JPH0247599A - Treatment method for radioactive nuclide containing waste liquid - Google Patents
Treatment method for radioactive nuclide containing waste liquidInfo
- Publication number
- JPH0247599A JPH0247599A JP19854788A JP19854788A JPH0247599A JP H0247599 A JPH0247599 A JP H0247599A JP 19854788 A JP19854788 A JP 19854788A JP 19854788 A JP19854788 A JP 19854788A JP H0247599 A JPH0247599 A JP H0247599A
- Authority
- JP
- Japan
- Prior art keywords
- waste liquid
- radioactive
- strontium
- radioactive strontium
- treatment method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 69
- 230000002285 radioactive effect Effects 0.000 title claims abstract description 66
- 239000002699 waste material Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 19
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 48
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000011347 resin Substances 0.000 claims abstract description 41
- 229920005989 resin Polymers 0.000 claims abstract description 41
- 239000013522 chelant Substances 0.000 claims abstract description 32
- 239000010457 zeolite Substances 0.000 claims abstract description 19
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 18
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000003463 adsorbent Substances 0.000 claims abstract description 17
- 238000001179 sorption measurement Methods 0.000 claims abstract description 17
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001425 magnesium ion Inorganic materials 0.000 claims abstract description 6
- 230000008929 regeneration Effects 0.000 claims description 10
- 238000011069 regeneration method Methods 0.000 claims description 10
- 238000010828 elution Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000003456 ion exchange resin Substances 0.000 claims description 5
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 abstract description 6
- 239000002253 acid Substances 0.000 abstract description 5
- 239000002901 radioactive waste Substances 0.000 abstract description 5
- 239000003513 alkali Substances 0.000 abstract description 3
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 2
- 229910052792 caesium Inorganic materials 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000011572 manganese Substances 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- -1 90Sr and Go Chemical compound 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 229910052680 mordenite Inorganic materials 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000009614 chemical analysis method Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 1
- 239000002925 low-level radioactive waste Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
発明の目的
[産業上の利用分野]
本発明は、原子力発電所などの原子力施設から排出され
る、放射性核種を含有する廃液、とくに、少なくとも放
射性ストロンチウムを含有する廃液の処理方法の改良に
関する。
[従来の技術]
BWR原子力発電所ラドウェスト設備すなわち放射性廃
棄物処理設備は、廃液処理部分と固化処理部分とに大別
される。 この設備で処理すべき廃液は、機器ドレン廃
液、床ドレン廃液、イオン交換樹脂再生廃液および洗濯
廃液でおる。 これらのうち機器ドレン廃液は、濾過お
よび脱塩して復水貯蔵タンクに受け、発電所内で再利用
している。
一方、床ドレン廃液およびイオン交換樹脂再生廃液は、
蒸発処理してその凝縮水を回収再利用し、放射性核種物
質が濃縮された濃縮液はセメント固化、あるいはプラス
チック固化などの手段により固化処理し、低レベル放射
性廃棄物同化体としている。
この蒸発濃縮には多大のエネルギーを要するばかりでな
く、発生する固化体は放射性廃棄物として処分しなけれ
ばならない。
これまでは、放射性核種を含有する廃液はすべてを放射
性廃棄物として濃縮減容して固化処理する方法がとられ
ているが、廃液から、含有量として極めて微量な放射性
核種物質だけを後き出すことにより残廃液を無害なもの
とすれば、根本的に減容化をはかることができる。
この考えを活して、廃液中とくに蒸発濃縮、同化処理の
対架となる床ドレン廃液およびイオン交換樹脂再生廃液
中の放射性核種を効率よく除去し、取り出した放n=+
性核種物質だけを放射性廃棄物として処理し、また放射
