JP2012242092A - Processing method of radioactive cesium containing contaminated water - Google Patents

Processing method of radioactive cesium containing contaminated water Download PDF

Info

Publication number
JP2012242092A
JP2012242092A JP2011109041A JP2011109041A JP2012242092A JP 2012242092 A JP2012242092 A JP 2012242092A JP 2011109041 A JP2011109041 A JP 2011109041A JP 2011109041 A JP2011109041 A JP 2011109041A JP 2012242092 A JP2012242092 A JP 2012242092A
Authority
JP
Japan
Prior art keywords
cesium
radioactive cesium
contaminated water
adsorbent
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011109041A
Other languages
Japanese (ja)
Inventor
Koichi Tanihara
紘一 谷原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011109041A priority Critical patent/JP2012242092A/en
Publication of JP2012242092A publication Critical patent/JP2012242092A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To construct a system for cyclic use of high-concentration nitric acid as a desorbent and safety disposal of radioactive cesium to be separated in a method for efficiently removing cesium from a radioactive cesium containing contaminated water by repeatedly using an absorbent containing a copper salt based insoluble ferrocyanide as an active ingredient.SOLUTION: In a first step, contaminated water is brought into contact with an absorbent, and the absorbent which has captured cesium is carried into a centralized processing facility 1 where steps after a second step are installed, to perform cesium desorption processing and absorbent reproduction processing. A radioactive cesium accumulated high-level waste liquid discharged from the second step is condensed and denitrated to such a state as to be thrown into a glass or the like stable solid manufacturing step, and nitric acid is collected. By using a salt-free reductant, no vitrification inhibitor component is mixed into the condensed high-level waste liquid. In the centralized processing facility 1, steps after a high-level waste liquid condensing step are shared with steps after a high-level waste liquid condensing step in a nuclear reprocessing plant, thereby presenting effects of the present invention to a maximum.

Description

本発明は、原子力発電施設や原子燃料再処理施設など原子力施設からの放射性セシウム含有汚染水、とくに重大事故発生時に多量に排出される高レベル放射性セシウム含有汚染水の処理方法に関する。 The present invention relates to a method for treating radioactive cesium-containing contaminated water from nuclear facilities such as nuclear power generation facilities and nuclear fuel reprocessing facilities, particularly high-level radioactive cesium-containing contaminated water discharged in large quantities when a serious accident occurs.

平成23年3月11日、東日本大震災に伴う大津波に起因する、原子力発電所での電源喪失事故で見られたように、炉心の原子燃料棒ならびに貯蔵プール内の使用済み原子燃料棒に対する冷却水循環系の機能不全の発生は、崩壊熱による燃料体被覆管の損傷を引き起こす恐れがある。損傷の進行と燃料体の溶融・再臨界の防止のためには系外からの継続的通水、散水を要するが、その結果として、破損燃料棒中に含まれる核分裂生成物の溶出により極めて高レベルの放射能汚染水が大量に発生する。それが地下貯水槽や外部貯水施設に溜まり続け、貯水容量が限界に達すると、漏洩またはオーバーフローが避けられず憂慮すべき重大な環境汚染に繋がることとなる。それ故、このような汚染水からの放射性物質の除去は、環境汚染防止だけでなく、冷却水循環機能回復を目指して建屋内外での安全な作業環境を確保するうえでも極めて重要である。 Cooling of nuclear fuel rods in the core and spent nuclear fuel rods in the storage pool as seen in a power loss accident at a nuclear power plant caused by the Great Tsunami following the Great East Japan Earthquake on March 11, 2011 The occurrence of malfunction of the water circulation system may cause damage to the fuel cladding due to decay heat. In order to prevent damage progression and fuel body melting / re-criticality, continuous water flow from outside the system and water spraying are required, but as a result, elution of fission products contained in the broken fuel rods causes extremely high A large amount of radioactive contamination water is generated. If it continues to accumulate in underground water storage tanks and external water storage facilities, and the water storage capacity reaches the limit, leakage or overflow is unavoidable, leading to serious environmental pollution. Therefore, removal of radioactive substances from such contaminated water is extremely important not only for preventing environmental pollution but also for ensuring a safe working environment inside and outside the building with the aim of restoring the cooling water circulation function.

