JP2013148364A - Radioactive waste liquid processor - Google Patents

Radioactive waste liquid processor Download PDF

Info

Publication number
JP2013148364A
JP2013148364A JP2012007029A JP2012007029A JP2013148364A JP 2013148364 A JP2013148364 A JP 2013148364A JP 2012007029 A JP2012007029 A JP 2012007029A JP 2012007029 A JP2012007029 A JP 2012007029A JP 2013148364 A JP2013148364 A JP 2013148364A
Authority
JP
Japan
Prior art keywords
adsorption
radioactive
condensed water
concentration
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012007029A
Other languages
Japanese (ja)
Other versions
JP5909096B2 (en
Inventor
Naoki Ogawa
尚樹 小川
涼吉 ▲浜▼口
Ryokichi Hamaguchi
Takashi Shimada
隆 島田
Yoshihito Shimizu
義仁 清水
Koichi Kakinoki
浩一 柿木
Seiji Kobayashi
誠司 小林
Hideo Suzuki
英夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012007029A priority Critical patent/JP5909096B2/en
Publication of JP2013148364A publication Critical patent/JP2013148364A/en
Application granted granted Critical
Publication of JP5909096B2 publication Critical patent/JP5909096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radioactive waste liquid processor capable of achieving reduced costs for disposal by reducing the volume of secondary waste.SOLUTION: A radioactive waste liquid processor 1 includes: two-staged evaporative concentrators 2A, 2B sequentially concentrating a radioactive waste liquid W by evaporation; an oil remover 3 and a filtration device 4 which are followed by the first and second evaporative concentrators 2A, 2B in such a manner that the four devices are connected together in this order from an upper stream to a lower stream in the flow of a process of converting the radioactive waste liquid W into concentrated liquid waste; a condensed water lead-out path 21 leading a first condensed water G1 generated from the first evaporative concentrator 2A in the foremost stage out of the radioactive waste liquid processor 1; and a condensed water circulation path 22 leading a second condensed water G2 generated from the second evaporative concentrator 2B in the subsequent stage into the first evaporative concentrator 2A.

Description

本発明は、高レベルの放射性物質を含む廃液処理全体に適用できる放射性廃液処理装置に関する。   The present invention relates to a radioactive liquid waste treatment apparatus that can be applied to the entire waste liquid treatment containing a high level of radioactive material.

従来、原子力発電所において発生する高レベルの放射性物質が溶解した汚染水(放射性廃液)を、緊急処理することが行われている(例えば、特許文献1参照)。
具体的には、放射性物質を吸着や沈殿によって除去することで、廃液中の線量を減らし、その後、脱塩処理によって更に浄化する方法である。この場合、浄化した処理水は,燃料の冷却水に再利用することで、高レベル廃液の総量の増加を抑制することを可能としている。
Conventionally, urgent treatment is performed on contaminated water (radioactive waste liquid) in which high-level radioactive substances generated in nuclear power plants are dissolved (see, for example, Patent Document 1).
Specifically, it is a method of reducing the dose in the waste liquid by removing radioactive substances by adsorption or precipitation, and then further purifying by desalting. In this case, the purified treated water can be reused as fuel cooling water to suppress an increase in the total amount of high-level waste liquid.

ところで、一般的な放射性廃液の一般的な処理フローとして、先ず放射性廃液を油分離装置に送り込み、油分を取り除いた後、セシウム吸着装置でゼオライト等の吸着材を使用してセシウムを吸着させるとともに、除染装置においてセシウム以外の核種を吸着、凝集沈殿させている。また、放射性廃液に海水が混じる場合には、その塩素を淡水化装置の逆浸透膜(RO)処理でイオン分を取り除き、処理水受けタンクを介して冷却水として再利用し、除去した塩素は蒸発濃縮して減量させることが行われている。   By the way, as a general processing flow of general radioactive waste liquid, first, the radioactive waste liquid is sent to the oil separation device, and after removing the oil, the cesium adsorption device uses an adsorbent such as zeolite to adsorb cesium, In the decontamination equipment, nuclides other than cesium are adsorbed and coagulated. In addition, when seawater is mixed with radioactive waste liquid, the chlorine is removed by reverse osmosis membrane (RO) treatment in the desalination unit, reused as cooling water through the treated water receiving tank, and the removed chlorine is The amount is reduced by evaporation.

特表2009−189798号公報Special table 2009-189798

しかしながら、従来の廃液処理方式では、以下のような問題があった。
すなわち、上述した各処理段階において、放射能に汚染された二次廃棄物が大量に発生する。具体的には,セシウム吸着装置における放射性物質を吸着した廃吸着剤(ゼオライト等)、沈殿処理によって濃縮されたスラッジ、脱塩処理で分離された濃縮水等が発生している。そして、これら二次廃棄物は、更に適宜な処理が行われて最終処分場へ移動されることになるが、その最終処分方法が決定されるまでの間、長期的に所定の仮置き場に保管を必要とする場合がある。つまり、長期的に高レベル廃棄物を貯蔵する必要があり、しかもこれら二次廃棄物が固体、スラリー、液体と多様な形態であり、それぞれの貯蔵方法や管理が難しく、その点で改良の余地があった。
However, the conventional waste liquid treatment method has the following problems.
That is, in each processing step described above, a large amount of secondary waste contaminated with radioactivity is generated. Specifically, waste adsorbent (zeolite or the like) that adsorbs radioactive substances in the cesium adsorption device, sludge concentrated by precipitation treatment, concentrated water separated by desalting treatment, and the like are generated. These secondary wastes are further processed appropriately and moved to the final disposal site. Until the final disposal method is determined, they are stored in a predetermined temporary storage site for a long time. May be required. In other words, it is necessary to store high-level waste in the long term, and these secondary wastes are in various forms such as solid, slurry, and liquid, and their storage methods and management are difficult, and there is room for improvement in that respect. was there.

本発明は、上述する問題点に鑑みてなされたもので、二次廃棄物の発生量を最小化することで、廃棄処分にかかるコストを低減することができる放射性廃液処理装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a radioactive liquid waste treatment apparatus that can reduce the cost of disposal by minimizing the amount of secondary waste generated. Objective.

上記目的を達成するため、本発明に係る放射性廃液処理装置では、放射性廃液を順次、蒸発凝縮させる複数段の蒸発濃縮部を備えた放射性廃液処理装置であって、最前段の蒸発濃縮部から生じる凝縮水を外部に導く凝縮水導出路と、最前段の蒸発濃縮部以外の蒸発濃縮部から生じる凝縮水を、蒸発濃縮部よりも前段側の蒸発濃縮部に導入する凝縮水還流路と、を備えることを特徴としている。   In order to achieve the above object, in the radioactive liquid waste processing apparatus according to the present invention, the radioactive liquid waste processing apparatus includes a plurality of stages of evaporation and concentration units for sequentially evaporating and condensing the radioactive liquid waste, and is generated from the front-stage evaporation and concentration unit. A condensed water lead-out path for leading the condensed water to the outside, and a condensed water reflux path for introducing condensed water generated from the evaporating and condensing part other than the first evaporating and concentrating part to the evaporating and condensing part upstream of the evaporating and concentrating part. It is characterized by providing.

本発明では、最前段の蒸発濃縮部(以下、第1蒸発濃縮部という)において濃縮水(高放射性、高塩濃度)と凝縮水(低放射性,低塩濃度)に分離することができ、第1蒸発濃縮部から生じる凝縮水のみを凝縮水導出路を通過させて放流可能な水として外部に導出するとともに、第1蒸発濃縮部で蒸発濃縮された高放射性かつ高塩濃度な濃縮水は第1蒸発濃縮部以外の蒸発濃縮部(以下、第2蒸発濃縮部という)へ導入される。そして、第2蒸発濃縮部において、処理された凝縮水は外部へ導出せずに凝縮水還流路を介して第1蒸発濃縮部に導入されて再び該第1蒸発濃縮部で処理され、さらに蒸発濃縮された濃縮水は濃縮廃液(二次廃棄物)として処分することができる。
このように、本放射性廃液処理装置では、蒸発濃縮処理において逆浸透膜処理に比べて高塩濃度で高放射線量とする濃縮が可能なため、複数段の蒸発濃縮部によって最終的に生じる高放射性で高塩濃度の濃縮廃液の発生量を少なくすることができ、減容化することが可能となる。
In the present invention, the first stage evaporative concentration section (hereinafter referred to as the first evaporative concentration section) can be separated into concentrated water (high radiation, high salt concentration) and condensed water (low radiation, low salt concentration). Only the condensed water generated from the first evaporating and concentrating part is led out to the outside as water that can be discharged through the condensed water outlet, and the concentrated water having high radioactive and high salt concentration evaporated and concentrated in the first evaporating and concentrating part is It is introduced into an evaporation concentration unit (hereinafter referred to as a second evaporation concentration unit) other than the one evaporation concentration unit. Then, in the second evaporating and concentrating part, the treated condensed water is not led out to the outside but is introduced into the first evaporating and concentrating part via the condensed water reflux path, and again processed in the first evaporating and concentrating part, and further evaporated. Concentrated concentrated water can be disposed of as concentrated waste liquid (secondary waste).
As described above, in the present radioactive waste liquid treatment apparatus, it is possible to concentrate at a high salt concentration and a high radiation dose in the evaporative concentration treatment, compared to the reverse osmosis membrane treatment, and therefore, the high radioactivity finally generated by the multi-stage evaporative concentration unit. Therefore, the amount of concentrated waste liquid having a high salt concentration can be reduced and the volume can be reduced.