能を除去した状態にした処理後の廃液については、モニ
タリングの上、安全性を確認して放出するか、または処
分上安全でおると考えられる、きわめて放射能レベルの
低い廃棄物(たとえばセメント固化体に変換したもの)
として処理することができる手段を求めて研究した。
本発明者らの一部は、さきに共働者とともに、Co、
Mn、 Cs、 Cs、 Z
n などの放射性核種とくに錯体形成性の物質を含有
する廃液を、まず活性炭に、次にキレート性イオン交換
樹脂(以下、「キレート樹脂」と略称する)に接触させ
ることにより放射性核種を吸着除去する有効な方法を発
明し、すでに開示した(特開昭57−4.8699号お
よび特開昭57−201899号)。
続いて、廃液の濾過処理を先行させ、キレート樹脂、ゼ
オライト無機吸着体および活性炭への吸着により、 C
o、 O3などの放射性核種を除去するプロセス
を開発し、これも提案した(特願昭6O−36057)
。
これら吸着処理法を使用する手段においては、吸着体の
能力を有効に利用することにより処理操作を簡素化し、
処理コストも低減することが要求されるとともに、放射
性吸着体の処分や貯蔵を容易にするため、放射能減少が
早い短寿命放射性、核種、たとえば54Mn、60C0
,65Znと、減少が遅い長寿命放射性核種たとえば1
37C3,90Srとを分離して吸着体に固定すること
が望まれる。
[発明が解決しようとする課題]
本発明の目的は、上記の要望にこたえ、少なくとも放射
性ストロンチウムたとえば90SrおよびGo、 M
n、 Cs、 Cs等の放射性核種を含有する
廃液を濾過処理した俊、キレ−1〜樹脂で吸@処理し、
放射性ストロンチウムだけが吸着したキレート樹脂床を
取り出し、さらに、この樹脂床を酸で処理して吸着した
放射性ストロンチウムを溶離、脱着させ、この溶離再生
廃液をゼオライト無機吸着体に接触させ、この吸着体に
放射性ストロンチウムを吸着固定する技術を提案するこ
とにある。
発明の崩成
[課題を解決するための手段]
本発明の放射性核種を含有する廃液の処理方法は、放射
性ストロンチウム含有廃液を濾過処理して不溶解物質を
除去したのち、廃液をキレート樹脂と接触ざぜて54M
n、60CO1放射性ストロンチウムなどの放射性物質
を吸着除去するとともに濃縮する処理方法において、キ
レート樹脂床を少なくとも2段(初段を「C1」、終段
をrcf Jとする。 第1図に示した例は2段であっ
て、それぞれCI 、C2であられしである。)とし、
ついで廃液中にC3核種が存在する場合を考慮してゼオ
ライ1へ床を少なくとも2段(初段を「Zl」、終段を
rZf jとする。 図示した例は2段であって、それ
ぞれzi 、Z2であられしである。)設けておく。
キレート樹脂床の終段Cfにおいて放射性ストロンチウ
ムのリークが生じたときに、放射性ストロンチウムのみ
を吸着したCfを酸で処理して溶離脱着し、ついでアル
カリで処理して再生する。
この溶離再生廃液をゼオライト無機吸着体とくにA−4
型ゼオライト吸着体に接触させ、長寿命核種908rを
含めて放射性ストロンチウムを吸着固定するとともに、
上記Cf流出液での放射性ストロンチウムのリーク検出
法として、液中に存在するマグネシウムイオンを化学的
分析法で検出して放射性ストロンチウムの有無を判定す
ることを特徴とする。
また、ゼオライト床も終段ZfにおいてCs核種のリー
クが起ったら、Zlを取り除いて新たにZ(f+1)を
用意し、廃液を72からZ(f+1)に向って通す(図
示した例では、Zlのゼオライトを新品に交換し、Z2
→Z3の順に廃液が流れるように、流路を切り換える)
。
本発明の方法による処理の対象となる放射性核種は、原
子炉機器材料に起因する腐食生成物および核燃料に起因
する核分裂生成物である、51 c r、Mn S
Co、 Fe S Co、 ZnslloI
IIAgおよび Cs、 Cs、 Sr、90
Sr等である。
上記核種は種々の化学形態で存在し、廃液中においては
、一般に不溶解性形態と溶解イオン形態とに大別される
。 不溶解性形態の核種(主に59 110m
Fe、 Aq>は、廃液の濾過により除去する。
濾過装置には、カートリッジタイプフィルター、膜フイ
ルタ−、非助材型逆洗式フィルターが適用できる。 溶
解イオン形態の核種たとえばCo、 1vln、
Sr、 C3は、キレート樹脂で吸着除去される
。
放射性核種を選択的に吸着するキレート樹脂には、フェ
ノール系、スチレン系、エポキシ系、アクリルエステル
系の樹脂母体に、官能基として、ジエチレントリアミン
、トリエチレンテトラミン、テトラエチレンペンタミン
、ペンタエチレンへキザミン等のアミン類、イミノジ酢
酸等のアミノカルホン酸類、ジブロバノールアミン等の
アルコールアミン類、あるいは尿素、チオ尿素を導入し
たものなどがある。 とくに、フェノール骨格にイミノ
ジ酸r1i%を導入したフェノール系キレート樹脂(「
ユニセレック」の登録商標で市販されている。)が適し
ている。
放射性ストロンチウムを吸着したキレート樹脂の溶離処
理に使用する酸としては、硫酸、塩酸および硝酸などが
あげられるが、とくに塩酸が適している。 キレ−1〜
樹脂の再生処理に使用するアルカリとしては、カセイソ
ーダが一般的である。
上記キレート樹脂の溶離再生廃液には放射性ストロンチ
ウムが濃縮されているが、この放射性ストロンチウムを
いっそう安定な形態にするために、無殿吸看体に固定す
る。 無殿吸着体としては、電導度の高い廃液の場合、
ゼオライト鉱物のうち、とくにA−4型ゼオライトが適
している。 しかしなから、廃液の電導度が10mS/
cm以下でないと、放射性ストロンチウムは上記ゼオラ
イトに吸着固定できない。
[作 用]
各工程において除去される放射性核種は、第1図に併記
したとありである。
フィルターFにおいては、放射性のFe 、 Agおよ
びCo 、 Mnなどの一部が不溶解物質として除去さ
れる。 不溶化を確実にするため、必要であれば、濾過
に先立って廃液のpHを6〜9の領1或に調節すべきこ
とはもちろんである。
次のキレート樹脂床では、まず、Mn 、 Co 。
Znなどの放射性核種が吸着され、続いて放射性ストロ
ンチウムが吸着される。 つまり、放射性ストロンチウ
ムはキレート樹脂に吸着される溶解イオン形態の放射性
核種のグループに属するが、その中でも吸着されにくく
、第1図の最終段、C2において放射性ストロンチウム
がリークするときには、放射性Mn、co、Znなどの
キレート樹脂に強く吸着する核種は最終段C2に至る以
前のキレート樹脂床に安定に吸着固定され、放射性スト
ロンチウムと他の放射性核種とを分離することができる
。
さらに放射性ストロンチウムは、Co 、 Mn 。
Zn核種等のキレート樹脂吸着能力と放射性ストロンチ
ウムのキレート樹脂吸着能力に2倍以上の差か必るため
、終段Cfのみから溶離することかでき、Cfは溶離再
生(再使用)し、有効利用することができる。
本発明の特徴は、終段Cfに放射性ストロンチウムのみ
を吸着させることにおるから、C(f−1)段またはそ
れより前の段におけるCO、1vln 。
ln等の核種のリークについて、計算や測定により、あ
らかじめ注意を払ってあくことが重要である。 リーク
が起ったときには、その段の溶離再生廃液は、また元の
廃液に戻して本方法で処理すればよい。
ところで、放射性ストロンチウムが90s、の場合、放
射するのはβ線だけでおるから、60GO9137O3
などのγ放射線を放出するものにくらべ、計測に長い時
間がかかり、一般的なインライン計測はむずかしい。
とくに本発明では、Cfff1理済液は放射性ストロン
チウムのリークが生じていないことを、容易かつ速かに
検知することが重要でおる。 本発明者らは、原子力発
電所廃液中には、微量であるが、マグネシウムイオンや