原子力発電所での燃料体の溶融または被覆管損傷がかかわるシビア事故の場合、多量のガンマー線発生核種による冷却水の汚染は、冷却水循環機能回復など緊急を要する作業を非常に困難にするとともに、その後の放射能封じ込め作業においても障害となる。核分裂生成量の多い核種であっても大気中に放散しやすい気体物質や、放射性ヨウ素など半減期の短いものは、汚染水中ではその量が少ないか、放射線強度が急速に減衰する。放射性ストロンチウムなど不揮発性核種は生成量が多く半減期も長いがソースターム分析によれば大半は溶融燃料のデブリに留まるとされている(非特許文献1を参照)。また、放射性ストロンチウムはベータ線しか発生しないので、体内摂取さえ避ければ、現場作業員に対する危険度はガンマー線発生核種に比べると低い。それ故、冷却水循環機能回復作業や放射能閉じ込め作業にとって重大な障害となる可能性の高い核種は、核分裂生成量、半減期、ガンマー線強度などからみて放射性セシウムであり、汚染水からのその除去がとくに重要である。 In the case of a severe accident involving melting of the fuel body or damage to the cladding tube at a nuclear power plant, contamination of cooling water by a large amount of gamma-ray generating nuclides makes urgent work such as cooling water circulation function recovery extremely difficult, It becomes an obstacle in the subsequent radioactive containment work. Even if the nuclide has a large amount of fission, the amount of gas substances that are easily released into the atmosphere and those with short half-lives such as radioactive iodine are small in the contaminated water, or the radiation intensity is rapidly attenuated. Nonvolatile nuclides such as radioactive strontium have a large production amount and a long half-life, but according to source term analysis, most of them are said to remain in the debris of the molten fuel (see Non-Patent Document 1). Also, since radioactive strontium only generates beta rays, the risk to field workers is low compared to gamma-ray-producing nuclides, as long as ingestion is avoided. Therefore, the radionuclide that is likely to be a serious obstacle to cooling water circulation function recovery work and radioactive confinement work is radioactive cesium in terms of fission production, half-life, gamma ray intensity, etc., and its removal from contaminated water Is particularly important.

また、冷却水循環機能の回復後であっても冷温停止に至るまでは送水を継続する必要がある。その間、冷却水中への損傷燃料棒からの放射性セシウムの溶出は続くので、周辺環境への漏洩防止だけでなく、建屋内や施設周辺のガンマー線量をできるだけ下げて作業環境を健全に保つうえでも、循環水からの放射性セシウムの除去は随時継続して行う必要がある。 Moreover, even after the cooling water circulation function is recovered, it is necessary to continue water supply until the cold temperature is stopped. Meanwhile, elution of radioactive cesium from damaged fuel rods into cooling water continues, so not only leakage prevention to the surrounding environment, but also to keep the working environment healthy by reducing the gamma dose around the buildings and facilities as much as possible. It is necessary to remove radioactive cesium from the circulating water continuously.

一方、極めて高レベルの放射性セシウムで汚染された冷却水の除染技術については、モルデナイトなどゼオライト系無機イオン交換体がイオン交換樹脂と比べて安価であり、塩分濃度の低い場合にはセシウムをよく吸着することは公知であり、1979年3月、米国スリーマイル島原子力発電所の事故でゼオライト系吸着材が使用され、一定の効果があったと報じられている。 On the other hand, with regard to the decontamination technology of cooling water contaminated with extremely high levels of radioactive cesium, zeolitic inorganic ion exchangers such as mordenite are cheaper than ion exchange resins, and cesium is often used when salinity is low. Adsorption is known, and in March 1979, a zeolite-based adsorbent was used in an accident at the Three Mile Island nuclear power plant in the United States, and it was reported that it had a certain effect.

しかし、ゼオライト系無機イオン交換体は、海水など比較的濃度の高い金属塩共存下では吸着能が低下しやすい欠点がある。それに対して、フェロシアン化銅カリウム、フェロシアン化ニッケルカリウム、フェロシアン化鉄、フェロシアン化コバルトカリウムなど不溶性フェロシアン化物系無機イオン交換体は、セシウムに対する選択性が極めて高く、海水等多量の電解質共存下でもセシウム吸着能が殆ど低下しないことが知られている。 However, zeolitic inorganic ion exchangers have the drawback that their adsorption capacity tends to decrease in the presence of relatively high concentrations of metal salts such as seawater. In contrast, insoluble ferrocyanide-based inorganic ion exchangers such as potassium potassium ferrocyanide, nickel potassium ferrocyanide, iron ferrocyanide, and potassium potassium ferrocyanide have extremely high selectivity to cesium, and a large amount of seawater, etc. It is known that cesium adsorption capacity hardly decreases even in the presence of an electrolyte.

一方、このような特定イオンに対して選択性の高いイオン交換体に共通する欠点として、選択的吸着性が高い故に逆向きのイオン交換反応である脱着が一般に困難なことである。それ故、それらのセシウム分離材は1回限りしか使用できず、その効用は対象核種の放射性セシウムを汚染水から固体の無機イオン交換体に移行、濃集させるに過ぎない。すなわち、1回限りの廃吸着材として環境から長期間安全な隔離を要する新たな高レベル放射性廃棄物を汚染水の浄化現場に発生させることとなる。汚染水量が少なく放射性セシウム濃度が低い場合には目的達成に有効であっても、比較的高レベルの放射性セシウムを含有する極めて多量の汚染水の処理方法としては好ましくないことは明らかである。このような欠点は放射性セシウムの凝集沈殿法についても同様である。かなり高レベルの放射性セシウムを含む大量の汚染水の効率的処理法開発が緊急課題になっているにもかかわらず、これらの欠陥を克服する技術は公知になっていない。 On the other hand, a drawback common to ion exchangers having high selectivity for such specific ions is that desorption, which is a reverse ion exchange reaction, is generally difficult due to high selective adsorption. Therefore, these cesium separation materials can be used only once, and their utility is only to transfer and concentrate the radioactive cesium of the target nuclide from the contaminated water to the solid inorganic ion exchanger. In other words, new high-level radioactive waste that requires safe isolation from the environment for a long time as a one-time waste adsorbent is generated at the contaminated water purification site. When the amount of contaminated water is small and the concentration of radioactive cesium is low, it is clear that it is not preferable as a method for treating an extremely large amount of contaminated water containing a relatively high level of radioactive cesium, even if effective in achieving the purpose. Such a defect is also applicable to the radioactive cesium coagulation precipitation method. Despite the urgent need to develop efficient treatments for large volumes of contaminated water containing fairly high levels of radioactive cesium, techniques to overcome these deficiencies are not known.