また、複数段の蒸発濃縮部を設けることで、最前段の蒸発濃縮部での蒸発濃縮処理の濃縮率を抑えることができ、この第1蒸発濃縮部より導出される凝縮水の飛沫から持ち込まれる不純物の混入量を抑制することができる。例えば、第1蒸発濃縮部による濃縮率を10倍程度に抑えることで、蒸発時の飛沫に含まれる不純物濃度が10倍程度に抑えられるため、飛沫による濃縮水への放射能の移行量は低く抑えることができる。
なお、仮に第1蒸発濃縮部で生じる凝縮水に放射能が混入していても、その凝縮水は低放射性、低塩濃度であるため、例えば吸着設備で放射性物質を除去した後、放流水として系外へ放出することができ、この際に発生する放水可能なレベルに低減させるための吸着剤の使用量を低減することができる。
Further, by providing a plurality of stages of evaporation and concentration units, the concentration rate of the evaporation and concentration process in the first stage of evaporation and concentration unit can be suppressed, and brought in from the splash of condensed water derived from the first evaporation and concentration unit. The amount of impurities mixed in can be suppressed. For example, since the concentration of impurities contained in the droplets at the time of evaporation is suppressed to about 10 times by suppressing the concentration rate by the first evaporative concentration unit to about 10 times, the amount of radioactivity transferred to the concentrated water by the droplets is low. Can be suppressed.
Even if radioactivity is mixed in the condensed water generated in the first evaporating and concentrating portion, the condensed water has low radioactivity and low salt concentration. For example, after removing radioactive substances with an adsorption facility, It can be discharged out of the system, and the amount of adsorbent used for reducing to a level capable of water discharge generated at this time can be reduced.

また、本発明に係る放射性廃液処理装置では、凝縮水還流路は、1段前の蒸発濃縮部に導入することも可能である。   Moreover, in the radioactive waste liquid processing apparatus which concerns on this invention, it is also possible to introduce a condensed water recirculation path into the evaporative concentration part of the 1st stage.

この場合、最前段以外の蒸発濃縮部(第2蒸発濃縮部)が複数段設けられていても、それらすべての凝縮水が最前段の蒸発濃縮部(第1蒸発濃縮部)に導入されることがないので、第1蒸発濃縮部における処理量を抑えることができる。   In this case, even if a plurality of evaporation / concentration units (second evaporation / concentration unit) other than the first stage are provided, all of the condensed water is introduced into the first-stage evaporation / concentration unit (first evaporation / concentration unit). Therefore, the amount of processing in the first evaporating and concentrating unit can be suppressed.

また、本発明に係る放射性廃液処理装置では、凝縮水導出路には、セシウムおよびストロンチウムを吸着する第1吸着部と、無機イオン交換体を用いて吸着する第2吸着部と、イオン交換樹脂を用いて吸着する第3吸着部とを有する吸着設備が設けられ、凝縮水の放射線量および電気伝導度に応じて第1吸着部、第2吸着部、および第3吸着部のうち適宜な吸着塔を通過させる複数の吸着処理方式を選択的に切り替えることが好ましい。   Moreover, in the radioactive waste liquid processing apparatus which concerns on this invention, the 1st adsorption part which adsorb | sucks a cesium and strontium, the 2nd adsorption part adsorb | sucking using an inorganic ion exchanger, and an ion exchange resin are provided in a condensed water extraction path. An adsorbing facility having a third adsorbing unit that adsorbs the adsorbing unit, and an appropriate adsorbing tower among the first adsorbing unit, the second adsorbing unit, and the third adsorbing unit according to the radiation dose and electrical conductivity of the condensed water. It is preferable to selectively switch a plurality of adsorption processing methods for passing the water.

この場合、凝縮水導出路より導出された凝縮水は吸着設備で放射性物質が除去され、その後、放流水として系外へ放出される。そして、吸着設備においては、凝縮水の放射線量および電気伝導度に応じて好適な吸着処理方式を選択して処理することが可能となるので、使用する吸着剤を必要最小限に管理することができ、二次廃棄物を低減することができる。また、凝縮水の水質条件によっては、例えば安価なイオン交換樹脂を用いて吸着する第3吸着部で積極的に処理することで、処理コストを低減することができる。   In this case, the condensed water led out from the condensed water lead-out path is freed of radioactive substances by the adsorption facility, and then discharged out of the system as discharged water. And in the adsorption facility, it becomes possible to select and process a suitable adsorption treatment method according to the radiation amount and electric conductivity of the condensed water, so that the adsorbent used can be managed to the minimum necessary. And secondary waste can be reduced. Further, depending on the water quality condition of the condensed water, for example, the treatment cost can be reduced by positively treating the third adsorbing portion that adsorbs using an inexpensive ion exchange resin.

また、本発明に係る放射性廃液処理装置では、吸着設備の入口には、放射線量および電気伝導度を検出する測定部が設けられていてもよい。   Moreover, in the radioactive waste liquid processing apparatus which concerns on this invention, the measurement part which detects a radiation dose and electrical conductivity may be provided in the entrance of adsorption equipment.

この場合には、吸着設備に導入される直前の凝縮水の放射線量および電気伝導度を測定部で検出することができるので、より適切且つ確実な吸着処理方式の選定を行うことができる。測定部の検出値をリアルタイムで監視し、その検出値に基づいて自動で吸着処理方式を選定する制御を行うことも可能となる。   In this case, since the radiation amount and electric conductivity of the condensed water immediately before being introduced into the adsorption facility can be detected by the measurement unit, a more appropriate and reliable adsorption treatment method can be selected. It is also possible to control the detection value of the measurement unit in real time and automatically select the adsorption processing method based on the detection value.

また、本発明に係る放射性廃液処理装置では、蒸発濃縮部の後段側には放射性物質を吸着する吸着塔が設けられていても良い。   Further, in the radioactive liquid waste treatment apparatus according to the present invention, an adsorption tower for adsorbing a radioactive substance may be provided on the rear stage side of the evaporation and concentration unit.

このような構成とすることで、蒸発濃縮部で生じる濃縮水の放射性物質を吸着塔で吸着することができ、吸着塔から次の蒸発濃縮部に導入される濃縮水の放射線量を低減することができる。   By adopting such a configuration, the radioactive material of the concentrated water generated in the evaporation and concentration unit can be adsorbed by the adsorption tower, and the radiation dose of the concentrated water introduced from the adsorption tower to the next evaporation and concentration unit can be reduced. Can do.

また、本発明に係る放射性廃液処理装置では、蒸発濃縮部の後段側には、蒸発濃縮部によって濃縮された高濃度放射性廃液から塩素イオンを除去する脱塩素部が設けられていても良い。   Moreover, in the radioactive waste liquid processing apparatus which concerns on this invention, the dechlorination part which removes a chlorine ion from the high concentration radioactive waste liquid concentrated by the evaporation concentration part may be provided in the back | latter stage side of the evaporation concentration part.

本発明に係る放射性廃液処理装置によると、濃縮廃液中、あるいは凝縮水導出路より導出された凝縮水中の塩素イオン濃度を低下することができ、腐食による材料の耐久性を高めることができるとともに、機器に使用する高価な材料(金属)を少なくすることが可能となるので、二次廃棄物の長期的な保存が可能となり、総合的な処理コストの低減を図ることができる。   According to the radioactive liquid waste treatment apparatus according to the present invention, it is possible to reduce the chlorine ion concentration in the concentrated waste liquid or in the condensed water derived from the condensed water outlet, and to increase the durability of the material due to corrosion, Since it is possible to reduce the expensive material (metal) used for the equipment, secondary waste can be stored for a long period of time, and overall processing costs can be reduced.

また、本発明に係る放射性廃液処理装置では、脱塩素部は、電解によって塩素を発生させて気相中に除去する電解処理部と、塩化銀の沈殿を生成させて固相として除去する沈殿処理部と、の少なくとも一方を有することが好ましい。   Further, in the radioactive liquid waste treatment apparatus according to the present invention, the dechlorination unit includes an electrolytic treatment unit that generates chlorine by electrolysis and removes it in the gas phase, and a precipitation treatment that generates a silver chloride precipitate and removes it as a solid phase. And at least one of the parts.

本発明では、電解処理部を有する場合には、電解によって濃縮廃液中、あるいは凝縮水導出路より導出された凝縮水中の塩素イオンを塩素ガスとして系外に排出するため、濃縮水中の塩素イオン濃度を下げることができる。また、沈殿処理部を有する場合には、塩化銀の溶解度が非常に低いため、数mg/Lの塩化物イオン濃度にまで低減することができる。   In the present invention, in the case where the electrolytic treatment unit is provided, the chlorine ion concentration in the concentrated water is discharged out of the system as chlorine gas in the concentrated waste liquid by electrolysis or in the condensed water derived from the condensed water outlet passage. Can be lowered. Moreover, when it has a precipitation process part, since the solubility of silver chloride is very low, it can reduce to the chloride ion density | concentration of several mg / L.

また、本発明に係る放射性廃液処理装置では、電解処理部には、陽イオン交換膜またはナトリウム選択透過性のイオン交換膜が設けられていても良い。   In the radioactive liquid waste treatment apparatus according to the present invention, the electrolytic treatment unit may be provided with a cation exchange membrane or a sodium permselective ion exchange membrane.

