JP4136016B2 - Exhaust gas purification method - Google Patents

Exhaust gas purification method Download PDF

Info

Publication number
JP4136016B2
JP4136016B2 JP23628796A JP23628796A JP4136016B2 JP 4136016 B2 JP4136016 B2 JP 4136016B2 JP 23628796 A JP23628796 A JP 23628796A JP 23628796 A JP23628796 A JP 23628796A JP 4136016 B2 JP4136016 B2 JP 4136016B2
Authority
JP
Japan
Prior art keywords
reagent
iodine
exhaust gas
nitrite
nha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23628796A
Other languages
Japanese (ja)
Other versions
JPH09103642A (en
Inventor
ローラン ブリジット
ドビスム フレデリック
Original Assignee
コミツサリア タ レネルジー アトミーク
コンパニー ジェネラール デ マチエール ヌクレイル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミツサリア タ レネルジー アトミーク, コンパニー ジェネラール デ マチエール ヌクレイル filed Critical コミツサリア タ レネルジー アトミーク
Publication of JPH09103642A publication Critical patent/JPH09103642A/en
Application granted granted Critical
Publication of JP4136016B2 publication Critical patent/JP4136016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Description

【0001】
【発明の属する技術分野】
本発明は窒素酸化物又は亜硝酸蒸気を含有する排ガスを亜硝酸塩分解性アンモニウム誘導体を含有する水溶液で洗浄して排ガスを湿式精製する方法に関する。
【0002】
亜硝酸蒸気以外に、処理済みガスにはヨウ素、特にヨウ素129が含有されており、特に照射済み核燃料の再処理プラントの溶解中に形成されるいわゆる「溶解」ガスから構成されている。従って本方法は処理済みガスから亜硝酸蒸気を除去し、ヨウ素を処理する第1工程と、過酸化水素を用いて使用水溶液からヨウ素を脱離させる第2工程とから成る。
【0003】
【従来の技術】
各種の産業設備、例えば化石燃料火力発電所、廃棄物焼却プラント、等から得られるガス、特に一般にNOx といわれている窒素酸化物を含有する排ガスと煙道ガスとはこれまでに各種の試薬を用いる洗浄設備で湿式法で処理されてきた。一番多く用いられる試薬は、水溶液形態のソーダである。従って、多量の亜硝酸ナトリウム含有溶液が生成され、次いで、これはリサイクル又は放出する前には、1以上の処理工程が必要であり、今まで以上に厳しいこのような排出物を規制する基準を満たす。
【0004】
窒素酸化物亜硝酸の蒸気であるNOx を含有する排ガスは原子力工業、特に溶解機、例えば溶解輪で核燃料、特にUO2 を沸騰硝酸と接触させて下記の反応で溶解させる際に溶解ガスの形で生成する。
UO2 +3HNO3 →UO2(NO3)2 +0.5NO2+0.5NO +1.5H2O
【0005】
照射済み燃料の溶解で生成するこれらの排ガスは直接大気中に放出できない。なぜなら、これらの排ガスは、窒素酸化物NOx 以外に、ある種の核分裂生成物(特に、Kr、Xe、I2 (ヨウ素129)及びトリチウム)、揮発性核分裂生成化合物(例えば、酸化ルテニウムRuO4 )、放射性エアロゾル、剪断溶解手段の掃気用ガス、溶解機で用いたエアリフト又はバブリングガス、並びに溶解溶液の沸騰による水蒸気を含有する。
【0006】
従って、ヨウ化物、例えばヨウ化セシウム、又は有機ヨウ化物の形で使用済み核燃料中に存在するヨウ素は溶解時に離脱する。その離脱量は溶液の蒸発速度と関連するが、ヨウ素の1部は溶液中に不揮発性ヨウ素酸塩の形で残留する。