本発明者はすでに、不溶性フェロシアン化物系無機イオン交換体のうちで銅塩系不溶性フェロシアン化物に限り、その結晶構造と酸化還元機能が硝酸による吸着セシウムの酸化脱着、還元剤による再生に適していることを発見し、脱着に1〜7M硝酸溶液、還元にはヒドラジンの希薄硝酸溶液を使用することにより、吸着・脱着・再生のサイクルを構築でき、当該銅塩系不溶性フェロシアン化物を10回以上繰り返し使用できるセシウム分離方法を発明している(特許文献1〜6、非特許文献4を参照)。 The present inventor has already limited the copper salt-based insoluble ferrocyanide among the insoluble ferrocyanide-based inorganic ion exchangers, and its crystal structure and redox function are suitable for oxidative desorption of adsorbed cesium by nitric acid and regeneration by a reducing agent. By using a 1-7 M nitric acid solution for desorption and a dilute nitric acid solution of hydrazine for reduction, an adsorption / desorption / regeneration cycle can be constructed. We have invented a cesium separation method that can be used repeatedly more than once (see Patent Documents 1 to 6 and Non-Patent Document 4).

特許第1946448号公報Japanese Patent No. 1946448 特許第1991489号公報Japanese Patent No.1991489 特許第2021973号公報Japanese Patent No. 2021973 特許第2560253号公報Japanese Patent No. 2560253 特許第2810981号公報Japanese Patent No. 2810981 特許第3749941号公報Japanese Patent No.3749941 特許第3733417号公報Japanese Patent No.3733417

「平成19年度シビアアクシデント晩期の格納容器閉じ込め機能の維持に関する研究報告書」 (独)原子力安全基盤機構 平成20年7月 2.2.2-7頁"Research report on maintenance of containment function in the latter half of FY2007" (National Nuclear Safety Infrastructure Agency) July 2008, pages 2.2.2-7 清瀬良平訳「燃料再処理と放射性廃棄物管理の化学工学」 日刊工業新聞社 昭和58年12月Ryohei Kiyose, “Chemical Engineering of Fuel Reprocessing and Radioactive Waste Management” Nikkan Kogyo Shimbun, December 1983 (社)日本化学会編「放射性物質」 丸善 昭和51年The Chemical Society of Japan “Radioactive Substances” Maruzen 1951 Journal of Radioanalytical and Nuclear Chemistry 第185巻第1号 57頁(1994年)Journal of Radioanalytical and Nuclear Chemistry Vol.185 No.1 p.57 (1994)

汚染水からの放射性セシウムの除去に銅塩系不溶性フェロシアン化物を有効成分とする吸着材の吸着・脱着・再生機能を利用する、本発明者による公知の方法は、用途のほとんどない極めて危険な放射性セシウムが脱着処理工程を経て高濃度硝酸溶液中に濃集されて回収される難点があった。当該吸着材による汚染水からの放射性セシウム除去法が実用性を有するためには、回収放射性セシウムの安全な廃棄方法と脱着処理液からの硝酸の回収、再使用が不可欠である。本発明はこのような課題を解決しようとするものである。 The known method using the adsorption / desorption / regeneration function of an adsorbent containing copper salt-based insoluble ferrocyanide as an active ingredient for removing radioactive cesium from contaminated water is extremely dangerous with little use. There has been a difficulty in collecting radioactive cesium by being concentrated in a high-concentration nitric acid solution through a desorption treatment step. In order for the method of removing radioactive cesium from contaminated water using the adsorbent to be practical, a safe disposal method for recovered radioactive cesium and recovery and reuse of nitric acid from the desorption treatment solution are indispensable. The present invention is intended to solve such problems.