カルシウムイオンか共存することに注目し、放射性ス]
・ロンチウムとこれらイオンとのキレート樹脂選択吸着
性能を調べたところ、マグネシウムイオンが常に放射性
ストロンチウムよりさきにキレート樹脂床からリークす
ることを見出した。 つまり、化学分析法、機器分析法
などで容易に定性、定量できるマグネシウムイオンがC
f処理済液中に検出されはじめても、放射性ストロンチ
ウムはCfからリークしていない。
上記キレート樹脂Cfの放射性ストロンチウム溶離再生
廃液中の放射性ストロンチウムを一層安定な形態にする
ため、これを無機吸着体に吸着固定させる。 本発明者
らは、無機吸着体としてケイ酸−アルミナ主成分の鉱物
であるゼオライトに注目し、その吸着性を研究し、溶離
再生廃液をpH6〜9に調整すれば、天然モルデナイト
およびA−4型ゼオライトに吸着できること、とくに1
0m S / cm以下の高電導度廃液性状では、八−
4型ゼオライトが好ましいことを見出した。 なお、廃
液中にセシウム核種が共存する場合は、ぜAライト無機
吸着体、好ましくはモルデナイトを後置すれば、放射性
セシウムも吸着除去される。
[実施例1]
第1図に示す構成の廃液処理装置を、中空糸濾過膜の非
助材型逆洗式フィルタ、キレート樹脂塔にフェノール系
樹脂「ユニセレツク」 (ユニチカ味の登録商標)UR
−10を充填したちの2塔をもって組み立てた。
第1表に示す化学性状および放射能性状の模擬廃液を調
製し、装置に通液した。 キレート樹脂塔の第1塔C1
および第2塔C2の出口処理済液の放射性核種濃度を測
定し、第2図に示す結果を得た。
これら図の結果を比較すれば、第1塔C1を放射性スト
ロンチウムが通過しても、放射性のコバルト、マンガン
等はリークしておらず、放射性ストロンチウムはこれら
核種と分離できることがわかる。 さらに、第1塔C1
を通過した放射性ストロンチウムは第2塔C2に吸着さ
れる。 一方、第1塔C1での放射性のコバルト、マン
ガン、亜鉛は、処理旧約12.000倍でもリークを生
じていない。Object of the Invention [Field of Industrial Application] The present invention relates to an improvement in a method for treating waste liquid containing radionuclides, particularly waste liquid containing at least radioactive strontium, discharged from nuclear facilities such as nuclear power plants. [Prior Art] The Radwest facility of the BWR nuclear power plant, ie, the radioactive waste treatment facility, is roughly divided into a waste liquid treatment section and a solidification treatment section. The waste liquids to be treated with this equipment are equipment drain waste liquid, floor drain waste liquid, ion exchange resin regeneration waste liquid, and laundry waste liquid. Of these, equipment drain waste is filtered and desalted, received in a condensate storage tank, and reused within the power plant. On the other hand, floor drain waste liquid and ion exchange resin regeneration waste liquid are
After evaporation, the condensed water is collected and reused, and the radionuclide-concentrated concentrate is solidified by cement solidification, plastic solidification, etc., and is used as low-level radioactive waste assimilation. Not only does this evaporative concentration require a large amount of energy, but the solidified material produced must be disposed of as radioactive waste. Up until now, all waste fluid containing radionuclides has been treated as radioactive waste by concentrating and reducing its volume and solidifying it, but only extremely small amounts of radionuclide material are removed from the waste fluid. By making the remaining waste liquid harmless, it is possible to fundamentally reduce the volume. Utilizing this idea, we can efficiently remove radionuclides from waste liquid, especially from bed drain waste liquid and ion-exchange resin regeneration waste liquid, which are the counterpoints of evaporation concentration and assimilation treatment, and remove the radioactive nuclides from the recovered waste liquid n=+
Only the radionuclide materials are treated as radioactive waste, and the waste liquid after treatment has been removed from radioactivity, and the waste liquid is either monitored and released after confirming its safety, or is considered safe for disposal. waste with extremely low radioactivity level (e.g., converted into solidified cement)
We conducted research in search of a means that could handle this. Some of the inventors, together with their collaborators, previously described Co.
