs and removes it. . Since this method uses mercury, sufficient measures are required to eliminate pollution caused by mercury (see the above references and). In addition,
According to the published Mercurex method, during its operation, the mercury nitrate solution that has absorbed iodine is sent to an electrolytic cell where it is decomposed into iodine and mercury, fixing the iodine as copper iodide and converting it into mercury. is used cyclically. As such, it has the disadvantage that its operating process must be extremely complex (Reference Collad, GE
R. et al., 1978, Iodine trapping and
conditioning in the mercurex system,16th
DOE Nuclear Air Cleaning Conference,
p552.). Finally, the iodox method uses 20-
This method uses nitric acid at a high concentration of 22 mol/l as an absorption liquid to precipitate iodine as HI 3 O 8 , which is then separated and recovered. This method uses concentrated nitric acid, which has the undesirable disadvantage of corroding the equipment materials (see the above references,
and ).

次に、ヨウ素の除去に各種の固形吸着剤を使用
する乾式法に関しては、その大部分は銀又は銀塩
とヨウ素との反応が利用されている。例えば、
AC6120は、非晶質ケイ酸を担体とし、それに硝
酸銀を添着した吸着剤であつて、NOxの共存下
でも、効率良くヨウ素を吸着除去できる(参考文
献特公昭53−22077参照)。しかし乍ら、硝酸銀
とヨウ素及びヨウ素化合物とを十分に急速に反応
させるためには、DOGを約150℃に加熱しなけれ
ばならない。(参考文献及びを参照)。また、
米国ハンフオード工場では素焼きのベルルサドル
に硝酸銀を担持せしめた吸着剤を使用して、良好
な成果を挙げている。しかし乍ら、この吸着剤を
使用する場合、DOGを加熱しなければならず、
110℃以下の温度では銀とヨウ素との反応が生起
しない、と言われている(参考文献及び山本
寛,1976,原子力化学工学,日刊工業新聞参照)。
Next, regarding dry methods that use various solid adsorbents to remove iodine, most of them utilize the reaction of silver or silver salt with iodine. for example,
AC6120 is an adsorbent made of amorphous silicic acid as a carrier and impregnated with silver nitrate, and can efficiently adsorb and remove iodine even in the coexistence of NOx (see Japanese Patent Publication No. 53-22077). However, in order to cause the silver nitrate to react with iodine and iodine compounds rapidly enough, the DOG must be heated to about 150°C. (See references and). Also,
The Hanford factory in the US has had good success using an adsorbent containing silver nitrate on unglazed Berl saddles. However, when using this adsorbent, DOG must be heated,
It is said that the reaction between silver and iodine does not occur at temperatures below 110°C (see references and Hiroshi Yamamoto, 1976, Nuclear Chemical Engineering, Nikkan Kogyo Shimbun).

なお、その他の種々の銀交換ゼオライトによる
DOG中のヨウ素の除去法も報告されているが、
いずれも、前者と同様に、100℃以上に加熱した
DOGを使用しなければ目的は達成できない(参
考文献及びThomas,T.R.,B.A.Stapeles
and L.P.Murphy,1978,The development of
AgZ for bulk 129I storage.Proc.15th DOE
Nuclear Air Cleaning Conference,p394.)。ま
た、固形吸着剤を使用する場合は、何れも、ヨウ
素を吸収したAC6120や銀交換ゼオライトなどを、
そのまま貯蔵するか、または、最終処分に付そう
とする場合、それら余分な体積の担体をも取り扱
わなければならないという、決定的な不利を有し
ている。
In addition, various other silver-exchanged zeolites can be used.
A method for removing iodine from DOG has also been reported;
Both were heated to 100℃ or higher, similar to the former.
The objective cannot be achieved without the use of DOG (References and Thomas, TR, BA Stapeles
and LPMurphy, 1978, The development of
AgZ for bulk 129 I storage.Proc.15th DOE
Nuclear Air Cleaning Conference, p394.) In addition, when using a solid adsorbent, AC6120 that has absorbed iodine or silver-exchanged zeolite, etc.
If it is intended to be stored as is or to be subjected to final disposal, it has the decisive disadvantage that the extra volume of the carrier must also be handled.

本発明の目的: 本発明の目的は、上述のような湿式法及び乾式
法の持つ欠陥を有せず、ヨウ素化合物以外の余分
な廃棄物を伴うことなく、操作工程を簡単に構成
することができ、濃硝酸のような腐蝕性の薬品を
使用することなく、また、DOGを予め加熱する
必要もなく、DOG中に共存するNOxや水分の影
響を殆ど受けることのない方法を提供するに存す
る。
OBJECTS OF THE INVENTION: The object of the present invention is to simplify the operational steps without having the drawbacks of the wet and dry methods mentioned above, without involving any extra waste other than iodine compounds. The purpose of the present invention is to provide a method that does not require the use of corrosive chemicals such as concentrated nitric acid, does not require preheating DOG, and is almost unaffected by NOx and moisture coexisting in DOG. .