本発明者は、原子燃料再処理工場のピューレックス法共除染工程から排出される高レベル放射性廃液の硝酸濃度が2.5〜3Mであり、本発明の脱着処理工程からの放射性セシウム濃集硝酸溶液の硝酸濃度とほぼ同程度であることに着目した。従来、高レベル廃液の理想的処理法開発の立場から群分離が注目され、放射性セシウムの分別・回収が検討されてきたが、本発明ではそれとは逆の視点に立って諸工程を見直した結果、本発明の脱着処理工程から排出される放射性セシウム濃集高濃度硝酸溶液中にはガラス固化体の製造に際して装置の運転トラブルやガラス固化体の品質低下の要因となるパラジウム等白金族金属やモリブテンなどの成分を混入しないので、再処理工程から排出される高レベル廃液と混合しても支障のないことが予測され、本発明に至った。 The present inventor has a concentration of nitric acid in the high-level radioactive liquid waste discharged from the Purex co-decontamination process of the nuclear fuel reprocessing plant of 2.5 to 3M, and the concentration of radioactive cesium from the desorption process of the present invention It was noted that the concentration of nitric acid was almost the same as that of nitric acid solution. Conventionally, group separation has attracted attention from the standpoint of developing an ideal treatment method for high-level waste liquid, and the separation and recovery of radioactive cesium has been studied, but in the present invention, the results of reviewing various processes from the opposite viewpoint In the concentrated radioactive cesium concentrated nitric acid solution discharged from the desorption process of the present invention, platinum group metals such as palladium and molybdenum which cause deterioration of the quality of the vitrified body during the production of the vitrified body Therefore, it is predicted that there will be no problem even if it is mixed with the high-level waste liquid discharged from the reprocessing step, and the present invention has been achieved.

すなわち、本発明は、銅塩系不溶性フェロシアン化物またはそれを有効成分とする吸着材(以下、吸着剤単味での使用を含めて「吸着材」と略記する)と放射性セシウム含有汚染水を接触させてセシウムを吸着させる第1工程、該セシウム濃集吸着材を1〜7M硝酸水溶液と接触させることによりセシウムを脱着させる第2工程、フェリシアン化物に酸化されて吸着能を失った該脱着処理物を還元剤含有希薄硝酸溶液と接触させてフェロシアン化物に再生させる第3工程までを1サイクルとし、第3工程で再生された吸着材を再使用して吸着・脱着・再生のサイクルを繰り返すことにより、放射性セシウムを汚染水から除去し、第2工程から排出する放射性セシウム濃集高レベル廃液を濃縮工程で脱硝して硝酸を回収するとともに、ガラス等安定固化体の製造原料となる濃縮高レベル廃液にすることを特徴とする、放射性セシウム含有汚染水の処理方法である(図1参照)。 That is, the present invention relates to a copper salt-based insoluble ferrocyanide or an adsorbent containing the same as an active ingredient (hereinafter abbreviated as “adsorbent” including use as an adsorbent alone) and radioactive cesium-containing contaminated water. A first step of contacting and adsorbing cesium; a second step of desorbing cesium by bringing the concentrated cesium adsorbent into contact with a 1-7M aqueous nitric acid solution; the desorption that has been oxidized to ferricyanide and has lost its adsorption capacity The cycle up to the third step of regenerating ferrocyanide by bringing the treated product into contact with a dilute nitric acid solution containing a reducing agent is defined as one cycle, and the adsorbent regenerated in the third step is reused to perform the cycle of adsorption / desorption / regeneration. Repeatedly removes radioactive cesium from the contaminated water, denitrifies the concentrated radioactive cesium waste liquid discharged from the second step, collects nitric acid in the concentration step, glass, etc. Characterized by concentrated high level liquid waste as a raw material for producing a constant solidified, a method for treating a radioactive cesium-containing contaminated water (see Figure 1).

本発明において、銅塩系不溶性フェロシアン化物またはそれを有効成分とする吸着材を使用し、第1工程から第3工程までを1サイクルとする処理の繰り返しは公知の方法で行う。第2工程以降の設置場所は当該汚染水の発生現場付近とする必要はなく、セシウムの回収・利用を目的としないので原子燃料再処理工場内に設置(図2参照)することによって本発明の効果が最大限に発揮される。それ故、第1工程で放射性セシウムを吸着させた該吸着材は吸着処理現場から原子燃料再処理工場まで、再生吸着材は原子燃料再処理工場から第1工程のある汚染水発生現場まで、それぞれ容器に詰めて運搬される。その場合、担体として球状樹脂やシリカゲルを使用した吸着材の方が、粉状や泥状物を呈する単味の吸着剤に比べて詰め替えや運搬に際しても手間がかからず好ましい。 In the present invention, the copper salt-based insoluble ferrocyanide or an adsorbent containing the same is used as an active ingredient, and the process is repeated by a known method from the first step to the third step. The installation location after the second step does not need to be in the vicinity of the site where the contaminated water is generated, and is not intended for the recovery and use of cesium, so it is installed in a nuclear fuel reprocessing plant (see FIG. 2). The effect is maximized. Therefore, the adsorbent adsorbed radioactive cesium in the first step is from the adsorption treatment site to the nuclear fuel reprocessing plant, and the recycled adsorbent is from the nuclear fuel reprocessing plant to the contaminated water generation site in the first step, respectively. It is packed and transported. In that case, an adsorbent using a spherical resin or silica gel as a carrier is preferable because it does not require time and effort for refilling and transporting compared to a simple adsorbent exhibiting powder or mud.