本発明では、陽イオン交換膜またはナトリウム選択透過性のイオン交換膜の陽極側に蒸発濃縮部から生じた濃縮水を投入することで、その濃縮水中の塩素イオンは塩素ガスとして除去され、残存するナトリウムを主体とする陽イオンは陽イオン交換膜ナトリウム選択透過性のイオン交換膜を通過して陰極側へ移動する。このとき、陽極側では金属イオンが減少するため、濃縮水の液pHの上昇が抑制されるため、pH調整剤(酸)の添加量を減らすことができる。そして、陰極では、水が分解して水素が発生し、水酸化物イオンが残存する。さらに、陽イオン交換膜またはナトリウム選択透過性のイオン交換膜を通過したナトリウムと電解で生成した水酸化物イオンより、陰極では水酸化ナトリウム水が生成することができ、塩素回収として利用することができ、塩素回収で使用する水酸化ナトリウム試薬の添加量を削減できる。
また、沈殿処理部へ向けて排出する電解処理液のナトリウムの陽イオン濃度が低下するため、廃液の最終処分量を低減することができる。
In the present invention, by introducing concentrated water generated from the evaporating and concentrating portion to the anode side of the cation exchange membrane or the sodium permselective ion exchange membrane, chlorine ions in the concentrated water are removed as chlorine gas and remain. The cation mainly composed of sodium moves to the cathode side through the ion exchange membrane selectively permeable to sodium cation exchange membrane. At this time, since metal ions decrease on the anode side, an increase in the pH of the concentrated water is suppressed, so that the amount of pH adjusting agent (acid) added can be reduced. At the cathode, water is decomposed to generate hydrogen, and hydroxide ions remain. Furthermore, sodium hydroxide water can be generated at the cathode from sodium ions that have passed through a cation exchange membrane or a sodium permselective ion exchange membrane and electrolytically generated ion ions, which can be used for chlorine recovery. The amount of sodium hydroxide reagent used for chlorine recovery can be reduced.
Moreover, since the cation concentration of sodium in the electrolytic treatment liquid discharged toward the precipitation treatment unit is lowered, the final disposal amount of the waste liquid can be reduced.

本発明の放射性廃液処理装置によれば、複数段の蒸発濃縮部を設けることで、最終的に生じる高放射性で高塩濃度の濃縮廃液のみとし、濃縮廃液の発生量を少なくすることができるため、二次廃棄物を減容化することが可能となり、廃棄処分にかかるコストを低減することができる。   According to the radioactive liquid waste treatment apparatus of the present invention, by providing a plurality of stages of evaporation and concentration sections, it is possible to reduce the amount of concentrated waste liquid generated by using only the highly radioactive and high salt concentration concentrated waste liquid that is finally generated. Secondary waste can be reduced in volume, and the cost for disposal can be reduced.

本発明の第1の実施の形態による放射性廃液処理装置の処理工程を模式的に示すフロー図である。It is a flowchart which shows typically the process of the radioactive waste liquid processing apparatus by the 1st Embodiment of this invention. 吸着設備の処理工程を模式的に示すフロー図である。It is a flowchart which shows the processing process of adsorption equipment typically. 図2の吸着設備における吸着処理方式の吸着系統を示す模式図である。It is a schematic diagram which shows the adsorption | suction system of the adsorption | suction processing system in the adsorption | suction installation of FIG. 第2の実施の形態による放射性廃液処理装置の処理工程を模式的に示すフロー図である。It is a flowchart which shows typically the process of the radioactive liquid waste processing apparatus by 2nd Embodiment. 塩素ガス回収部の処理工程を模式的に示すフロー図である。It is a flowchart which shows typically the process of a chlorine gas collection | recovery part. 第3の実施の形態による脱塩素装置の処理工程を模式的に示すフロー図である。It is a flowchart which shows typically the process of the dechlorination apparatus by 3rd Embodiment. 第4の実施の形態による脱塩素装置の電解処理部の構成を示す図である。It is a figure which shows the structure of the electrolytic treatment part of the dechlorination apparatus by 4th Embodiment. 第5の実施の形態による放射性廃液処理装置の処理工程を模式的に示すフロー図である。It is a flowchart which shows typically the process of the radioactive waste liquid processing apparatus by 5th Embodiment.

以下、本発明の実施の形態による放射性廃液処理装置について、図面に基づいて説明する。かかる実施の形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。   Hereinafter, a radioactive liquid waste processing apparatus according to an embodiment of the present invention will be described with reference to the drawings. This embodiment shows one aspect of the present invention, and does not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention.

(第1の実施の形態)
図1に示すように、本実施の形態による放射性廃液処理装置1は、セシウムなどの放射性物質を含有する廃液やセシウムなどの放射性物質を含有する汚染土壌を洗浄して発生した洗浄液などから放射性物質を分離、除去する方法に関するものである。
(First embodiment)
As shown in FIG. 1, the radioactive liquid waste treatment apparatus 1 according to the present embodiment includes a radioactive substance from a waste liquid containing a radioactive substance such as cesium or a cleaning liquid generated by washing contaminated soil containing a radioactive substance such as cesium. It is related with the method of isolate | separating and removing.

すなわち、放射性廃液処理装置1は、放射性廃液Wを順次、蒸発凝縮させる複数段(ここでは2段)の蒸発濃縮装置2(2A、2B)(蒸発濃縮部)を備えており、放射性廃液Wが濃縮廃液になる過程において、上流側より下流側に向けて油分除去設備3、ろ過設備4、上記第1蒸発濃縮装置2A、第2蒸発濃縮装置2Bがその順で連結されて配置された構成となっている。そして、放射性廃液処理装置1には、最前段の第1蒸発濃縮装置2Aから生じる第1凝縮水G1を放射性廃液処理装置1の外部に導く凝縮水導出路21と、後段の第2蒸発濃縮装置2B(最前段の第1蒸発濃縮装置2A以外の蒸発濃縮装置)から生じる第2凝縮水G2を第1蒸発濃縮装置2Aに導入する凝縮水還流路22と、を備えている。   That is, the radioactive liquid waste treatment apparatus 1 includes a plurality of (in this case, two stages) evaporative concentration apparatus 2 (2A, 2B) (evaporation concentration section) for sequentially evaporating and condensing the radioactive liquid waste W. In the process of becoming concentrated waste liquid, the oil removal equipment 3, the filtration equipment 4, the first evaporative concentration apparatus 2A, and the second evaporative concentration apparatus 2B are connected and arranged in that order from the upstream side toward the downstream side. It has become. The radioactive liquid waste treatment apparatus 1 includes a condensed water lead-out path 21 that guides the first condensed water G1 generated from the first stage first evaporative concentration apparatus 2A to the outside of the radioactive liquid waste treatment apparatus 1, and a second stage second evaporative concentration apparatus. A condensed water reflux path 22 for introducing the second condensed water G2 generated from 2B (evaporating and concentrating apparatus other than the first evaporating and concentrating apparatus 2A) to the first evaporating and concentrating apparatus 2A.

油分除去設備3は、供給された放射性廃液Wに対して油分やゴミ(浮遊性懸濁物)を分離し、これを回収して除去する一般的な構成のものである。以下、分離された油分等を単に「油分K」という。つまり、浮上した油分Kを除去するとともに、槽底部から水(油分Kが取り除かれた放射性廃液W)を抜き出してろ過設備4に向けて送出する。なお、ここで分離されて回収された油分Kは、放射性物質が含有された二次廃棄物となる。
なお、油分除去設備3の具体例として、CIPセパレータや加圧浮上分離装置がある。
The oil removal equipment 3 has a general configuration in which oil and dust (floating suspension) are separated from the supplied radioactive waste liquid W and recovered and removed. Hereinafter, the separated oil and the like are simply referred to as “oil K”. That is, the oil K that has floated is removed, and water (the radioactive waste liquid W from which the oil K has been removed) is extracted from the tank bottom and sent to the filtration equipment 4. In addition, the oil component K separated and recovered here becomes a secondary waste containing a radioactive substance.
Specific examples of the oil removal equipment 3 include a CIP separator and a pressure levitation separator.

ろ過設備4は、例えば膜分離式、あるいは砂ろ過式のものを採用することができ、砂やゴミ(油分除去設備3で除去できないゴミ)を分離し除去し、その水(ろ過後の放射性廃液W)を第1蒸発濃縮装置2Aに向けて送出する。なお、ろ過して回収された固形物M(砂やゴミ等)は、放射性物質が含有された二次廃棄物となる。   The filtration equipment 4 can adopt, for example, a membrane separation type or a sand filtration type, and separates and removes sand and dust (garbage that cannot be removed by the oil removal equipment 3), and water (filtered radioactive waste liquid). W) is sent to the first evaporative concentration apparatus 2A. Note that the solid matter M (sand, dust, etc.) recovered by filtration becomes secondary waste containing radioactive substances.

蒸発濃縮装置2(2A、2B)は、例えば真空蒸気圧縮型を採用することができ、放射性廃液Wを濃縮し、濃縮水N(高放射性、高塩濃度)と凝縮水G(低放射性,低塩濃度)とに分離する。
前段に配置される第1蒸発濃縮装置2Aは、第1濃縮水N1が第2蒸発濃縮装置2Bへ送られ、第1凝縮水G1が凝縮水導出路21を通過して冷却水として使用され、或いは放流されるようになっている。一方、後段に配置される第2蒸発濃縮装置2Bは、第2濃縮水N2が濃縮廃水として抽出され、第2凝縮水G2が上述したように凝縮水還流路22を通過して第1蒸発濃縮装置2A内に戻される。この第1蒸発濃縮装置2Aに戻された第2凝縮水G2は、濃縮前の放射性廃液Wと混合され、再び第1蒸発濃縮装置2Aで濃縮工程にさらされる。
The evaporative concentrator 2 (2A, 2B) can employ, for example, a vacuum vapor compression type, concentrates the radioactive waste liquid W, concentrates the concentrated water N (highly radioactive, high salt concentration) and condensed water G (low radioactive, low Salt concentration).
In the first evaporative concentration apparatus 2A arranged in the preceding stage, the first concentrated water N1 is sent to the second evaporative concentration apparatus 2B, and the first condensed water G1 passes through the condensed water outlet path 21 and is used as cooling water. Or they are released. On the other hand, in the second evaporative concentration apparatus 2B arranged in the subsequent stage, the second concentrated water N2 is extracted as the concentrated waste water, and the second condensed water G2 passes through the condensed water reflux path 22 as described above and is concentrated in the first evaporation. Returned to device 2A. The second condensed water G2 returned to the first evaporating and concentrating device 2A is mixed with the radioactive waste liquid W before concentration, and is again subjected to the concentrating step by the first evaporating and concentrating device 2A.