Mn, Cs, Cs, Z
The waste liquid containing radionuclides, especially complex-forming substances, such as An effective method has been invented and already disclosed (JP-A-57-4.8699 and JP-A-57-201899). Subsequently, the waste liquid is filtered in advance, and C is absorbed by chelate resin, zeolite inorganic adsorbent, and activated carbon.
Developed and proposed a process to remove radioactive nuclides such as o and O3 (patent application No. 6 O-36057)
. In the means using these adsorption treatment methods, the treatment operation is simplified by effectively utilizing the ability of the adsorbent,
In addition to reducing processing costs, in order to facilitate the disposal and storage of radioactive adsorbents, short-lived radioactive nuclides whose radioactivity decreases quickly, such as 54Mn and 60C0, are used.
, 65Zn and long-lived radionuclides that decrease slowly, e.g.
It is desirable to separate 37C3 and 90Sr and fix them on an adsorbent. [Problems to be Solved by the Invention] An object of the present invention is to meet the above-mentioned needs and to provide at least radioactive strontium such as 90Sr and Go, M
Waste liquid containing radioactive nuclides such as n, Cs, and Cs is absorbed and treated with filtered Shun Kirei-1 ~ resin,
The chelate resin bed in which only radioactive strontium has been adsorbed is taken out, and this resin bed is further treated with acid to elute and desorb the adsorbed radioactive strontium. The purpose of this project is to propose a technology for adsorbing and fixing radioactive strontium. Disintegration of the invention [Means for solving the problem] The method for treating waste liquid containing radionuclides of the present invention involves filtering a radioactive strontium-containing waste liquid to remove insoluble substances, and then contacting the waste liquid with a chelate resin. Zazete 54M
n, 60 CO1 In a treatment method that adsorbs and removes radioactive substances such as radioactive strontium and concentrates them, a chelate resin bed is provided in at least two stages (the first stage is "C1" and the last stage is RCF J. The example shown in FIG. 2 stages, with CI and C2 respectively),
Next, in consideration of the presence of C3 nuclides in the waste liquid, the bed is placed on the zeolite 1 in at least two stages (the first stage is "Zl" and the final stage is rZfj. The illustrated example has two stages, respectively zi, It's Arashi in Z2.) Set it up. When leakage of radioactive strontium occurs in the final stage Cf of the chelate resin bed, the Cf that has adsorbed only radioactive strontium is treated with an acid to be eluted and deposited, and then treated with an alkali to be regenerated. This elution regeneration waste liquid is applied to a zeolite inorganic adsorbent, especially A-4.
It is brought into contact with a type of zeolite adsorbent to adsorb and fix radioactive strontium including the long-lived nuclide 908r,
The leak detection method for radioactive strontium in the Cf effluent is characterized by detecting magnesium ions present in the liquid using a chemical analysis method to determine the presence or absence of radioactive strontium. In addition, if leakage of Cs nuclide occurs in the final stage Zf of the zeolite bed, Zl is removed, a new Z(f+1) is prepared, and the waste liquid is passed from 72 toward Z(f+1) (in the illustrated example, Replace Zl's zeolite with a new one, and Z2
→Switch the flow path so that the waste liquid flows in the order of Z3)
. The radionuclides to be treated by the method of the present invention are corrosion products originating from nuclear reactor equipment materials and fission products originating from nuclear fuel, 51 cr, MnS.
Co, Fe S Co, ZnslloI
IIAg and Cs, Cs, Sr, 90
Sr etc. The above-mentioned nuclides exist in various chemical forms, and in waste liquid, they are generally classified into insoluble forms and dissolved ionic forms. Insoluble forms of nuclides (mainly 59 110m Fe, Aq) are removed by filtration of the waste liquid.