発明の構成と効果: 本発明のこの目的は、本発明により、少なくと
もヨウ素及び/又はヨウ素化合物を含む混合気体
あるいは蒸気を、少なくとも銀イオンを含む水溶
液と接触させ、該気体中のヨウ素を不溶性ヨウ素
化物の沈澱として除去することによつて、達成で
きた。
Structure and effect of the invention: According to the present invention, a mixed gas or vapor containing at least iodine and/or an iodine compound is brought into contact with an aqueous solution containing at least silver ions, and the iodine in the gas is converted into insoluble iodine. This was achieved by removing the compound as a precipitate.

即ち、本発明は、ヨウ素及び/又はヨウ素化合
物を含む混合気体あるいは蒸気を、常温で、銀イ
オンを含む水溶液に接触させるものであつて、い
わゆる湿式法の範疇に属するものであり、銀塩を
固形担体に担持させる乾式法ではない。
That is, the present invention belongs to the so-called wet method, in which a mixed gas or vapor containing iodine and/or an iodine compound is brought into contact with an aqueous solution containing silver ions at room temperature. It is not a dry method in which it is supported on a solid carrier.

銀イオンを含む水溶液としては、各種の鉱酸
塩、殊に硝酸塩又は硫酸塩が使用でき、その濃度
範囲は0.0001ないし5mol/lの広範囲で差し支
えなく、殊に、0.001ないし1mol/lの範囲が好
都合である。また、それら鉱酸塩の水溶液は鉱酸
を含んでいてもよい。処理しようとする気体と銀
イオンを含む水溶液との気・液接触を実施する為
の装置としては、気泡塔、スプレー塔、棚段塔、
濡れ壁塔などの慣用の装置、その他、新規な気・
液接触装置など、どのような型式の装置でも使用
できる。
Various mineral acid salts, especially nitrates or sulfates, can be used as the aqueous solution containing silver ions, and the concentration range can be wide ranging from 0.0001 to 5 mol/l, especially 0.001 to 1 mol/l. It's convenient. Moreover, the aqueous solution of these mineral salts may contain a mineral acid. Equipment for carrying out gas-liquid contact between the gas to be treated and the aqueous solution containing silver ions includes a bubble column, a spray column, a tray column,
Conventional equipment such as wet wall towers, and other new
Any type of equipment can be used, including liquid contact equipment.

また、本発明で処理されるべきヨウ素及び/又
はヨウ素化合物を含む混合気体あるいは蒸気に
は、除去さるべき任意の濃度のヨウ素の外、たと
えば2000ppm程度の二酸化窒素及び/又は
5000ppm程度の水分が含まれていて差し支えな
く、それらの現在はヨウ素類の吸収効率に対し
て、格別の悪影響を与えることがないことが、明
らかにせられている。
In addition, the mixed gas or vapor containing iodine and/or iodine compounds to be treated in the present invention may include, in addition to any concentration of iodine to be removed, nitrogen dioxide and/or
It has been shown that it is okay to contain about 5000 ppm of water, and that it does not have any particular negative effect on the absorption efficiency of iodine.

従つて、本発明を実施するための装置は、ヨウ
素を含有する気体を予め、処理することなく、そ
のまま、気・液接触装置に導入でき、後処理装置
の簡素さと相俟つて、極めて簡単に構成すること
ができる。即ち、本発明の方法によれば、ヨウ素
は不溶解性のヨウ素化物として沈澱するから、容
易に常法によつて、それを分離することができ
る。そして、本発明の方法で廃棄物として除去さ
れるものはこの沈澱だけであるから、廃棄物の量
は従来、知られている乾式法に対しては勿論、何
れの湿式法に対比しても著しく少量であつて、極
めて有利である。
Therefore, the device for carrying out the present invention allows the iodine-containing gas to be directly introduced into the gas-liquid contacting device without being treated in advance, and combined with the simplicity of the post-processing device, it is extremely easy to use. Can be configured. That is, according to the method of the present invention, iodine is precipitated as an insoluble iodide, which can be easily separated by conventional methods. Since this precipitate is the only thing that is removed as waste in the method of the present invention, the amount of waste is not only compared to the conventionally known dry method but also compared to any wet method. This is a very small amount, which is very advantageous.

以下、本発明を実施例によつて、より詳細に説
明する。但し、本発明はそれらにより、限定され
るものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited thereto.