第1蒸発濃縮装置2Aによって生じた第1凝縮水G1を導出する凝縮水導出路21は、冷却水として再利用される第1導水路23と、余剰分として放流される第2導水路24と、に分岐されている。第2導水路24には、第1凝縮水G1に含まれる放射性物質を吸着して放射線量を設定されている放流基準値以下(略0.01〜0.001以下など)に下げるための吸着設備5が設けられている。   The condensed water outlet 21 for extracting the first condensed water G1 generated by the first evaporative concentrator 2A includes a first conduit 23 that is reused as cooling water, and a second conduit 24 that is discharged as a surplus. , Have been branched. The second conduit 24 adsorbs radioactive material contained in the first condensed water G1 to reduce the radiation dose to a set discharge standard value or less (approximately 0.01 to 0.001 or less). Equipment 5 is provided.

次に、吸着設備5の構成について図2に基づいて具体的に説明する。
図2に示すように、吸着設備5は、セシウム吸着塔およびストロンチウム吸着塔を有する第1吸着塔51(第1吸着部)と、無機イオン交換体を用いて吸着する第2吸着塔52(第2吸着部)と、イオン交換樹脂を用いて吸着する第3吸着塔53(第3吸着部)と、第1蒸発濃縮装置2Aで得られる第1凝縮水G1の放射線量と電気伝導度を適宜な頻度で計測する計測部54と、が設けられている。
そして、図3に示すように、測定部54での検出値に応じて、前記第1吸着塔51、第2吸着塔52、および第3吸着塔53のうち適宜な吸着塔を通過させる複数(7つ)の吸着処理方式(第1吸着系統5A〜第7吸着系統5G)を選択的に切り替え可能な構成となっている。吸着処理方式の切替えは、図2に示すように、第1吸着塔51、第2吸着塔52、および第3吸着塔53を接続する配管に設けられている切替え弁55、56、57の開閉によって行われる。
なお、測定部54で検出した第1凝縮水G1に放射能が混入していない場合には、上記吸着塔51、52、53を通過させずに、直接放流することも可能である。
Next, the configuration of the adsorption facility 5 will be specifically described with reference to FIG.
As shown in FIG. 2, the adsorption facility 5 includes a first adsorption tower 51 (first adsorption section) having a cesium adsorption tower and a strontium adsorption tower, and a second adsorption tower 52 (first adsorption) that uses an inorganic ion exchanger. 2 adsorption section), the third adsorption tower 53 (third adsorption section) that adsorbs using an ion exchange resin, and the radiation amount and electric conductivity of the first condensed water G1 obtained by the first evaporating and concentrating device 2A as appropriate. And a measurement unit 54 that performs measurement at a frequent frequency.
Then, as shown in FIG. 3, a plurality of (the appropriate number of adsorbing towers that pass among the first adsorbing tower 51, the second adsorbing tower 52, and the third adsorbing tower 53, depending on the detection value in the measurement unit 54 ( The seven adsorption processing methods (first adsorption system 5A to seventh adsorption system 5G) can be selectively switched. As shown in FIG. 2, the adsorption processing method is switched by opening and closing switching valves 55, 56, and 57 provided in pipes connecting the first adsorption tower 51, the second adsorption tower 52, and the third adsorption tower 53. Is done by.
In addition, when radioactivity is not mixed in the 1st condensed water G1 detected by the measurement part 54, it is also possible to discharge directly, without letting the said adsorption towers 51, 52, and 53 pass.

第1吸着塔51は、ゼオライト等が採用され、セシウムやストロンチウムを吸着して除去するものである。第2吸着塔52は、無機イオン交換体によって残存したセシウムやストロンチウムおよび他の核種を吸着し、放射能を低減させるものである。また、第3吸着塔53は、吸着容量の大きなイオン交換樹脂によって全イオンを吸着し、二次廃棄物の発生量を低減するものである。   The first adsorption tower 51 employs zeolite or the like, and adsorbs and removes cesium and strontium. The second adsorption tower 52 adsorbs the remaining cesium, strontium and other nuclides by the inorganic ion exchanger, and reduces the radioactivity. The third adsorption tower 53 adsorbs all ions with an ion exchange resin having a large adsorption capacity, thereby reducing the amount of secondary waste generated.

図3に示すように、第1吸着系統5Aは、第1吸着塔51、第2吸着塔52、および第3吸着塔53の3つの吸着塔を通過させるルートである。第2吸着系統5Bは、第1吸着塔51、および第3吸着塔53の2つの吸着塔を通過させるルートである。第3吸着系統5Cは、第1吸着塔51、および第2吸着塔52の2つの吸着塔を通過させるルートである。第4吸着系統5Dは、第2吸着塔52、および第3吸着塔53の2つの吸着塔を通過させるルートである。そして、第5吸着系統5Eは第1吸着塔51のみ、第6吸着系統5Fは第2吸着塔52のみ、第7吸着系統Gは第3吸着塔53のみに通過させるルートである。
これら吸着系統5A〜5Gを適宜選定することで、最小限の二次廃棄物の発生量で第1凝縮水G1中の塩濃度、放射線量を放流水レベルまで低減することができる。
As shown in FIG. 3, the first adsorption system 5 </ b> A is a route through which three adsorption towers of a first adsorption tower 51, a second adsorption tower 52, and a third adsorption tower 53 are passed. The second adsorption system 5B is a route through which the two adsorption towers of the first adsorption tower 51 and the third adsorption tower 53 are passed. The third adsorption system 5C is a route through which the two adsorption towers of the first adsorption tower 51 and the second adsorption tower 52 are passed. The fourth adsorption system 5 </ b> D is a route through which the two adsorption towers of the second adsorption tower 52 and the third adsorption tower 53 are passed. The fifth adsorption system 5E is a route through which only the first adsorption tower 51 passes, the sixth adsorption system 5F through only the second adsorption tower 52, and the seventh adsorption system G through only the third adsorption tower 53.
By appropriately selecting these adsorption systems 5A to 5G, the salt concentration and the radiation dose in the first condensed water G1 can be reduced to the level of discharged water with the minimum amount of secondary waste generated.

ここで、測定部54で検出した第1凝縮水G1の検出値に基づく上記吸着処理方式の切り替えの判断方法について説明する。
第1凝縮水G1においてセシウムやストロンチウムの放射線量が高く、且つ電気伝導度が高い場合には、例えば第1吸着系統5Aを選択し、第1吸着塔51で放射線量の高いセシウムやストロンチウムを吸着し、第1吸着塔51で除去しきれないものを第2吸着塔52の無機イオン交換体で除去し、さらに他の雑多な放射能は第3吸着塔53のイオン交換樹脂で除去する。この場合、高レベル放射性廃棄物に該当する廃イオン交換樹脂の発生量を少なくすることができる。つまり、イオン交換樹脂はイオンの吸着容量が高いため、放射能量の高い第1凝縮水G1を第3吸着塔53に直接投入すると、イオン交換樹脂に蓄積される放射能量が高くなり、処分が困難な上記廃棄物となる。先に第1吸着塔51、第2吸着塔52を通すことによって、第1凝縮水G1中の放射能量を下げることで、イオン交換樹脂に蓄積する放射能量を低く抑えることができる。
Here, the determination method of the switching of the adsorption processing method based on the detection value of the first condensed water G1 detected by the measurement unit 54 will be described.
When the radiation amount of cesium or strontium is high and the electrical conductivity is high in the first condensed water G1, for example, the first adsorption system 5A is selected, and the first adsorption tower 51 adsorbs cesium or strontium having a high radiation dose. Then, what cannot be removed by the first adsorption tower 51 is removed by the inorganic ion exchanger of the second adsorption tower 52, and other miscellaneous radioactivity is removed by the ion exchange resin of the third adsorption tower 53. In this case, the generation amount of the waste ion exchange resin corresponding to the high level radioactive waste can be reduced. That is, since the ion-exchange resin has a high ion adsorption capacity, if the first condensed water G1 having a high radioactivity is directly input to the third adsorption tower 53, the radioactivity accumulated in the ion-exchange resin becomes high and disposal is difficult. Such waste. The amount of radioactivity accumulated in the ion exchange resin can be kept low by lowering the amount of radioactivity in the first condensed water G1 by passing the first adsorption tower 51 and the second adsorption tower 52 first.

また、第1凝縮水G1においてセシウムやストロンチウムの放射線量が高くなく(放流できるレベルよりは高い)、且つ電気伝導度が低い場合には、例えば第4吸着系統5D、或いは第7吸着系統5Gを選択し、全イオンを吸着除去する。
さらに、セシウムやストロンチウムの濃度が低いにもかかわらず、放射線量が高い場合には、他の核種が存在していることになるので、第1吸着塔51を通過させない吸着系統、すなわち図3で第4吸着系統5Dや第6吸着系統5Fを選択することができる。
さらにまた、第1凝縮水G1において雑多な放射能が無い場合には、例えば第3吸着系統5Cを選択することができる。
Further, when the radiation amount of cesium or strontium is not high (higher than the level that can be discharged) and the electrical conductivity is low in the first condensed water G1, for example, the fourth adsorption system 5D or the seventh adsorption system 5G Select and remove all ions by adsorption.
Furthermore, when the radiation dose is high despite the low concentration of cesium and strontium, other nuclides are present, so that the adsorption system that does not pass through the first adsorption tower 51, that is, in FIG. The fourth adsorption system 5D and the sixth adsorption system 5F can be selected.
Furthermore, if there is no miscellaneous radioactivity in the first condensed water G1, for example, the third adsorption system 5C can be selected.