The filtration device may be a cartridge type filter, a membrane filter, or a non-auxiliary type backwash filter. Nuclides in dissolved ionic form e.g. Co, 1vln,
Sr and C3 are adsorbed and removed by the chelate resin. Chelate resins that selectively adsorb radionuclides include diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc. as functional groups in a phenol-based, styrene-based, epoxy-based, or acrylic ester resin matrix. amines, aminocarphonic acids such as iminodiacetic acid, alcohol amines such as dibrobanolamine, or those into which urea or thiourea is introduced. In particular, phenolic chelate resin ("
It is commercially available under the registered trademark UNICEREC. ) is suitable. Examples of acids used in the elution treatment of the chelate resin that has adsorbed radioactive strontium include sulfuric acid, hydrochloric acid, and nitric acid, and hydrochloric acid is particularly suitable. Kirei-1~
Caustic soda is commonly used as an alkali for resin regeneration. Radioactive strontium is concentrated in the elution and regeneration waste liquid of the chelate resin, and in order to make this radioactive strontium in a more stable form, it is fixed on a non-precipitating absorber. As a non-density adsorbent, in the case of waste liquid with high electrical conductivity,
Among zeolite minerals, A-4 type zeolite is particularly suitable. However, the conductivity of the waste liquid is 10 mS/
If it is less than cm, radioactive strontium cannot be adsorbed and fixed on the zeolite. [Function] The radionuclides removed in each step are shown in Fig. 1. In filter F, some of radioactive Fe, Ag, Co, Mn, etc. are removed as insoluble substances. Of course, to ensure insolubilization, the pH of the waste liquid should be adjusted to a range of 6 to 9, if necessary, prior to filtration. In the next chelate resin bed, first Mn, Co. Radioactive nuclides such as Zn are adsorbed, followed by radioactive strontium. In other words, radioactive strontium belongs to the group of radionuclides in the form of dissolved ions that are adsorbed to the chelate resin, but it is difficult to adsorb among them, and when radioactive strontium leaks at C2, the final stage in Figure 1, radioactive Mn, co, Nuclides that strongly adsorb to the chelate resin, such as Zn, are stably adsorbed and fixed on the chelate resin bed before reaching the final stage C2, making it possible to separate radioactive strontium from other radionuclides. Furthermore, radioactive strontium is Co, Mn. Since the adsorption capacity of chelate resins for Zn nuclides, etc. and the adsorption capacity of radioactive strontium by chelate resins are necessarily more than double, it is possible to elute only from the final stage Cf, and Cf can be eluted and regenerated (reused) for effective use. can do. The feature of the present invention is that only radioactive strontium is adsorbed in the final stage Cf, so the CO in the C(f-1) stage or the stage before it is 1vln. It is important to pay attention in advance to leakage of nuclides such as ln through calculations and measurements. When a leak occurs, the elution and regeneration waste liquid from that stage can be returned to the original waste liquid and treated according to the present method. By the way, when radioactive strontium is 90s, only β rays are emitted, so 60GO9137O3
Compared to those that emit gamma radiation, such as those that emit gamma radiation, it takes a long time to measure, and general in-line measurement is difficult.
In particular, in the present invention, it is important to easily and quickly detect that there is no leakage of radioactive strontium in the Cfff1 treatment solution. The present inventors noticed that magnesium ions and calcium ions coexist in nuclear power plant waste liquid, although in small amounts, and discovered that radioactive
- When we investigated the selective adsorption performance of chelate resin for rontium and these ions, we found that magnesium ions always leaked from the chelate resin bed before radioactive strontium. In other words, magnesium ions, which can be easily qualitatively and quantitatively determined by chemical analysis methods, instrumental analysis methods, etc.
Radioactive strontium does not leak from Cf even if it begins to be detected in the f-treated liquid. In order to make the radioactive strontium in the radioactive strontium elution regeneration waste of the chelate resin Cf into a more stable form, it is adsorbed and fixed on an inorganic adsorbent. The present inventors focused on zeolite, which is a mineral mainly composed of silicic acid and alumina, as an inorganic adsorbent, studied its adsorption properties, and found that if the elution regeneration waste solution is adjusted to pH 6 to 9, natural mordenite and A-4 Being able to adsorb to type zeolite, especially 1
For high conductivity waste liquid properties of 0mS/cm or less, 8-
It has been found that type 4 zeolite is preferred. In addition, when cesium nuclides coexist in the waste liquid, radioactive cesium can also be adsorbed and removed by placing a zealite inorganic adsorbent, preferably mordenite. [Example 1] A waste liquid treatment device having the configuration shown in Fig. 1 was equipped with a hollow fiber filtration membrane non-auxiliary type backwash filter, a chelate resin tower, and a phenolic resin "UNISELECT" (registered trademark of Unitika flavor) UR.
It was assembled with two towers filled with -10. A simulated waste liquid having the chemical and radioactive properties shown in Table 1 was prepared and passed through the apparatus. First column C1 of chelate resin column
The radionuclide concentration of the treated liquid at the outlet of the second column C2 was measured, and the results shown in FIG. 2 were obtained. Comparing the results in these figures, it can be seen that even if radioactive strontium passes through the first column C1, radioactive cobalt, manganese, etc. do not leak, and radioactive strontium can be separated from these nuclides. Furthermore, the first tower C1
The radioactive strontium that has passed is adsorbed in the second column C2. On the other hand, radioactive cobalt, manganese, and zinc in the first column C1 did not leak even though the treatment was approximately 12,000 times as much as before.