第2工程から発生する濃集放射性セシウム含有硝酸溶液の投入先としては、原子燃料再処理工程から発生する高濃度硝酸含有高レベル廃液の濃縮工程、好ましくはピューレックス法再処理における共除染工程から排出される硝酸濃度2.5〜3Mの高レベル廃液の濃縮工程が選択される。硝酸は濃縮工程とそれに付随する凝縮液の分留工程などから回収できる。濃縮高レベル廃液は公知の方法によりガラス固化体またはセラミック固化体の製造原料に供される。第3工程から排出される再生処理廃液はゼロに近い低レベル放射性廃液であり、還元剤としてソルトフリーのヒドラジンを使用することにより、各工程の水洗水と合わせて濃縮し、高レベル廃液に加えることができる。第2工程で放射性セシウムを脱着処理後、水洗を十分に行うことにより、最終サイクルの第2工程から発生する使用済み廃吸着材は中レベル放射性廃棄物として処理することができる。とくに、シリカゲルを担体とする廃吸着材の場合、420℃前後でシアン化物を加熱分解後、硝酸で抽出することにより、金属塩の硝酸酸性溶液とシリカゲルに分離できるので、前者は高レベル廃液の濃縮工程を経て濃縮高レベル廃液として、後者とともにガラス固化体の原料となる(特許文献7参照)。 As the destination of the concentrated radioactive cesium-containing nitric acid solution generated from the second step, a high-concentration nitric acid-containing high-level waste solution generated from the nuclear fuel reprocessing step, preferably a co-decontamination step in the Purex process reprocessing A concentration process of high-level waste liquid having a nitric acid concentration of 2.5 to 3 M discharged from the factory is selected. Nitric acid can be recovered from the concentration step and the condensate fractionation step associated therewith. The concentrated high-level waste liquid is provided as a raw material for producing a glass solid or ceramic solid by a known method. The recycling wastewater discharged from the third step is a low-level radioactive wastewater that is close to zero. By using salt-free hydrazine as a reducing agent, it is concentrated together with the washing water in each step and added to the high-level wastewater. be able to. By thoroughly washing with water after desorption treatment of radioactive cesium in the second step, the used waste adsorbent generated from the second step of the final cycle can be treated as a medium level radioactive waste. In particular, in the case of a waste adsorbent using silica gel as a carrier, the cyanide can be separated into nitric acid acidic solution of metal salt and silica gel by thermal decomposition at around 420 ° C and then extraction with nitric acid. After the concentration step, it becomes a raw material for vitrified glass together with the latter as concentrated high-level waste liquid (see Patent Document 7).

本発明によれば、吸着・脱着・再生サイクルが可能な銅塩系不溶性フェロシアン化物またはそれを有効成分とする吸着材の繰り返し使用と原子燃料再処理工場から発生する高レベル放射性廃液の処理工程の活用により、大量の汚染水から放射性セシウムを効率よく除去できるとともに、単位汚染水量当たりの吸着材の消費量が非常に少なくて済み、脱着剤として使用する多量の硝酸の回収が容易で、処理・処分の困難な新たな高レベル放射性固体廃棄物を発生させることなく放射性セシウムをガラス等処分可能な安定固化体に封じ込めることができる。 According to the present invention, a copper salt-based insoluble ferrocyanide capable of adsorption / desorption / regeneration cycles or an adsorbent containing the same as an active ingredient is repeatedly used and a high-level radioactive liquid waste treatment process generated from a nuclear fuel reprocessing plant Can effectively remove radioactive cesium from a large amount of contaminated water, consume very little adsorbent per unit of contaminated water, and easily collect a large amount of nitric acid to be used as a desorbent. -It is possible to contain radioactive cesium in a stable solidified material such as glass without generating new high-level radioactive solid waste that is difficult to dispose of.

図1は本発明の方法のフローシートである。FIG. 1 is a flow sheet of the method of the present invention. 図2は原子燃料再処理工程の一部を活用したときの本発明の方法のフローシートである。FIG. 2 is a flow sheet of the method of the present invention when a part of the nuclear fuel reprocessing process is utilized.