ここで、測定部54で検出した第1凝縮水G1の判定基準としては、セシウムの放射濃度で例えば1〜100ベクレル/ml以上に設定し、電気伝導度で例えば100μジーメンス/cm以下を基準とする。   Here, as a criterion for determining the first condensate G1 detected by the measurement unit 54, the cesium radiation concentration is set to, for example, 1 to 100 becquerels / ml or more, and the electric conductivity is, for example, 100 μSiemens / cm or less. To do.

また、吸着設備3に導入される直前の凝縮水の放射線量および電気伝導度を測定部54で検出することができるので、より適切且つ確実な吸着処理方式の選定を行うことができる。測定部54の検出値をリアルタイムで監視し、その検出値に基づいて自動で吸着処理方式を選定する制御を行うことも可能となる。   Moreover, since the radiation amount and electrical conductivity of the condensed water immediately before being introduced into the adsorption facility 3 can be detected by the measurement unit 54, a more appropriate and reliable adsorption treatment method can be selected. It is also possible to control the detection value of the measurement unit 54 in real time and automatically select the adsorption processing method based on the detection value.

次に、放射性廃液処理装置1の作用について図面に基づいて具体的に説明する。
図1に示すように、本実施の形態の放射性廃液処理装置1では、第1蒸発濃縮装置2Aにおいて第1濃縮水N1(高放射性、高塩濃度)と第1凝縮水G1(低放射性,低塩濃度)に分離することができ、第1蒸発濃縮装置2Aから生じる第1凝縮水G1のみを凝縮水導出路21を通過させて放流可能な水として外部に導出するとともに、第1蒸発濃縮装置2Aで蒸発濃縮された低放射性かつ低塩濃度な第1濃縮水N1は第2蒸発濃縮装置2Bへ導入される。そして、第2蒸発濃縮装置2Bにおいて、処理された第2凝縮水G2は外部へ導出せずに凝縮水還流路22を介して第1蒸発濃縮装置2Aに導入されて再び該第1蒸発濃縮装置2Aで処理され、さらに蒸発濃縮された第2濃縮水N2は濃縮廃液(二次廃棄物)として処分することができる。
このように、放射性廃液処理装置1では、蒸発濃縮処理において逆浸透膜処理に比べて高塩濃度で高放射線量とする濃縮が可能なため、複数段(2段)の蒸発濃縮部2A、2Bによって最終的に生じる高放射性で高塩濃度の濃縮廃液(第2濃縮水N2)の発生量を少なくすることができ、減容化することが可能となる。
Next, the operation of the radioactive liquid waste treatment apparatus 1 will be specifically described based on the drawings.
As shown in FIG. 1, in the radioactive liquid waste treatment apparatus 1 of the present embodiment, the first concentrated water N1 (high radiation, high salt concentration) and the first condensed water G1 (low radiation, low concentration) in the first evaporative concentration apparatus 2A. Salt concentration), and only the first condensed water G1 generated from the first evaporating and concentrating device 2A passes through the condensed water deriving channel 21 and is discharged to the outside as the first evaporating and concentrating device. The first radioactive water N1 having a low radioactive concentration and a low salt concentration evaporated by 2A is introduced into the second evaporation concentrator 2B. Then, in the second evaporative concentration apparatus 2B, the treated second condensed water G2 is not led out to the outside, but is introduced into the first evaporative concentration apparatus 2A via the condensed water recirculation path 22, and again the first evaporative concentration apparatus 2B. The second concentrated water N2 treated with 2A and further evaporated and concentrated can be disposed of as a concentrated waste liquid (secondary waste).
As described above, in the radioactive liquid waste treatment apparatus 1, since it is possible to concentrate at a high salt concentration and a high radiation dose in the evaporation concentration treatment compared to the reverse osmosis membrane treatment, the evaporation concentration portions 2 </ b> A and 2 </ b> B in a plurality of stages (two stages). As a result, it is possible to reduce the amount of concentrated waste liquid (second concentrated water N2) that is finally generated with high radioactivity and high salt concentration, and to reduce the volume.

また、2段の蒸発濃縮装置2A、2Bを設けることで、第1蒸発濃縮装置2Aでの蒸発濃縮処理の濃縮率を抑えることができ、この第1蒸発濃縮装置2Aより導出される第1凝縮水G1に放射能混じりの不純物が混入するのを抑制することができる。例えば、第1蒸発濃縮装置2Aによる濃縮率を10倍程度に抑えることで、蒸発時の飛沫に含まれる不純物濃度が10倍程度に抑えられるため、飛沫による濃縮水への放射能の移行量は低く抑えることができる。
なお、第1蒸発濃縮装置2Aで生じる第1凝縮水G1に放射能が混入している場合、その第1凝縮水G1は低放射性、低塩濃度であるため、吸着設備3で放射性物質を除去した後、放流水として系外へ放出することができ、この際に発生する放水可能なレベルに低減させるための吸着剤の使用量を低減することができる。
Further, by providing the two-stage evaporative concentration apparatus 2A, 2B, the concentration rate of the evaporative concentration process in the first evaporative concentration apparatus 2A can be suppressed, and the first condensation derived from the first evaporative concentration apparatus 2A. It is possible to prevent impurities mixed with radioactivity from being mixed into the water G1. For example, by suppressing the concentration rate by the first evaporative concentration apparatus 2A to about 10 times, the concentration of impurities contained in the droplets at the time of evaporation can be suppressed to about 10 times. It can be kept low.
If radioactivity is mixed in the first condensate G1 generated in the first evaporative concentrator 2A, the first condensate G1 has a low radioactivity and a low salt concentration. After that, it can be discharged out of the system as effluent water, and the amount of adsorbent used for reducing to a level that can be discharged at this time can be reduced.

そして、図3に示すように、吸着設備5においては、第1凝縮水G1の放射線量および電気伝導度に応じて好適な吸着処理方式(第1〜7吸着系統5A〜5G)を選択して処理することが可能となるので、使用する吸着剤を必要最小限に管理することができ、二次廃棄物を低減することができる。また、第1凝縮水G1の水質条件によっては、例えば安価なイオン交換樹脂を用いて吸着する第3吸着塔53で積極的に処理することで、処理コストを低減することができる。   Then, as shown in FIG. 3, in the adsorption facility 5, a suitable adsorption treatment method (first to seventh adsorption systems 5A to 5G) is selected according to the radiation amount and electric conductivity of the first condensed water G1. Since it becomes possible to process, the adsorbent to be used can be managed to the minimum necessary, and the secondary waste can be reduced. Further, depending on the water quality condition of the first condensed water G1, for example, the treatment cost can be reduced by positively treating the third condensed tower 53 that adsorbs using an inexpensive ion exchange resin.

上述した本第1の実施の形態による放射性廃液処理装置では、2段の蒸発濃縮装置2A、2Bを設けることで、最終的に生じる高放射性で高塩濃度の濃縮廃液のみとし、この濃縮廃液の発生量を少なくすることができるため、二次廃棄物を減容化することが可能となり、廃棄処分にかかるコストを低減することができる。   In the radioactive liquid waste treatment apparatus according to the first embodiment described above, by providing the two-stage evaporative concentration apparatus 2A, 2B, only the concentrated radioactive liquid with high radioactive and high salt concentration that is finally generated is obtained. Since the generated amount can be reduced, the volume of secondary waste can be reduced, and the cost for disposal can be reduced.

次に、本発明の放射性廃液処理装置による他の実施の形態について、添付図面に基づいて説明するが、上述の第1の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、実施の形態と異なる構成について説明する。   Next, another embodiment of the radioactive liquid waste treatment apparatus of the present invention will be described with reference to the accompanying drawings. The same reference numerals are used for members and parts that are the same as or similar to those of the first embodiment described above. The description is omitted, and a configuration different from the embodiment will be described.

(第2の実施の形態)
図4に示す第2の実施の形態による放射性廃液処理装置1では、上述した第1の実施の形態の第1蒸発濃縮装置2Aと第2蒸発濃縮装置2Bとの間に脱塩素装置6(脱塩素部)を介在させ、濃縮廃液中の塩化物イオン濃度を低下させる構成となっている。脱塩素装置6は、塩素イオンを含有する放射性廃液Wを蒸発凝縮させる第1蒸発濃縮部2Aによって濃縮された高濃度放射性廃液から塩素イオンを除去する。脱塩素装置6は、電解によって塩素を発生させて気相中に除去する電解処理部61と、塩化銀の沈殿を生成させて固相として除去する沈殿処理部62と、を有している。塩素イオンの除去工程は、電解工程と沈殿工程の順で処理される。
(Second Embodiment)
In the radioactive liquid waste treatment apparatus 1 according to the second embodiment shown in FIG. 4, the dechlorination apparatus 6 (desorption) is provided between the first evaporative concentration apparatus 2A and the second evaporative concentration apparatus 2B of the first embodiment described above. Chlorine part) is interposed to reduce the chloride ion concentration in the concentrated waste liquid. The dechlorination apparatus 6 removes chlorine ions from the high-concentration radioactive waste liquid concentrated by the first evaporative concentration unit 2A that evaporates and condenses the radioactive waste liquid W containing chlorine ions. The dechlorination apparatus 6 includes an electrolytic processing unit 61 that generates chlorine by electrolysis and removes it in the gas phase, and a precipitation processing unit 62 that generates a silver chloride precipitate and removes it as a solid phase. The chlorine ion removal process is performed in the order of an electrolysis process and a precipitation process.