実施例 1 20℃の恒温水中で、10mmol/lの硝酸銀水溶
液50mlにヨウ素200ppmを含む乾燥空気を、
0.5l/minの流速で通気したところ、出口ガス中
のヨウ素濃度の経時変化は添付図1の通りで、通
ガス量26の時点のヨウ素の除去率は、99.885%
であつた。この値を、除染係数(=入り口ヨウ素
濃度/出口ヨウ素濃度=DF)に換算するとDF=
6.7×103になる。また破過後の残存銀イオンの濃
度は、0.05ppm以下であつた。これは始めに存在
していた銀の99.9977%以上が有効に利用されて
いたことを意味するものである。
Example 1 Dry air containing 200 ppm of iodine was added to 50 ml of a 10 mmol/l silver nitrate aqueous solution in constant temperature water at 20°C.
When aerating at a flow rate of 0.5 l/min, the iodine concentration in the outlet gas changed over time as shown in attached Figure 1, and the iodine removal rate at the gas flow rate of 26% was 99.885%.
It was hot. Converting this value into a decontamination coefficient (=inlet iodine concentration/outlet iodine concentration=DF), DF=
It becomes 6.7× 103 . The concentration of silver ions remaining after breakthrough was 0.05 ppm or less. This means that over 99.9977% of the silver that originally existed was put to good use.

実施例 2 20℃の恒温槽中で、10、50及び100mmol/l
の硝酸銀水溶液に、ヨウ素200ppm、二酸化窒素
2000ppm及び水5000ppmを含むDOG模擬ガスを、
0.5l/minの流速で通気したとき、出口ガス中の
ヨウ素濃度は添付図2に示すような経時変化を示
した。この図から、ヨウ素の吸収量は硝酸銀の濃
度に、ほぼ比例していることが判る。銀の有効利
用率は、何れの場合も99.9977%以上であつた。
また実施例1と実施例2の10mmol/lの場合を
比較すると、共存するNOxはヨウ素の吸収に影
響しない事が判る。
Example 2 10, 50 and 100 mmol/l in a constant temperature bath at 20°C
Add 200ppm of iodine and nitrogen dioxide to the aqueous solution of silver nitrate.
DOG simulated gas containing 2000ppm and water 5000ppm,
When aerating at a flow rate of 0.5 l/min, the iodine concentration in the outlet gas showed a change over time as shown in Figure 2 attached. From this figure, it can be seen that the amount of iodine absorbed is approximately proportional to the concentration of silver nitrate. The effective utilization rate of silver was 99.9977% or more in all cases.
Further, when comparing the cases of 10 mmol/l in Example 1 and Example 2, it is found that the coexisting NOx does not affect the absorption of iodine.

実施例 3 実施例2と同様の実験条件で、硝酸濃度が
4mol/l、硝酸銀濃度が50mmol/lの水溶液を
用いて実験を行つた。出口ガス中のヨウ素濃度の
経時変化は添付図3に示した通りであり、実施例
2の50mmol/lの場合と比較すると、ヨウ素の
吸収は液中に共存する硝酸の影響を殆ど受けない
ことが判る。この結果は、DOG中のNOxが吸収
されて、反応 3NO2+H2O=2HNO3+NO に従つてかなり大量に硝酸が生成しても、その影
響は小さいことを示すものである。
Example 3 Under the same experimental conditions as Example 2, the nitric acid concentration was
The experiment was conducted using an aqueous solution with a silver nitrate concentration of 4 mol/l and a silver nitrate concentration of 50 mmol/l. The change over time in the iodine concentration in the outlet gas is shown in attached Figure 3, and compared to the case of 50 mmol/l in Example 2, the absorption of iodine is hardly affected by nitric acid coexisting in the liquid. I understand. This result shows that even if NOx in DOG is absorbed and nitric acid is produced in a fairly large amount according to the reaction 3NO 2 +H 2 O=2HNO 3 +NO, the effect is small.