【実施例2】
上記放射性ストロンチウム吸着の第2塔キレート樹脂に
1N−HC,Ilを、樹脂面の1.5倍にあたる液量通
液し、ざらに3.5倍にあたる純水を通液して、99%
以上の放射性ストロンチウムを溶離した。
この溶離液をNa OHで中和し、pH7にした。
中和後の廃液型導度が23rrtS/cml’>つたの
で、脱塩水で希釈して5mS/cmに調整し、A−4型
ゼオライト吸着塔に通液して、出口処理済液の放射性ス
トロンチウム濃度を測定した。 その結果は、第3図に
示すとおり、通液量500倍に至るまで、出口ではリー
クしなかった。
さらに、A−4型ゼオライトの吸着性能の電導度依存性
を調べるため、廃液型導度を2.5.7.5.10およ
び15m5/Cmに調整し、同様に試験して、第2表に
示す結果を得た。 この結果から、電導度が10mb/
cm以下であれば、放射性ストロンチウムはA−4型ゼ
オライ1〜に吸着されることがわかる。
第1表
模
擬 廃 液
Fe3+ く0.05
Cu2+
N12” rt
Na2SO40,2%
pH7,0
放射性核種の濃度はxlo−”μCi /m1非放削性
元素の濃度はppm
第 2 表
放射性3r吸看処理量
廃液型導度 リークに至るまでの通液量(m S /
cm ) /吸着体充填量の比2.5
1.300
5.0 500
7.5 300
10.0 30
15.0 0
発明の効果
本発明の処理方法によるときは、原子力発電所の床ドレ
ン廃液やイオン交換樹脂書生廃液に含有される放射性の
コバルト、マンガン、ストロンチウム等を、濾過および
キレート樹脂吸着体の使用によって、これら廃液中から
容易に除去でき、処理済液は環境に安全に放出できる性
状になる。
さらに、キレート樹脂の選択吸着性能の相違を利用し、
短寿命核種と長寿命核種の分離ができ、とくに放射性ス
トロンチウムを、容易に放射性コバルト、マンガン、亜
鉛等の短寿命核種から分離できる。
放用性ス1へロンチウムをキレート樹脂の酸処理で溶離
したのち、とくに長期間の安全な処分が必要とされてい
る90Srに関して、より安定な無機吸着体への固定を
、溶離廃液のIIおよび電導度を調整することによって
実施できる。
上記床ドレン廃液等に放射性セシウムが含有される場合
、上記キレート樹脂吸着体に続けてゼオライト鉱物、好
ましくはモルデナイトを後置することで、放射性セシウ
ムも他の核種から分離できるとともに、処理済液は環境
に安全に放出できる性状になる。[Example 2] 1N-HC, Il was passed through the second tower chelate resin for radioactive strontium adsorption in an amount equivalent to 1.5 times the resin surface, and pure water was passed through the second column chelate resin in an amount equivalent to roughly 3.5 times the surface of the resin. 99%
of radioactive strontium was eluted. The eluate was neutralized with NaOH to pH 7. The conductivity of the waste liquid after neutralization was 23 rrtS/cml', so it was diluted with demineralized water to adjust it to 5 mS/cm, and the liquid was passed through an A-4 type zeolite adsorption tower to remove radioactive strontium from the exit treated liquid. The concentration was measured. As a result, as shown in FIG. 3, no leakage occurred at the outlet until the amount of liquid passed was 500 times greater. Furthermore, in order to investigate the dependence of adsorption performance of A-4 type zeolite on electrical conductivity, the waste liquid conductivity was adjusted to 2.5.7.5.10 and 15 m5/Cm, and the same tests were conducted. The results shown are obtained. From this result, the conductivity is 10mb/
cm or less, it can be seen that radioactive strontium is adsorbed on A-4 type zeolites 1 to 1. Table 1: Simulated waste liquid Fe3+ 0.05 Cu2+ N12" rt Na2SO40.2% pH 7.0 Concentration of radionuclides is xlo-"μCi/m1 Concentration of non-recreational elements is ppm Table 2 Radioactive 3r absorption treatment Quantity waste liquid type conductivity Amount of liquid passed until leakage occurs (m S /
cm ) / adsorbent loading ratio 2.5
1.300 5.0 500 7.5 300 10.0 30 15.0 0 Effects of the Invention When the treatment method of the present invention is used, the radioactivity contained in the floor drain waste liquid of nuclear power plants and the ion exchange resin waste liquid is reduced. Cobalt, manganese, strontium, etc. can be easily removed from these waste liquids by filtration and the use of chelate resin adsorbents, and the treated liquid is in a condition that allows it to be safely released into the environment. Furthermore, by utilizing the difference in selective adsorption performance of chelate resins,
Short-lived nuclides and long-lived nuclides can be separated, and in particular, radioactive strontium can be easily separated from short-lived nuclides such as radioactive cobalt, manganese, and zinc. After eluting the released S1 herrontium by acid treatment of the chelate resin, the eluate waste liquid II and This can be done by adjusting the conductivity. When radioactive cesium is contained in the above-mentioned bed drain waste liquid, etc., by placing a zeolite mineral, preferably mordenite, after the above-mentioned chelate resin adsorbent, the radioactive cesium can also be separated from other nuclides, and the treated liquid can be Becomes in such a state that it can be safely released into the environment.