電解処理部61では、第1蒸発濃縮2Aから出た第1濃縮水N1に対してpH調整剤を供給することで、電解によって塩素を発生させて気相中に除去する。なお、発生した塩素イオン(塩素ガス)は、図5に示す塩素ガス回収部60に回収され、水酸化ナトリウム(NaOH)などのアルカリ性の材料に吸収させて無害化される。
沈殿処理部62では、沈殿法によって電解処理部61で塩素イオンを除去した濃縮水に対して硝酸銀や硫酸銀などを供給して反応させることで、塩化銀の沈殿を生成させて固相として除去する。
In the electrolytic treatment unit 61, chlorine is generated by electrolysis and removed in the gas phase by supplying a pH adjuster to the first concentrated water N <b> 1 output from the first evaporative concentration 2 </ b> A. The generated chlorine ions (chlorine gas) are recovered by the chlorine gas recovery unit 60 shown in FIG. 5 and absorbed by an alkaline material such as sodium hydroxide (NaOH) to be rendered harmless.
In the precipitation processing unit 62, silver nitrate or silver sulfate is supplied and reacted with the concentrated water from which the chlorine ions have been removed by the electrolytic processing unit 61 by a precipitation method, thereby generating a silver chloride precipitate and removing it as a solid phase. To do.

本脱塩素装置6では、電解処理部61における電解によって第1濃縮水N1中の塩素イオンを塩素ガスとして系外(放射性廃液処理装置1の外)に排出するため、第1濃縮水N1中の塩素イオン濃度を下げることができる。また、沈殿処理部62では、塩化銀の溶解度が非常に低いため、数mg/Lの塩化物イオン濃度にまで低減することができる。
一般的に、電解法では効果的な電解を行う条件として、塩素濃度で略5000ppm以上が必要とされている。これに対して、本第2の実施の形態では、第1蒸発濃縮装置2Aで蒸発濃縮され、第1濃縮水N1の上記塩素濃度を5000ppm以上に高めることができ、この第1濃縮水N1に対して電解法により効率よく塩素イオンを減らす工程を行うことができる。これにより、濃縮廃液中の塩素イオン濃度を低下することができ、腐食による材料の耐久性を高めることができるとともに、機器に使用する高価な材料(金属)を少なくすることが可能となるので、二次廃棄物の長期的な保存が可能となり、総合的な処理コストの低減を図ることができる。
In the present dechlorination apparatus 6, chlorine ions in the first concentrated water N1 are discharged as chlorine gas to the outside of the system (outside the radioactive waste liquid treatment apparatus 1) by electrolysis in the electrolytic treatment unit 61. Chlorine ion concentration can be lowered. Moreover, in the precipitation process part 62, since the solubility of silver chloride is very low, it can reduce to the chloride ion density | concentration of several mg / L.
In general, the electrolytic method requires a chlorine concentration of about 5000 ppm or more as a condition for effective electrolysis. On the other hand, in the second embodiment, the first concentrated water N1 is evaporated and concentrated, and the chlorine concentration of the first concentrated water N1 can be increased to 5000 ppm or more. On the other hand, a step of efficiently reducing chlorine ions can be performed by an electrolytic method. As a result, the chlorine ion concentration in the concentrated waste liquid can be lowered, the durability of the material due to corrosion can be increased, and the expensive material (metal) used in the equipment can be reduced. Secondary waste can be stored for a long period of time, and overall processing costs can be reduced.

(第3の実施の形態)
図6に示すように、第3の実施の形態による放射性廃液処理装置1は、上述した第2の実施の形態の脱塩素装置6において、沈殿処理部62で発生した塩化銀をアンモニア等で再溶解した後、電解処理により銀を回収する銀回収部63を設け、この銀回収部63の電解処理により塩化物イオンを除去する構成としたものである。この銀回収部63で発生した塩素ガスは、塩素回収部60において無毒化する。そして、銀回収部63において、電解により析出した銀は硝酸等に再溶解した後、沈殿工程に送って再利用される。
(Third embodiment)
As shown in FIG. 6, the radioactive liquid waste treatment apparatus 1 according to the third embodiment regenerates silver chloride generated in the precipitation treatment unit 62 with ammonia or the like in the dechlorination apparatus 6 of the second embodiment described above. After dissolution, a silver recovery part 63 that recovers silver by electrolytic treatment is provided, and chloride ions are removed by electrolytic treatment of the silver recovery part 63. Chlorine gas generated in the silver recovery unit 63 is detoxified in the chlorine recovery unit 60. And in the silver collection | recovery part 63, after re-dissolving the silver precipitated by electrolysis in nitric acid etc., it sends to a precipitation process and is reused.

本第3の実施の形態では、高価な銀を回収し、再利用することで、硝酸銀などの薬品の使用量を少なくすることができ、ランニングコストを低減することができる。
そして、本脱塩素装置6で発生するものは塩素ガスのみであり、回収後、系外へ放出できるため、新たな二次廃棄物が発生しないという利点がある。
また、銀回収部63で発生する塩素ガスは既設置の塩素回収工程で処理できるため、塩素処理のための追加の設備が不要になるという利点もある。
In the third embodiment, by recovering and reusing expensive silver, the amount of chemicals such as silver nitrate can be reduced, and the running cost can be reduced.
And what is generated with this dechlorination apparatus 6 is only chlorine gas, and since it can discharge | release outside the system after collection | recovery, there exists an advantage that a new secondary waste does not generate | occur | produce.
Moreover, since the chlorine gas generated in the silver recovery unit 63 can be processed in the existing chlorine recovery process, there is an advantage that additional equipment for chlorination becomes unnecessary.

(第4の実施の形態)
図7に示す第4の実施の形態は、上述した第3の実施の形態の脱塩素装置6の電解処理部61において、内部に陽イオン交換膜65を取付けた構成となっている。
この場合、陽イオン交換膜65の陽極65a側に第1蒸発濃縮装置2Aから生じた第1濃縮水N1を投入することで、第1濃縮水N1中の塩素イオンは塩素ガスとして除去され、残存するナトリウム(Na+)を主体とする陽イオンは陽イオン交換膜65を通過して陰極65b側へ移動する。このとき、陽極65a側では金属イオンが減少するため、第1濃縮水N1の液pHの上昇が抑制されるため、pH調整剤(酸)の添加量を減らすことができる。そして、陰極65bでは、水が分解して水素が発生し、水酸化物イオン(OH−)が残存する。さらに、陽イオン交換膜65を通過したナトリウム(Na+)と電解で生成した水酸化物イオン(OH−)より、陰極65bでは水酸化ナトリウム(NaOH)水が生成される。
(Fourth embodiment)
The fourth embodiment shown in FIG. 7 has a configuration in which a cation exchange membrane 65 is attached inside the electrolytic treatment section 61 of the dechlorination apparatus 6 of the third embodiment described above.
In this case, by introducing the first concentrated water N1 generated from the first evaporative concentration device 2A to the anode 65a side of the cation exchange membrane 65, the chlorine ions in the first concentrated water N1 are removed as chlorine gas and remain. The cation mainly composed of sodium (Na +) passes through the cation exchange membrane 65 and moves to the cathode 65b side. At this time, since metal ions decrease on the anode 65a side, an increase in the pH of the first concentrated water N1 is suppressed, so that the amount of pH adjusting agent (acid) added can be reduced. In the cathode 65b, water is decomposed to generate hydrogen, and hydroxide ions (OH-) remain. Further, sodium hydroxide (NaOH) water is generated at the cathode 65b from sodium (Na +) that has passed through the cation exchange membrane 65 and hydroxide ions (OH−) generated by electrolysis.

このように本第4の実施の形態では、陰極65bで生成したNaOH水は塩素回収部60のNaOHとして利用することができ、塩素回収部60(図6参照)で使用する水酸化ナトリウム試薬の添加量を削減できる。
また、沈殿処理部62へ向けて排出する電解処理液のナトリウム(Na+)の陽イオン濃度が低下するため、廃液の最終処分量を低減することができる。
Thus, in the fourth embodiment, the NaOH water generated at the cathode 65b can be used as NaOH in the chlorine recovery unit 60, and the sodium hydroxide reagent used in the chlorine recovery unit 60 (see FIG. 6). The amount added can be reduced.
Moreover, since the cation concentration of sodium (Na +) of the electrolytic treatment liquid discharged toward the precipitation treatment unit 62 is reduced, the final disposal amount of the waste liquid can be reduced.

なお、本第4の実施の形態では、陽イオン交換膜65に代えて、ナトリウム選択透過性のイオン交換膜を設けるようにしても良い。この場合も、第1濃縮水N1中の塩素イオンは塩素ガスとして除去され、残存するナトリウム(Na+)を主体とする陽イオンのうち、Na+が選択的にナトリウム選択透過性のイオン交換膜を通過して陰極側へ移動する。このとき、陽極65a側では金属イオンが減少するため、第1濃縮水N1の液pHの上昇が抑制されるため、pH調整剤(酸)の添加量を減らすことができる。陽極側はNa+イオンが減少するため、液pHの上昇が抑えられる。   In the fourth embodiment, a sodium permselective ion exchange membrane may be provided instead of the cation exchange membrane 65. Also in this case, chlorine ions in the first concentrated water N1 are removed as chlorine gas, and Na + selectively passes through a sodium selective permeable ion exchange membrane among the remaining cations mainly composed of sodium (Na +). And move to the cathode side. At this time, since metal ions decrease on the anode 65a side, an increase in the pH of the first concentrated water N1 is suppressed, so that the amount of pH adjusting agent (acid) added can be reduced. Since Na + ions decrease on the anode side, the increase in the liquid pH is suppressed.

この場合、第4の実施の形態と同様の作用、効果が得られるとともに、陽極からはNa+のみが透過するため、放射性物質(セシウムCs、ストロンチウムSrなどの陽イオン)の陰極側への流出を抑えることができる。そして、陰極側の液は放射能量を低く維持することができる。   In this case, the same operation and effect as in the fourth embodiment can be obtained, and only Na + can be transmitted from the anode, so that radioactive substances (cations such as cesium Cs and strontium Sr) can flow out to the cathode side. Can be suppressed. And the cathode side liquid can maintain the amount of radioactivity low.