【0007】
濾過したのち再処理プラントの煙突中に放出する前にこれらのガスをいくつかの処理に付することが不可欠であり、水蒸気を除去し、硝酸中の亜硝酸蒸気であるNO、NO2 を再結合化させる直列配置の幾つかの装置、即ち、凝縮器、再結合塔、仕上げ塔を通過させる。再結合化は完全でなく、その排出ガスには窒素酸化物NOx とその他のガス、例えばKr、Ze、トリチウム、ヨウ素等を含んだ空気が主として含有されている。
【0008】
従って、このガスは更に本質的に連続2工程から成る湿式処理に付される。第1の工程は例えば周囲温度(20℃)で0.4Mのソーダ水溶液中に連続吸収させてヨウ素を捕捉し、未再結合化窒素酸化物NOx を除去することから成るもので、この工程では次のような化学反応が進行すると考えられる。
4NaOH+I2+2NO → 2NaI +2NaNO2+2H2O
(収率95%で進む)
2NaOH+2NO +1/2O2 →2NaNO2+H2O
(収率67%で進む)
【0009】
この工程の終了時に得られる溶液は本質的にナトリウム、亜硝酸塩及びヨウ化物から成るもので、ヨウ素の捕捉に用いたこの溶液はその放射能が排出基準以下であれば、普通は直接海洋投棄できる。
【0010】
ヨウ素を捕捉したナトリウム溶液の汚染度の測定は溶液中に含有されているヨウ素量で行わない。ヨウ素129の比放射能は低いからで、海洋直接投棄の現行基準を越える放射能の原因となるのは多孔状(ベシキュラ)汚染物質、例えばルテニウムである。
【0011】
従って、この洗浄溶液の汚染度がひどくて投棄できないときはこの洗浄溶液は再酸性化して亜硝酸塩を分解させる第2のヨウ素離脱工程に付する必要があり、この第2工程は空気掃気下亜硝酸塩分解用の1.5Mのスルファミン酸とヨウ素脱離用の4Mの硝酸から成る試薬を用いて温度60℃、接触時間10〜17時間で不連続的(回分式)に行われる。
【0012】
この工程では次の化学反応が進行すると考えられる。
NH2HSO3 +NaNO2 →NaHSO4+N2+H2O
2NH2HSO3+H2O +2NaI→(NN4)2SO3 +Na2SO4+I2 (2)
2NaI+2NaNO2+4HNO3 →I2+2NO +2H2O+4NaNO3 (3)
2NaNO2+HNO3→NO+NO2 +2NaNO3+H2O
上記反応(2)、(3)の累計収率は98%である。
【0013】
離脱ヨウ素は海洋投棄を行う前にヨウ化ナトリウムに再転換する。このナトリウム洗浄から洩れた最終の痕跡量のヨウ素と揮発有機ヨウ化物、例えばヨウ化メチル(この処理では反応しない)は特に触媒支持型式の固形材で捕捉する。
【0014】
この離脱工程で得られた最終溶液は本質的にナトリウムイオンと硫酸イオンを含有するLA−MA溶液であって、これは好ましくはガラス化処理するものである。しかし、この溶液での硫酸イオンとナトリウムイオンの存在はガラス化処理に特に有害である。硫酸イオンは装置の腐食を起こすという問題があり、ガラス化施設にとって有害であるとして忌避されており、一方ガラスに取込まれるナトリウムイオン量は限られている。
【0015】
窒素酸化物NOx 又は亜硝酸の蒸気を含有する産業排ガス、又はその他排ガスの処理方法に使用できて、ソーダ使用に関連した上記の欠点のない試薬、即ち、1つはナトリウムイオンを含有し、塩濃度の高い溶液の生成せず、1つは上記の同一洗滌溶液中に多量の亜硝酸塩の存在(これにより投棄不可能となり、追加処理が1工程、又はそれ以上含む除去処理が必要となる)がないガス洗滌試薬が求められてきた。従って、これまで使用してきた洗浄溶液に含有されていた亜硝酸塩とナトリウムの代りに、不活性生成物ができるか、又は除去が容易な生成物ができる窒素酸化物含有排ガス用洗浄試薬が求められてきた。
【0016】
窒素酸化物とヨウ素を含有する、特に原子力工業でのガスと排ガス、特にいわゆる溶解ガスの場合は、その試薬は上述の条件のほかに、後処理であるガラス化を行うためナトリウムイオンと硫酸イオンを全く含まない有機の非塩性試薬であって、ヨウ素捕捉では少くともソーダと同じ程度の効率があり、窒素酸化物を除去し、亜硝酸塩を分解して不活性生成物を好ましくはガス状で生成して後処理、例えば離脱工程で亜硝酸塩耐性の還元試薬の添加を不要とする試薬であることが必要である。このような試薬はまた生成排出物中のヨウ化物に対する安定剤の使用不安とするものでなければならない。
【0017】