第1図は、本発明の放射性核種含有廃液の処理工程を説
明するための、装置のブロックダイアグラムでおる。
第2図ないし第4図は、いずれも本発明の実施例のデー
タを示すグラフであって、
第2図はキレート樹脂床カラムC1およびC2出口にあ
ける核種の吸着曲線でおり、
第3図はA−4型ゼオライト床力ラム出口におりる3r
の吸着曲線であり、
第4図は、キレート樹脂床でセシウム核種以外の核種を
吸着除去した後の模擬床ドレン廃液または模擬再生廃液
のLオライ1〜床カラム出口にa3ける核種(134C
3〉の吸着曲線である。FIG. 1 is a block diagram of an apparatus for explaining the process of treating radionuclide-containing waste liquid according to the present invention. Figures 2 to 4 are graphs showing data of examples of the present invention, in which Figure 2 shows nuclide adsorption curves at the outlets of chelate resin bed columns C1 and C2, and Figure 3 shows 3r at the A-4 type zeolite bed force ram outlet
Figure 4 shows the adsorption curve of the nuclides (134C
3> adsorption curve.
Claims (4)
し不溶解物質を除去したのち、廃液をキレート性イオン
交換樹脂(以下、「キレート樹脂」と略称)に接触させ
て放射性核種を吸着除去する処理方法において、キレー
ト樹脂吸着塔を少なくとも2段直列に設置し、最終段吸
着塔で放射性ストロンチウムのリークが起つたところで
、この最終段吸着塔を再生し、再使用するとともに、こ
の放射性ストロンチウムの溶離再生廃液を無機吸着体に
吸着固定することからなる放射性核種含有廃液の処理方
法。(1) A process in which waste liquid containing at least radionuclides is filtered to remove insoluble substances, and then the waste liquid is brought into contact with a chelating ion exchange resin (hereinafter referred to as "chelate resin") to adsorb and remove radionuclides. In this method, at least two stages of chelate resin adsorption towers are installed in series, and when radioactive strontium leaks in the final stage adsorption tower, this final stage adsorption tower is regenerated and reused, and the radioactive strontium is elution-regenerated. A method for treating waste liquid containing radionuclides, which comprises adsorbing and fixing the waste liquid on an inorganic adsorbent.
ークを、出口液中に共存するマグネシウムイオンを検出
することにより判定して実施する請求項1の処理方法。(2) The treatment method according to claim 1, wherein leakage of radioactive strontium in the final stage adsorption tower is determined by detecting magnesium ions coexisting in the outlet liquid.
6〜9、電導度10mS/cm以下の性状に調整して実
施する請求項1の処理方法。(3) The elution regeneration waste liquid to be adsorbed with an inorganic adsorbent is adjusted to pH
The treatment method according to claim 1, wherein the treatment method is carried out by adjusting the conductivity to 10 mS/cm or less.
実施する請求項1の処理方法。(4) The treatment method according to claim 1, which is carried out using A-4 type zeolite as the inorganic adsorbent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19854788A JPH0664190B2 (en) | 1988-08-09 | 1988-08-09 | Radionuclide-containing waste liquid treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19854788A JPH0664190B2 (en) | 1988-08-09 | 1988-08-09 | Radionuclide-containing waste liquid treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0247599A true JPH0247599A (en) | 1990-02-16 |
JPH0664190B2 JPH0664190B2 (en) | 1994-08-22 |
Family
ID=16392982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19854788A Expired - Lifetime JPH0664190B2 (en) | 1988-08-09 | 1988-08-09 | Radionuclide-containing waste liquid treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0664190B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2708373A1 (en) * | 1993-07-26 | 1995-02-03 | Westinghouse Electric Corp | Processing of radioactive liquids |
WO2013108892A1 (en) * | 2012-01-18 | 2013-07-25 | 大日精化工業株式会社 | Method for removing radioactive cesium, hydrophilic resin composition for removing radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium |
JP2013148405A (en) * | 2012-01-18 | 2013-08-01 | Dainichiseika Color & Chem Mfg Co Ltd | Method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium |
JP2013148364A (en) * | 2012-01-17 | 2013-08-01 | Mitsubishi Heavy Ind Ltd | Radioactive waste liquid processor |
JP2014016211A (en) * | 2012-07-06 | 2014-01-30 | Kobe Steel Ltd | System and process for removing radiation-contaminated water |
JP2014126544A (en) * | 2012-12-27 | 2014-07-07 | Kobelco Eco-Solutions Co Ltd | Exchange method for adsorption towers for radioactive cesium containing water |
JP2014186034A (en) * | 2014-05-19 | 2014-10-02 | Kobelco Eco-Solutions Co Ltd | Method of replacing absorption towers for radioactive cesium-contaminated water |
JP2014206522A (en) * | 2013-04-11 | 2014-10-30 | 株式会社 環境浄化研究所 | Material and method for simultaneously removing radioactive cesium and strontium |
JP2015064251A (en) * | 2013-09-24 | 2015-04-09 | 株式会社東芝 | Contaminated water processing system and contaminated water processing method |
JP2015515626A (en) * | 2012-03-26 | 2015-05-28 | クリオン インコーポレイテッド | Selective regeneration of isotope-specific media resins in a system for separating radioisotopes from liquid waste |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9589690B2 (en) * | 2010-12-15 | 2017-03-07 | Electric Power Research Institute, Inc. | Light water reactor primary coolant activity cleanup |
-
1988
- 1988-08-09 JP JP19854788A patent/JPH0664190B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2708373A1 (en) * | 1993-07-26 | 1995-02-03 | Westinghouse Electric Corp | Processing of radioactive liquids |