(第5の実施の形態)
図8に示す第5の実施の形態による放射性廃液処理装置1では、上述した第1の実施の形態の第1蒸発濃縮装置2Aと第2蒸発濃縮装置2Bとの間にセシウム吸着塔7(および/またはストロンチウム吸着塔)を設置した構成となっている。
この場合、第1蒸発濃縮装置2Aから出た第1濃縮水N1に対してセシウム吸着塔7で放射線量を下げた後、さらに第2蒸発濃縮装置2Bによって蒸発濃縮することにより、放射性廃液の放射線量が一定レベル以下のままで塩濃度を濃縮することができる。つまり、第1蒸発濃縮装置2Aを通過した濃縮率の高い第1濃縮水N1は塩化物イオン濃度が上昇することから、上述した第2〜4の実施の形態の脱塩素装置6における塩化物イオンの除去率を向上させることができる。
また、電解処理でより多くの塩化物イオンを除去するため、第2〜4の実施の形態の沈殿処理で使用する銀(硝酸銀など)の量を削減することができる。
(Fifth embodiment)
In the radioactive liquid waste treatment apparatus 1 according to the fifth embodiment shown in FIG. 8, the cesium adsorption tower 7 (and between the first evaporative concentration apparatus 2A and the second evaporative concentration apparatus 2B of the first embodiment described above). (Or strontium adsorption tower).
In this case, the radiation concentration of the radioactive waste liquid is reduced by lowering the radiation dose in the cesium adsorption tower 7 with respect to the first concentrated water N1 discharged from the first evaporative concentration apparatus 2A and then further evaporating and concentrating with the second evaporative concentration apparatus 2B. The salt concentration can be concentrated while the amount remains below a certain level. That is, since the first concentrated water N1 having a high concentration rate that has passed through the first evaporative concentration apparatus 2A has an increased chloride ion concentration, the chloride ion in the dechlorination apparatus 6 of the second to fourth embodiments described above. The removal rate can be improved.
Moreover, since more chloride ions are removed by electrolytic treatment, the amount of silver (silver nitrate or the like) used in the precipitation treatment of the second to fourth embodiments can be reduced.

以上、本発明による放射性廃液処理装置の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、本実施の形態では蒸発濃縮装置2A、2Bの段数を2段としているが、この数量に限定されることはなく、3段以上を設ける構成とすることも可能である。なお、3段以上の蒸発濃縮装置を設ける場合には、2段目以降の蒸発濃縮装置2の凝縮水還流路22を最前段の第1蒸発濃縮装置2Aに接続して、それら凝縮水を第1蒸発濃縮装置2Aに戻すようにしてもよいし、2段目以降の蒸発濃縮装置2の凝縮水還流路22を1段前の蒸発濃縮装置に戻すようにしてもよい。
As mentioned above, although embodiment of the radioactive waste liquid processing apparatus by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, in the present embodiment, the number of stages of the evaporation concentrators 2A and 2B is two, but the number is not limited to this number, and a configuration in which three or more stages are provided is also possible. In the case of providing three or more stages of the evaporative concentrator, the condensed water reflux path 22 of the second and subsequent stages of the evaporative concentrator 2 is connected to the first evaporative concentrator 2A in the foremost stage, You may make it return to 1A evaporative concentration apparatus 2A, and you may make it return the condensed water recirculation path 22 of the evaporative concentration apparatus 2 of the 2nd stage or later to the evaporative concentration apparatus of the 1st previous stage.

また、上述した第2〜4の実施の形態による脱塩素装置6は、1段目と2段目の蒸発濃縮装置2A、2Bの間に設けているが、その位置は限定されることはない。例えば、3以上の複数段の蒸発濃縮装置2が設けられている場合には、脱塩素装置6を例えば2段目と3段目の蒸発濃縮装置の間に配置することが可能である。   Moreover, although the dechlorination apparatus 6 by 2nd-4th embodiment mentioned above is provided between the 1st stage | paragraph and the 2nd stage | paragraph evaporative concentration apparatus 2A, 2B, the position is not limited. . For example, in the case where three or more multi-stage evaporative concentration apparatuses 2 are provided, the dechlorination apparatus 6 can be disposed between, for example, the second and third evaporative concentration apparatuses.

さらに、蒸発濃縮装置として、真空蒸気圧縮型に限らず、減圧型、焚き上げ型の濃縮装置であってもかまわない。   Further, the evaporation concentrating device is not limited to the vacuum vapor compression type, and may be a decompression type or a scooping type concentrating device.

本実施の形態では、脱塩素装置6として、電解処理部61と沈殿処理部62とを備えているが、これに限定されず、電解処理部61と沈殿処理部62のうちいずれか一方のみとする構成であってもよい。   In the present embodiment, the dechlorination device 6 includes an electrolytic treatment unit 61 and a precipitation treatment unit 62, but is not limited thereto, and only one of the electrolytic treatment unit 61 and the precipitation treatment unit 62 is used. It may be configured to.

また、本第5の実施の形態ではセシウム吸着塔を第1蒸発濃縮装置2Aの後に設けているが、この位置に限定されることはない。例えば、第1蒸発濃縮装置2Aの前段にセシウム吸着塔7(および/またはストロンチウム吸着塔)を設置して放射線量を下げた後、蒸発濃縮することにより、凝縮水の放射能レベルを維持したまま、濃縮率を高めることができる。そして、濃縮率が高まると、処理水の回収率も増加することになるので,濃縮廃液量を減らすことができる。   In the fifth embodiment, the cesium adsorption tower is provided after the first evaporative concentration apparatus 2A. However, the present invention is not limited to this position. For example, the cesium adsorption tower 7 (and / or the strontium adsorption tower) is installed in the front stage of the first evaporative concentration apparatus 2A to reduce the radiation dose, and then evaporate and concentrate to maintain the radioactivity level of the condensed water. , Can increase the concentration rate. And if the concentration rate increases, the recovery rate of treated water also increases, so the amount of concentrated waste liquid can be reduced.

その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施の形態を適宜組み合わせてもよい。   In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with well-known constituent elements without departing from the spirit of the present invention, and the above-described embodiments may be appropriately combined.

1 放射性廃液処理装置
2 蒸発濃縮装置(蒸発濃縮部)
2A 第1蒸発濃縮装置(蒸発濃縮部)
2B 第1蒸発濃縮装置(蒸発濃縮部)
3 油分除去設備
4 ろ過設備
5 吸着設備
5A〜5G 第1〜7吸着系統
6 脱塩素装置(脱塩素部)
7 セシウム吸着塔
21 凝縮水導出路
22 凝縮水還流路
23 第1導水路
24 第2導水路
51 第1吸着塔(第1吸着部)
52 第2吸着塔(第2吸着部)
53 第3吸着塔(第3吸着部)
54 計測部54
55、56、57 切替え弁
60 塩素回収部
61 電解処理部
62 沈殿処理部
63 銀回収部
65 陽イオン交換膜
1 Radioactive waste liquid treatment device 2 Evaporation concentration device (evaporation concentration unit)
2A 1st evaporation concentration apparatus (evaporation concentration part)
2B 1st evaporation concentration apparatus (evaporation concentration part)
3 Oil removal equipment 4 Filtration equipment 5 Adsorption equipment 5A-5G 1st-7th adsorption system 6 Dechlorination equipment (dechlorination part)
7 Cesium adsorption tower 21 Condensed water outlet path 22 Condensed water reflux path 23 First water path 24 Second water path 51 First adsorption tower (first adsorption section)
52 2nd adsorption tower (2nd adsorption part)
53 3rd adsorption tower (3rd adsorption part)
54 Measuring unit 54
55, 56, 57 Switching valve 60 Chlorine recovery unit 61 Electrolytic processing unit 62 Precipitation processing unit 63 Silver recovery unit 65 Cation exchange membrane

Claims (8)