第2の工程、または離脱工程ではこれまで用いてきた硝酸−スルファミン酸混合物の代替をなすものであって、上記混合物とは異なり特にガラス化反応を妨害するイオン、例えば硫酸イオンを生成せず、ヨウ化物を分子状ヨウ素に酸化する試薬が必要とされている。更に、このような試薬は既存の装置と設備で最大効率で使用できるものでなければならず、例えば既存の装置、特に連続操作のガス洗滌塔での滞留時間にみあう反応速度が得られるものでなければならない。
【0018】
【発明が解決しようとする課題】
第1の角度からみた本発明の目的は上述のすべての条件を満たし、これまでの問題を克服した試薬を用いて吸収・洗浄により窒素酸化物含有排ガスの精製、又は処理方法を提供することにある。第2の角度からみた本発明の目的は窒素酸化物又は亜硝酸の蒸気のほかにヨウ素を含有する排ガスの処理、又は精製方法を提供するものであり、本排ガスは特に照射済み核燃料の溶解時に生成する溶解ガスから成るものであり、本方法は亜硝酸の蒸気を除去し、ヨウ素を捕捉する目的の第1の洗浄・吸収工程と、ヨウ素イオンを分子状ヨウ素に酸化する第2のヨウ素離脱工程から成り、本方法は上述のすべての条件と基準を満たし、先行技術の方法での問題を克服するものである。
【0019】
【課題を解決するための手段】
第1の角度からみた本発明により前記及びその他目的は窒素酸化物を含有する排ガスを水溶液で洗浄することにより排ガスを湿式精製する方法において、洗浄水液が硝酸ヒドロキシルアンモニウム(炭素数が1〜30のアルキル基1個以上でO−置換、及び/又はN置換されていてもよい)を含有することを特徴とする方法により達成される。このアンモニウム誘導体は洗浄溶液の後処理にとって有害な硫黄、ナトリウム又はその他の元素を含有していないという長所がある。この洗浄工程の終了時に発生する流出物は塩濃度が低く、また亜硝酸蒸気は分解されてガス状のN2 とN2 O(放出が容易に行うことができ、しかも不活性である)を形成するので、亜硝酸塩の含有はない。更に溶液中の残留過剰試薬は熱分解される。
【0020】
第2の角度から本発明の方法は窒素酸化物以外にヨウ素を含有するガス、又は排ガスの精製、又は処理方法であり、本方法によれば排ガスは次のように処理される。第1工程で排ガス中に存在するヨウ素を捕捉するため硝酸ヒドロキシル・アンモニウム(炭素数が1〜30のアルキル基1箇、又はそれ以上でO−置換、及び/又はN−置換されていてもよい)から選ばれた試薬の水溶液を用いて洗滌することにより、窒素酸化物を除去し、亜硝酸塩を分解する、第2工程で第1工程からの洗浄水溶液を過酸化水素と接触させてこの溶液中に含有されているヨウ素を離脱させる。これらの排ガスは業種の如何を問はず産業で発生するガスであり、特にヨウ素129の形のヨウ素を含有する原子力工業からの排ガスで、特に溶解法で使用済み核燃料の再処理の際生成する溶解ガスである。
【0021】
【発明の実施の形態】
第1の角度からみた本発明で使用される硝酸アンモニウムは好ましくは硝酸O−アルキル・ヒドロキシル・アンモニウム、硝酸N−アルキル・ヒドロキシル・アンモニウム、硝酸ヒドロキシル・アンモニウム(NHA)から選ばれるが、このうちNHAが試薬として好ましい。試薬は水溶液、好ましくは濃度0.05〜0.5モル/lで用いる。NHAの好ましい濃度は例えば、0.1モル/lであり、これは工業的操作に最適である。また、試薬、例えばNHAは過剰に存在させることが好ましく、化学量論量(=1)よりも大過剰であることが更に良い。即ち、はじめの試薬と亜硝酸の濃度(モル/l)比が5以上、好ましくは25〜200、更に好ましくは50〜100であり、125、150、175の比も用いることができる。
【0022】
洗浄水溶液のpHは強無機酸、好ましくは硝酸を添加して調整でき、好ましくは6以下、更に好ましくは3.5以下、更に好ましくは2.5〜1である。一定の温度下では反応効率はpHの低下で向上する。周囲温度、即ち一般には20℃近辺で実施できるが、最低10℃までの低温度、又は最高90℃までの高温度、好ましくは30°〜50℃、例えば40℃でもよい。収率と反応速度が著しく向上するので高温度が好ましい。
【0023】
洗浄水溶液は試薬として上記のアンモニウム誘導体を含有するもので、任意の公知のガス精製、洗浄装置で使用することができる。本方法は好ましくは連続的に行はれる。接触時間は当業者が容易に決めることができるが、連続操作の装置では普通6〜20秒である。本発明の方法で処理する排ガスは窒素酸化物を含有する排ガス産業、又は非産業排ガスである。特に、化石燃料火力発電所、例えば産業、又は家庭廃棄物の焼却プラントからの排ガスである。
【0024】