実施例 4 実施例2と同様の実験条件で、濃度
12.5mmol/lの硫酸銀水溶液を用いて実験した
ところ、出口ガス中のヨウ素濃度は添付図4のよ
うな経時変化を示した。硫酸銀水溶液も硝酸銀水
溶液と同様のヨウ素除去能力のあることがわかつ
た。また、破過後の残存銀イオンの濃度は、
0.05ppm以下であつた。これは銀利用率99.998%
以上に相当する。
Example 4 Under the same experimental conditions as Example 2, the concentration
When an experiment was conducted using a 12.5 mmol/l silver sulfate aqueous solution, the iodine concentration in the outlet gas showed a change over time as shown in attached Figure 4. It was found that silver sulfate aqueous solution has the same iodine removal ability as silver nitrate aqueous solution. In addition, the concentration of residual silver ions after breakthrough is
It was below 0.05ppm. This is a silver usage rate of 99.998%
This corresponds to the above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は、本発明の方法の効果を説明
する説明図である。
FIGS. 1 to 4 are explanatory diagrams illustrating the effects of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくともヨウ素及び/又はヨウ素化合物を
含む混合気体あるいは蒸気を、少なくとも銀イオ
ンを含む水溶液と接触させ、該気体中のヨウ素を
不溶性ヨウ素化物の沈澱として除去することを特
徴とするヨウ素の除去法。
1. A method for removing iodine, which comprises bringing a mixed gas or vapor containing at least iodine and/or an iodine compound into contact with an aqueous solution containing at least silver ions, and removing the iodine in the gas as a precipitate of insoluble iodide.
JP61227048A 1986-09-25 1986-09-25 Removal of iodine in gas Granted JPS6380831A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61227048A JPS6380831A (en) 1986-09-25 1986-09-25 Removal of iodine in gas
EP87113910A EP0261662A3 (en) 1986-09-25 1987-09-23 Method for removal of iodine in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227048A JPS6380831A (en) 1986-09-25 1986-09-25 Removal of iodine in gas

Publications (2)

Publication Number Publication Date
JPS6380831A JPS6380831A (en) 1988-04-11
JPS6348572B2 true JPS6348572B2 (en) 1988-09-29

Family

ID=16854709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227048A Granted JPS6380831A (en) 1986-09-25 1986-09-25 Removal of iodine in gas

Country Status (2)

Country Link
EP (1) EP0261662A3 (en)
JP (1) JPS6380831A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077099B2 (en) * 1988-09-26 1995-01-30 動力炉・核燃料開発事業団 Recovery and storage method of radioactive iodine by freeze-vacuum drying method
WO1995028714A1 (en) * 1994-04-19 1995-10-26 Joint Stock Company 'kkip' Process and agents for removing iodine from the atmosphere
CN102371192B (en) * 2010-08-23 2013-04-03 中国石油化工股份有限公司 Preparation method of deiodination agent
CN102371147B (en) * 2010-08-23 2013-05-08 中国石油化工股份有限公司 Preparation method of iodine removing agent

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3429655A (en) * 1966-02-09 1969-02-25 Atomic Energy Commission Method and filter for removing iodine from gases
DE2913329C2 (en) * 1979-04-03 1984-11-22 Dechema Deutsche Gesellschaft F. Chem. Apparatewesen E.V., 6000 Frankfurt Process for the separation of traces of gaseous pollutants based on sulfur from exhaust gases by chemical absorption

Also Published As

Publication number Publication date
EP0261662A3 (en) 1988-06-15
EP0261662A2 (en) 1988-03-30
JPS6380831A (en) 1988-04-11

Similar Documents

Publication Publication Date Title
EP0111839B1 (en) Method of disposing radioactive ion exchange resin
Holladay Literature survey: methods for the removal of iodine species from off-gases and liquid waste streams of nuclear power and nuclear fuel reprocessing plants, with emphasis on solid sorbents
CN102921278A (en) Method for collaboratively controlling multi-pollutants produced from waste incineration smokes
EP0408772B1 (en) Exhaust gas cleaning method
JPS6348572B2 (en)
Burger et al. HWVP Iodine Trap Evaluation
KR920007856B1 (en) Method of removing gassy acidic halogen compound
KR100764904B1 (en) METHOD FOR RECOVERING OF THE SPENT ION EXCHANGE MATERIALS SELECTIVE FOR THE Cs AND Sr ION SORPTION
EP0254538A1 (en) Method for dry clean-up of waste material
JPH04118596A (en) Separation method for cesium from aqueous solution containing nitric acid
JP2012242092A (en) Processing method of radioactive cesium containing contaminated water
CN101313367B (en) Fast reduction of iodine species to iodide
US20230182116A1 (en) Regenerating agent for radionuclide adsorbent, method for regenerating spent radionuclide adsorbent using same, and method for treating spent regenerating agent
US8957276B2 (en) Method of processing waste material
JP2011115772A (en) Method and apparatus for treating waste liquid
Ustinov et al. Trapping of nitrogen oxides in radiochemical technologies
Ashworth et al. Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility
JP2002255558A (en) Method for converting fluoride into oxide
Belliveau et al. Tritiated Sulfur Hexafluoride Disposition Strategies
JPS5853760B2 (en) Tritium water vapor removal method
JP3058854B2 (en) Radioactive waste treatment method
RU2143756C1 (en) Method for fractional cleaning of gases from harmful chemical agents and radioactive materials formed in dissolving nuclear wastes
Pence Critical review of noble gas treatment systems
JPH0611599A (en) Processing method for radioactive waste and processing equipment
JP2002267798A (en) Dissolving and decomtamination method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term