本発明の実施方法につき補足説明する。本発明において、第1工程の銅塩系不溶性フェロシアン化物を有効成分とする吸着材として、銅塩系不溶性フェロシアン化物単味よりも、多孔性型陰イオン交換樹脂、微極性吸着樹脂またはシリカゲルの各細孔内に銅塩系不溶性フェロシアン化物を担持したものの方が固液分離性に優れており好ましく用いられる(特許文献4〜6を参照)。これらの吸着材は、再生による吸着性能の低下が小さく、少なくとも10回以上繰り返し使用できる。とくに微極性吸着樹脂またはシリカゲルの各細孔内に銅塩系不溶性フェロシアン化物を担持した吸着材は、フェロシアン化カリウムまたはフェロシアン化ナトリウムの水溶液と第二銅塩のアルコール溶液を用い、本発明者の方法によって調製すると細孔内に均一に担持されたものが得られ好ましく用いられる(特許文献6を参照)。 A supplementary explanation will be given for the method of carrying out the present invention. In the present invention, as an adsorbent containing the copper salt-based insoluble ferrocyanide in the first step as an active ingredient, a porous anion exchange resin, a slightly polar adsorbent resin, or silica gel rather than a copper salt-based insoluble ferrocyanide alone Those in which a copper salt-based insoluble ferrocyanide is supported in each of these pores are excellent in solid-liquid separation and are preferably used (see Patent Documents 4 to 6). These adsorbents have a small decrease in adsorption performance due to regeneration, and can be used repeatedly at least 10 times or more. In particular, the adsorbent carrying a copper salt-based insoluble ferrocyanide in each pore of a slightly polar adsorbent resin or silica gel uses an aqueous solution of potassium ferrocyanide or sodium ferrocyanide and an alcohol solution of cupric salt. When prepared by this method, a product uniformly supported in the pores is obtained and used preferably (see Patent Document 6).

第1工程での吸着方法は、バッチ法、カラム法のいずれの採用も可能であるが、銅塩系不溶性フェロシアン化物単味での使用の場合はバッチ法で、多孔性樹脂またはシリカゲルの各細孔内に銅塩系不溶性フェロシアン化物を担持した吸着材は固液分離性にすぐれており、カラム法、バッチ法のいずれでも好ましく用いられる。なお、第1工程処理水中への銅塩系不溶性フェロシアン化物からの鉄と銅の溶出量は水道の水質基準(各0.3ppm、1ppm)以下にすることが可能である。 Either the batch method or the column method can be adopted as the adsorption method in the first step. However, in the case of using only a copper salt-based insoluble ferrocyanide, it is a batch method, each of porous resin or silica gel. An adsorbent carrying a copper salt-based insoluble ferrocyanide in the pores is excellent in solid-liquid separation, and is preferably used in either the column method or the batch method. In addition, the elution amount of iron and copper from the copper salt-based insoluble ferrocyanide into the treated water in the first step can be made to be below the water quality standard (0.3 ppm and 1 ppm, respectively) of the water supply.

第2工程の脱着処理では、1〜7M硝酸、好ましくは3〜5M硝酸で銅塩系不溶性フェロシアン化物をフェリシアン化銅に酸化して放射性セシウムなどセシウムイオンを脱着する。硝酸濃度4M以下では、フェリシアン化銅結晶の空孔内に過剰電荷となってセシウムイオンがわずかながら残留しやすく、十分な水洗が必要である。また、該酸化反応には微量の亜硝酸の共存を必要とし、安定した処理を行うには亜硝酸を0.001M程度含む硝酸水溶液が好ましく用いられる(非特許文献4を参照)。第2工程から排出され、放射性セシウムが脱着、濃集されて含まれる高濃度硝酸溶液は原子燃料再処理工場の共除染工程から排出される硝酸濃度2.5〜3Mの高レベル廃液の濃縮工程に投入することによって、本発明による処理を効率よく実施できるが、再処理工程において共除染工程までが休止していても本発明による放射性セシウム含有汚染水の処理システムは支障なく運転可能である。 In the desorption treatment in the second step, the copper salt insoluble ferrocyanide is oxidized to copper ferricyanide with 1 to 7 M nitric acid, preferably 3 to 5 M nitric acid, and cesium ions such as radioactive cesium are desorbed. When the concentration of nitric acid is 4M or less, cesium ions are likely to remain slightly in the vacancies of the copper ferricyanide crystal, and sufficient washing with water is necessary. The oxidation reaction requires the coexistence of a small amount of nitrous acid, and a nitric acid aqueous solution containing about 0.001 M of nitrous acid is preferably used for stable treatment (see Non-Patent Document 4). The high concentration nitric acid solution discharged from the second step and desorbed and concentrated with radioactive cesium is concentrated in the high-level waste solution with a nitric acid concentration of 2.5-3M discharged from the co-decontamination step of the nuclear fuel reprocessing plant. By introducing it into the process, the treatment according to the present invention can be carried out efficiently, but the treatment system for radioactive cesium-containing contaminated water according to the present invention can be operated without any trouble even if the co-decontamination process is suspended in the reprocessing process. is there.

第3工程の再生処理では還元剤として当量以上のヒドラジニウムイオンを含む希薄硝酸溶液でフェリシアン化銅を銅塩系不溶性フェロシアン化物に還元し吸着材として再生させる。硝酸濃度はヒドラジニウムイオンが十分安定に存在する程度であればよい。なお、ヒドラジニウムイオンによる還元反応に伴って窒素ガスが発生するので第3工程でのカラム法の採用は好ましくない。 In the regeneration process of the third step, copper ferricyanide is reduced to a copper salt-based insoluble ferrocyanide with a dilute nitric acid solution containing an equivalent amount or more of hydrazinium ions as a reducing agent and regenerated as an adsorbent. The nitric acid concentration may be such that hydrazinium ions are sufficiently stable. In addition, since nitrogen gas is generated with the reduction reaction by hydrazinium ions, it is not preferable to employ the column method in the third step.