JP2013148364A (en) * | 2012-01-17 | 2013-08-01 | Mitsubishi Heavy Ind Ltd | Radioactive waste liquid processor |
CN104054137A (en) * | 2012-01-18 | 2014-09-17 | 大日精化工业株式会社 | Method for removing radioactive cesium, hydrophilic resin composition for removing radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium |
JP2013148405A (en) * | 2012-01-18 | 2013-08-01 | Dainichiseika Color & Chem Mfg Co Ltd | Method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium |
WO2013108892A1 (en) * | 2012-01-18 | 2013-07-25 | 大日精化工業株式会社 | Method for removing radioactive cesium, hydrophilic resin composition for removing radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium |
US8962907B2 (en) | 2012-01-18 | 2015-02-24 | Dainichiseika Color & Chemicals Mfg. Co., Ltd. | Method for removing radioactive cesium, hydrophilic resin composition for removing radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium |
EP2806426A4 (en) * | 2012-01-18 | 2015-12-16 | Dainichiseika Color Chem | Method for removing radioactive cesium, hydrophilic resin composition for removing radioactive cesium, method for removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium |
JP2015515626A (en) * | 2012-03-26 | 2015-05-28 | クリオン インコーポレイテッド | Selective regeneration of isotope-specific media resins in a system for separating radioisotopes from liquid waste |
JP2014016211A (en) * | 2012-07-06 | 2014-01-30 | Kobe Steel Ltd | System and process for removing radiation-contaminated water |
JP2014126544A (en) * | 2012-12-27 | 2014-07-07 | Kobelco Eco-Solutions Co Ltd | Exchange method for adsorption towers for radioactive cesium containing water |
JP2014206522A (en) * | 2013-04-11 | 2014-10-30 | 株式会社 環境浄化研究所 | Material and method for simultaneously removing radioactive cesium and strontium |
JP2015064251A (en) * | 2013-09-24 | 2015-04-09 | 株式会社東芝 | Contaminated water processing system and contaminated water processing method |
JP2014186034A (en) * | 2014-05-19 | 2014-10-02 | Kobelco Eco-Solutions Co Ltd | Method of replacing absorption towers for radioactive cesium-contaminated water |
Also Published As
Publication number | Publication date |
---|---|
JPH0664190B2 (en) | 1994-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4448711A (en) | Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent | |
Iwanade et al. | Hybrid grafted ion exchanger for decontamination of radioactive cesium in Fukushima Prefecture and other contaminated areas | |
Samanta et al. | Column behaviour of resorcinol-formaldehyde polycondensate resin for radiocesium removal from simulated radwaste solution | |
JPH0247599A (en) | Treatment method for radioactive nuclide containing waste liquid | |
Harjula et al. | Removal of radioactive cesium from nuclear waste solutions with the transition metal hexacyanoferrate ion exchanger CsTreat | |
Chiarizia et al. | Diphonix-CS: a novel combined cesium and strontium selective ion exchange resin | |
Kumar et al. | Removal of cesium and strontium from acid solution using a composite of zirconium molybdate and zirconium tungstate | |
RU2118856C1 (en) | method and apparatus for removing strontium and cesium radionuclides from solutions | |
JPS61195400A (en) | Method of treating waste liquor containing radioactive nuclide | |
Collins et al. | Evaluation of selected ion exchangers for the removal of cesium from MVST W-25 supernate | |
JPH0319520B2 (en) | ||
Dulama et al. | Combined radioactive liquid waste treatment processes involving inorganic sorbents and micro/ultrafiltration | |
John et al. | Application of new inorganic-organic composite absorbers with polyacrylonitrile binding matrix for separation of radionuclides from liquid radioactive wastes | |
Mishra et al. | Biosorptive behavior of some dead biomasses in the removal of Sr (85+ 89) from aqueous solutions | |
JP2012242092A (en) | Processing method of radioactive cesium containing contaminated water | |
Krishna et al. | Performance of immobilized moss in the removal of 137 Cs and 90 Sr from actual low-level radioactive waste solutions | |
JP2012225892A (en) | Method for removing radioactive material from solution | |
Chugunov et al. | Potential use of carboxyl ion-exchangers for operational optimization of special water purification systems in NPP with VVER | |
KR100576919B1 (en) | Method for reducing radioactive waste matter in the decontamination of radioactive contaminated soil | |
Pangeni et al. | Preparation of Natural Bio-adsorbent from Green Tea Extract Powder and its application for selective removal of cs (I) from Water | |
Mercer Jr | The removal of cesium and strontium from condensate wastes with clinoptilolite | |
Deng | Polymeric adsorbent for radium removal from groundwater | |
Zicman et al. | Removal of 137Cs ions from aqueous radioactive waste using nickel ferrocyanide, precipitated on silica gel | |
Khaydarov et al. | Purification of drinking water from 134, 137 Cs, 89, 90 Sr, 60 Co and 129 I | |
Dubourg | Review of advanced methods for treating radioactive contaminated water |