放射性廃液を順次、蒸発凝縮させる複数段の蒸発濃縮部を備えた放射性廃液処理装置であって、
最前段の前記蒸発濃縮部から生じる凝縮水を外部に導く凝縮水導出路と、
前記最前段の蒸発濃縮部以外の前記蒸発濃縮部から生じる凝縮水を、該蒸発濃縮部よりも前段側の前記蒸発濃縮部に導入する凝縮水還流路と、
を備えることを特徴とする放射性廃液処理装置。
A radioactive waste liquid treatment apparatus comprising a plurality of stages of evaporation and concentration units for sequentially evaporating and condensing radioactive waste liquid,
A condensed water lead-out path for guiding condensed water generated from the evaporating and concentrating part at the front stage to the outside;
A condensed water reflux path for introducing condensed water generated from the evaporative concentration unit other than the evaporative concentration unit in the front stage to the evaporative concentration unit upstream of the evaporative concentration unit;
A radioactive liquid waste treatment apparatus comprising:
前記凝縮水還流路は、1段前の前記蒸発濃縮部に導入することを特徴とする請求項1に記載の放射性廃液処理装置。   The radioactive liquid waste treatment apparatus according to claim 1, wherein the condensed water recirculation path is introduced into the evaporating and concentrating unit preceding one stage. 前記凝縮水導出路には、セシウムおよびストロンチウムを吸着する第1吸着部と、無機イオン交換体を用いて吸着する第2吸着部と、イオン交換樹脂を用いて吸着する第3吸着部とを有する吸着設備が設けられ、
前記凝縮水の放射線量および電気伝導度に応じて前記第1吸着部、第2吸着部、および第3吸着部のうち適宜な吸着塔を通過させる複数の吸着処理方式を選択的に切り替えることを特徴とする請求項1又は2に記載の放射性廃液処理装置。
The condensed water lead-out path has a first adsorption part that adsorbs cesium and strontium, a second adsorption part that adsorbs using an inorganic ion exchanger, and a third adsorption part that adsorbs using an ion exchange resin. Adsorption equipment is provided,
Selectively switching a plurality of adsorption processing methods for passing an appropriate adsorption tower among the first adsorption unit, the second adsorption unit, and the third adsorption unit according to the radiation amount and electric conductivity of the condensed water. The radioactive liquid waste treatment apparatus according to claim 1 or 2, characterized by the above.
前記吸着設備の入口には、前記放射線量および電気伝導度を検出する測定部が設けられていることを特徴とする請求項3に記載の放射性廃液処理装置。   The radioactive waste liquid treatment apparatus according to claim 3, wherein a measurement unit that detects the radiation dose and electrical conductivity is provided at an entrance of the adsorption facility. 前記蒸発濃縮部の後段側には放射性物質を吸着する吸着塔が設けられていることを特徴とする請求項1乃至4のいずれか1項に記載の放射性廃液処理装置。   The radioactive waste liquid treatment apparatus according to any one of claims 1 to 4, wherein an adsorption tower for adsorbing a radioactive substance is provided on a rear stage side of the evaporative concentration unit. 前記蒸発濃縮部の後段側には、該蒸発濃縮部によって濃縮された高濃度放射性廃液から塩素イオンを除去する脱塩素部が設けられていることを特徴とする請求項1乃至5のいずれか1項に記載の放射性廃液処理装置。   The dechlorination part which removes a chlorine ion from the high concentration radioactive waste liquid concentrated by this evaporation concentration part is provided in the back | latter stage side of the said evaporation concentration part, The any one of Claim 1 thru | or 5 characterized by the above-mentioned. The radioactive waste liquid processing apparatus as described in the paragraph. 前記脱塩素部は、
電解によって塩素を発生させて気相中に除去する電解処理部と、
塩化銀の沈殿を生成させて固相として除去する沈殿処理部と、
の少なくとも一方を有することを特徴とする請求項6に記載の放射性廃液処理装置。
The dechlorination part is
An electrolytic treatment section for generating chlorine by electrolysis and removing it in the gas phase;
A precipitation processing section for generating a silver chloride precipitate and removing it as a solid phase;
It has at least one of these, The radioactive waste liquid processing apparatus of Claim 6 characterized by the above-mentioned.
前記電解処理部には、陽イオン交換膜またはナトリウム選択透過性のイオン交換膜が設けられていることを特徴とする請求項7に記載の放射性廃液処理装置。   8. The radioactive liquid waste treatment apparatus according to claim 7, wherein the electrolytic treatment unit is provided with a cation exchange membrane or a sodium permselective ion exchange membrane.
JP2012007029A 2012-01-17 2012-01-17 Radioactive liquid processing equipment Active JP5909096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007029A JP5909096B2 (en) 2012-01-17 2012-01-17 Radioactive liquid processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007029A JP5909096B2 (en) 2012-01-17 2012-01-17 Radioactive liquid processing equipment

Publications (2)

Publication Number Publication Date
JP2013148364A true JP2013148364A (en) 2013-08-01
JP5909096B2 JP5909096B2 (en) 2016-04-26

Family

ID=49045999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007029A Active JP5909096B2 (en) 2012-01-17 2012-01-17 Radioactive liquid processing equipment

Country Status (1)

Country Link
JP (1) JP5909096B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399365B1 (en) * 2013-08-27 2014-05-27 (주)이엔이 Apparatus for disposal of liquid radioactive waste
JP2015175741A (en) * 2014-03-14 2015-10-05 三菱重工業株式会社 Treatment apparatus, treatment system, and treatment method for radiation-contaminated water
JP2017020964A (en) * 2015-07-14 2017-01-26 中国電力株式会社 Radioactive waste liquid processing apparatus
CN106653119A (en) * 2016-12-08 2017-05-10 核动力运行研究所 Device and method for diagnosing abnormity of positive conductivity index of nuclear power plant condensate system
CN106653114A (en) * 2016-12-08 2017-05-10 核动力运行研究所 Abnormity diagnosis device and method for pH value index of sewage discharge system in nuclear power plant
JP2017090098A (en) * 2015-11-04 2017-05-25 株式会社荏原製作所 Slurry disposal device, and slurry disposal method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139187A (en) * 1980-02-19 1981-10-30 Kraftwerk Union Ag Continuous operation type evaporator for polluted liquid
JPS61195400A (en) * 1985-02-25 1986-08-29 東京電力株式会社 Method of treating waste liquor containing radioactive nuclide
JPS62262784A (en) * 1986-04-30 1987-11-14 ウエスチングハウス エレクトリック コ−ポレ−ション Apparatus and method for removing strontium and/or cesium ion from aqueous solution having chemical hardness
JPS63250597A (en) * 1987-04-07 1988-10-18 株式会社東芝 Radioactive waste-liquor processor
JPS6439600A (en) * 1987-08-06 1989-02-09 Ebara Corp Treatment of radioactive waste liquid containing salts at high concentration
JPH0247599A (en) * 1988-08-09 1990-02-16 Tokyo Electric Power Co Inc:The Treatment method for radioactive nuclide containing waste liquid
JPH09189798A (en) * 1996-01-11 1997-07-22 Toshiba Corp Radioactive waste liquid treatment device
JP2010107473A (en) * 2008-10-31 2010-05-13 Toshiba Corp Radioactive chlorine separation method and radioactive chlorine measuring method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139187A (en) * 1980-02-19 1981-10-30 Kraftwerk Union Ag Continuous operation type evaporator for polluted liquid
JPS61195400A (en) * 1985-02-25 1986-08-29 東京電力株式会社 Method of treating waste liquor containing radioactive nuclide
JPS62262784A (en) * 1986-04-30 1987-11-14 ウエスチングハウス エレクトリック コ−ポレ−ション Apparatus and method for removing strontium and/or cesium ion from aqueous solution having chemical hardness
JPS63250597A (en) * 1987-04-07 1988-10-18 株式会社東芝 Radioactive waste-liquor processor
JPS6439600A (en) * 1987-08-06 1989-02-09 Ebara Corp Treatment of radioactive waste liquid containing salts at high concentration
JPH0247599A (en) * 1988-08-09 1990-02-16 Tokyo Electric Power Co Inc:The Treatment method for radioactive nuclide containing waste liquid
JPH09189798A (en) * 1996-01-11 1997-07-22 Toshiba Corp Radioactive waste liquid treatment device
JP2010107473A (en) * 2008-10-31 2010-05-13 Toshiba Corp Radioactive chlorine separation method and radioactive chlorine measuring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101399365B1 (en) * 2013-08-27 2014-05-27 (주)이엔이 Apparatus for disposal of liquid radioactive waste
WO2015030366A1 (en) * 2013-08-27 2015-03-05 ㈜이엔이 Radioactive liquid waste disposal apparatus
JP2015175741A (en) * 2014-03-14 2015-10-05 三菱重工業株式会社 Treatment apparatus, treatment system, and treatment method for radiation-contaminated water
JP2017020964A (en) * 2015-07-14 2017-01-26 中国電力株式会社 Radioactive waste liquid processing apparatus
JP2017090098A (en) * 2015-11-04 2017-05-25 株式会社荏原製作所 Slurry disposal device, and slurry disposal method
CN106653119A (en) * 2016-12-08 2017-05-10 核动力运行研究所 Device and method for diagnosing abnormity of positive conductivity index of nuclear power plant condensate system
CN106653114A (en) * 2016-12-08 2017-05-10 核动力运行研究所 Abnormity diagnosis device and method for pH value index of sewage discharge system in nuclear power plant
CN106653119B (en) * 2016-12-08 2018-03-16 核动力运行研究所 Nuclear power plant's condensate system positive electricity conductance Indexes Abnormality diagnostic device and method

Also Published As

Publication number Publication date
JP5909096B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP5909096B2 (en) Radioactive liquid processing equipment
JP4428582B1 (en) Method and apparatus for producing acid and alkali from leachate
JP6071201B2 (en) Radioactive liquid processing equipment
CN110379532B (en) Method and device for treating radioactive waste liquid
JP2014163843A (en) Cleaning acid recycling method and recycling facility
JP6015062B2 (en) Equipment for concentrating radioactive material-containing water using a zeolite membrane
CN110349689A (en) Nuclear power station Spent Radioactive liquid processing device
CN110349690B (en) Method and device for treating radioactive waste liquid
JP6047957B2 (en) Treatment method of wastewater containing radioactive strontium
JP2008076054A (en) Method and device for treating waste liquid containing radionuclide
US20110062070A1 (en) Apparatus for treating wastewater, particularly wastewater originating from a process for the production of photovoltaic cells
JP5373067B2 (en) Amine recovery method from amine-containing wastewater
KR101213230B1 (en) Recycling device of inorganic wastewater and the recycling method of inorganic wastewater using the solar heat
JP6189422B2 (en) Water treatment system
WO2023022627A1 (en) Method for lithium sorption extraction from lithium-containing brines
JP6651382B2 (en) Wastewater treatment method and wastewater treatment device
JP6049262B2 (en) Radioactive liquid processing equipment
KR20110029910A (en) Recycling device of inorganic wastewater and the recycling method of inorganic wastewater
JP2006212540A (en) Treatment method of chemical-washing waste liquid
JP2012225810A (en) Method and device for treating radioactive substance-containing effluent
JP2014163841A (en) Sewage sludge incineration ash processing method
JP6175354B2 (en) Method and apparatus for treating contaminated water
JP2013108818A (en) Radioactive waste liquid treatment method and treatment system
JP6752300B2 (en) Radioactive waste liquid treatment system
JP2014062737A (en) Method and apparatus for detoxifying incineration ash containing radioactive cesium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160325

R151 Written notification of patent or utility model registration

Ref document number: 5909096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151