汚染水発生現場である第1工程での吸着処理操作と、第2工程のある原子燃料再処理工場までの放射性セシウム濃集吸着材の搬送業務を安全かつ効率よく行うには、吸着材充填カートリッジ式カラムによる流通式の採用が好ましい。その場合、吸着材への放射性セシウムの吸着許容量は崩壊熱による温度上昇を吸着材の分解開始温度以下に維持できる量を限度とする。該吸着許容量は、銅塩系不溶性フェロシアン化物の担持量の調整またはカートリッジの構造によって決めることができる。放射性セシウムの吸着量が多い場合には、水封容器にカラム本体を移し替えて第1工程から第2工程まで運搬すれば崩壊熱による吸着材の劣化を防止できる。第3工程で再生された吸着材はカートリッジに再度充填し、すぐ使える状態で吸着処理現場に返送する。 To perform safe and efficient adsorption treatment operation in the first step where contaminated water is generated and transporting the radioactive cesium concentrated adsorbent to the nuclear fuel reprocessing plant in the second step, an adsorbent-filled cartridge Adoption of a flow-through type using a formula column is preferred. In that case, the adsorbable amount of radioactive cesium on the adsorbent is limited to an amount capable of maintaining the temperature rise due to decay heat below the decomposition start temperature of the adsorbent. The adsorbable amount can be determined by adjusting the amount of the copper salt-based insoluble ferrocyanide supported or by the cartridge structure. When the amount of radioactive cesium adsorbed is large, it is possible to prevent deterioration of the adsorbent due to decay heat if the column body is transferred to a water-sealed container and transported from the first step to the second step. The adsorbent regenerated in the third step is refilled in the cartridge and returned to the adsorption processing site in a ready-to-use state.

吸着材を充填したカートリッジを原子力発電所等放射性セシウム汚染水発生の恐れのある現場に常備することにより、汚染水流出事故に際して速やかな対応が可能である。また、浄水場や牛乳集荷場に配備することで微量の放射性セシウム汚染水や原乳の浄化に利用できる可能性がある。分散使用された吸着済みカートリッジを原子燃料再処理施設等高レベル放射性廃液処理施設に集中的に持ち込み、セシウムを脱着後、吸着材を再生、再充填したカートリッジを返送するシステムが実現できる可能性は十分ある。その場合、カートリッジは、ガンマー線を遮蔽する構造とし、ガンマー線測定器を付属させることにより、用途に応じて放射性セシウムの吸着量を管理することができる。 By installing a cartridge filled with an adsorbent at a site where radioactive cesium-contaminated water may be generated, such as a nuclear power plant, it is possible to quickly respond to a contaminated water spill accident. In addition, there is a possibility that it can be used to purify trace amounts of radioactive cesium-contaminated water and raw milk by deploying them at water purification plants and milk collection sites. Possibility of realizing a system that can intensively bring the adsorbed cartridges used in a distributed manner to a high-level radioactive liquid waste treatment facility such as a nuclear fuel reprocessing facility, desorb cesium, regenerate the adsorbent, and return the refilled cartridge. There is enough. In that case, the cartridge has a structure that shields gamma rays, and a gamma ray measuring instrument is attached, so that the amount of radioactive cesium adsorbed can be managed according to the application.

1 第2工程以降の工程が設置される集中処理施設内のフローシート
2 第2工程以降の工程が設置される原子燃料再処理工場内のフローシート
1 Flow sheet in the central processing facility where the processes after the second process are installed 2 Flow sheet within the nuclear fuel reprocessing plant where the processes after the second process are installed

Claims (2)

銅塩系不溶性フェロシアン化物またはそれを有効成分とする吸着材(以下、吸着剤単味での使用を含めて「吸着材」と略記する)と放射性セシウム含有汚染水を接触させてセシウムを吸着させる第1工程、該セシウム濃集吸着材を1〜7M硝酸水溶液と接触させることによりセシウムを脱着させる第2工程、フェリシアン化物に酸化されて吸着能を失った該脱着処理物を還元剤含有希薄硝酸溶液と接触させてフェロシアン化物に再生させる第3工程までを1サイクルとし、第3工程で再生された吸着材を再使用して吸着・脱着・再生のサイクルを繰り返すことにより、放射性セシウムを汚染水から除去し、第2工程から排出する放射性セシウム濃集高レベル廃液を濃縮工程で脱硝して硝酸を回収するとともに、ガラスなど安定固化体の製造原料となる濃縮高レベル廃液にすることを特徴とする、放射性セシウム含有汚染水の処理方法 Adsorb cesium by contacting copper salt-based insoluble ferrocyanide or adsorbent containing it as an active ingredient (hereinafter abbreviated as “adsorbent” including the use of adsorbent alone) and contaminated water containing radioactive cesium. A first step, a second step of desorbing cesium by bringing the concentrated cesium adsorbent into contact with a 1 to 7M aqueous nitric acid solution, and a deoxidation treatment product that has been oxidized by ferricyanide and has lost its adsorption ability Radioactive cesium by repeating the cycle of adsorption / desorption / regeneration by reusing the adsorbent regenerated in the third step, with one cycle from the third step to regenerate ferrocyanide by contacting with dilute nitric acid solution. Is removed from the contaminated water, the concentrated radioactive cesium waste liquid discharged from the second step is denitrated in the concentration step to recover nitric acid, and the raw material for the production of stable solidified materials such as glass Characterized by concentrated high level liquid waste to be, method for treating a radioactive cesium-containing contaminated water 第2工程から排出する放射性セシウム濃集高レベル廃液の送液先がピューレックス法による原子燃料再処理の共除染工程から排出される高レベル廃液の濃縮工程である特許請求範囲請求項1の放射性セシウム含有汚染水の処理方法 The high-level waste liquid discharged from the second step is a concentration step of the high-level waste liquid discharged from the co-decontamination step of the nuclear fuel reprocessing by the Purex method. Method for treating contaminated water containing radioactive cesium
JP2011109041A 2011-05-16 2011-05-16 Processing method of radioactive cesium containing contaminated water Withdrawn JP2012242092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011109041A JP2012242092A (en) 2011-05-16 2011-05-16 Processing method of radioactive cesium containing contaminated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011109041A JP2012242092A (en) 2011-05-16 2011-05-16 Processing method of radioactive cesium containing contaminated water

Publications (1)

Publication Number Publication Date
JP2012242092A true JP2012242092A (en) 2012-12-10

Family

ID=47463984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011109041A Withdrawn JP2012242092A (en) 2011-05-16 2011-05-16 Processing method of radioactive cesium containing contaminated water

Country Status (1)

Country Link
JP (1) JP2012242092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142336A (en) * 2012-12-25 2014-08-07 Central Glass Co Ltd Glassification body of radioactive waste and formation method thereof
JP2014206522A (en) * 2013-04-11 2014-10-30 株式会社 環境浄化研究所 Material and method for simultaneously removing radioactive cesium and strontium
CN112285226A (en) * 2020-10-16 2021-01-29 中国人民解放军63653部队 Rapid combined analysis method for Pu-239, Sr-90 and Cs-137 in waste liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142336A (en) * 2012-12-25 2014-08-07 Central Glass Co Ltd Glassification body of radioactive waste and formation method thereof
JP2014206522A (en) * 2013-04-11 2014-10-30 株式会社 環境浄化研究所 Material and method for simultaneously removing radioactive cesium and strontium
CN112285226A (en) * 2020-10-16 2021-01-29 中国人民解放军63653部队 Rapid combined analysis method for Pu-239, Sr-90 and Cs-137 in waste liquid

Similar Documents

Publication Publication Date Title
JPS6344418B2 (en)
US4087375A (en) Method for treating radioactive waste water
EP0118493B1 (en) Fixation of anionic materials with a complexing agent
JP6326299B2 (en) Organic radioactive waste treatment system and treatment method
US20180350478A1 (en) Apparatus and method for removal of nuclides from high level liquid wastes
JP2012242092A (en) Processing method of radioactive cesium containing contaminated water
JP2013127437A (en) Method and device for treating radioactive cesium-containing substance
Paviet-Hartmann et al. Treatment of gaseous effluents issued from recycling–A review of the current practices and prospective improvements
JPH0247599A (en) Treatment method for radioactive nuclide containing waste liquid
JP2014016210A (en) System and process for decontaminating radioactive contaminated water
JP2014001991A (en) Radioactive nuclide removing system and radioactive nuclide removing method
JP6180838B2 (en) Soil decontamination method and apparatus
JP2015064221A (en) Radioactive nuclide removal system and radioactive nuclide removal method
JP2004045371A (en) Processing method and device for liquid including radionuclide
JP6178116B2 (en) Soil decontamination apparatus and method
KR20140042067A (en) Treatment method for radioactive contaminated water and treatment device
KR100764904B1 (en) METHOD FOR RECOVERING OF THE SPENT ION EXCHANGE MATERIALS SELECTIVE FOR THE Cs AND Sr ION SORPTION
RU2118856C1 (en) method and apparatus for removing strontium and cesium radionuclides from solutions
JP2020008498A (en) Method of decontaminating contaminated water containing radioactive iodine
JP2015081891A (en) Method and apparatus for purifying nuclear-power-generation used fuel pool water, and method and apparatus for treating used fuel pool water
JP2012225892A (en) Method for removing radioactive material from solution
JP2014235130A (en) Waste liquid treatment method and waste liquid treatment system
JPS61195400A (en) Method of treating waste liquor containing radioactive nuclide
RU2523823C2 (en) Method of extracting caesium radionuclides from aqueous solutions
JPS62161097A (en) Method of processing waste liquor containing radioactive nuclear specy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805