第2の角度からみた本発明の方法での第1工程は窒素酸化物のみを含有する排ガスを対象とする上記の第1の角度からみた本発明の方法に本質的に相応するもので、用いる操作条件は上記の条件と本質的に同一であり、好ましい試薬はNHAであるが、第2の角度からみた本発明の方法の第1工程の操作条件とパラメーターは排ガス中に窒素酸化物とヨウ素の両方が存在することを考慮して最適化と、適応化されうることは勿論である。従って、温度は10°〜90℃であり、周囲温度で実施できるが、温度が高いほど反応効率上有利となる。pHは6以下、好ましくは3.5以下、更に好ましくは2.5〜1.0とするのが好ましい。
【0025】
試薬は水溶液、好ましくは0.05〜0.5モル/lの濃度で用いられる。特にNHAの場合はこの試薬の好ましい濃度は0.1モル/lであり、この濃度は特に既存の設備を用いた工業的操作にとって最適である。また、試薬、例えばNHAは過剰で、好ましくはヨウ素に較べて大過剰であることが好ましく、はじめの試薬とヨウ素の濃度(モル/l)比は好ましくは5以上、更に好ましくは25〜200、更に好ましくは50〜100であり、100は好ましい比であるが、125、150、175も使用できる。
【0026】
この工程は好ましくは連続的に行われ、接触、又は滞留時間は当業者が容易に決めることができるが、連続操作の装置では普通6〜20秒である。使用する装置、好ましくは既存の特に連続操作の装置に適した滞留時間を設定するために各種のパラメータ、特にpH、温度、試薬の過剰量、等の値を決定することも可能である。この第1工程で用いる試薬、特にNHAはソーダと違ってナトリウムを含有せず、硫黄も含有していないので、排出洗浄溶液は塩濃度は極めて低く、後処理のガラス化では何等問題を生じない。この試薬によりヨウ素の効果的捕捉と窒素酸化物の除去、及び亜硝酸塩の分解が行われる。
【0027】
第1工程の終了時に得られる洗浄溶液は、亜硝酸塩を実質的に含まないので、離脱工程(本方法の第2工程)で亜硝酸塩耐性試薬の添加が不要となり、従って、本発明の特定の試薬、N置換、及び/又はO置換されていてもよい硝酸ヒドロキシルアンモニウムはヨウ素と亜硝酸塩を還元させ、主として容易に排出できる不活性ガス生成物である窒素N2 と亜酸化窒素N2 Oを生成する。本発明によれば上記の試薬を用いることによりヨウ素が捕捉され、亜硝酸塩を定量的(100%)分解でき、これはソーダを使用する先行技術の方法に較べて著しい効率上の改良となる。
【0028】
第1工程でのヨウ素還元は効率100%で行われるか、条件によっては亜硝酸塩の分解はこの第1工程での滞留時間か制限関数となり、完全に分解されず、従って離脱工程でこの分解は継続されるが、本方法全部の終了時には完全に分解される。
【0029】
本発明での反応と使用試薬の利点は温度、pH、試薬過剰条件が既存装置の滞留時間、特に核燃料再処理プラントの溶解ガス吸収処理装置の滞留時間にみあう反応速度になるように最適化できるということである。何等装置に改造を加えずにソーダを本発明の試薬で代替でき、本発明の特別の利点となる。例えば滞留時間が8秒である既存の溶解ガス洗滌設備では、この時間内にpH25、温度20℃、NHA過剰率が少なくとも100(これは0.1モル/lのNHA濃度に相応する)ではヨウ素還元収率は100%に近くなる。ソーダを用いる方法ではその収率は僅か95%である。勿論、ほかの装置では例えば温度が上昇すると滞留時間は短かくなる。
【0030】
第2の角度からみた本発明の方法の第2工程で使用する試薬は過酸化水素で下記の反応によりヨウ素イオンを酸化してヨウ素は離脱される。
H2O2+2I- +2H+ →I2+2H2O
硝酸とスルファミン酸混合物の代りに用いるこの試薬は特に核燃料再処理プラントでは後処理であるガラス化に有害な硫黄を含まず、塩性の排出物を発生しないという利点がある。また、この試薬はヨウ素イオンの酸化とヨウ素の離脱を準定量的に行うことができ、これは硝酸とスルファミン酸の混合物を用いる先行技術の方法の第2工程と較べて重要な改良である。
【0031】
過酸化水素は濃度0.1〜0.5モル/lで用いるのが好ましく、ヨウ素イオンと較べて過剰に使用するのが好ましい。過酸化水素の好ましい濃度は0.2〜0.25Mであり、これは工業的操作に完全に適したものである。
第2工程は好ましくはpH6以下、更に好ましくは4以下、特に好ましくは1近辺で行う。一般に約20℃の周囲温度で操作するが、最小10℃までの低温度、30°、40°、50°、60°、最大90℃までの高温度が用いられる。温度が上昇すると反応速度の向上は著しくなるが、滞留時間が一定の場合には収率、又は効率が向上する。例えば、NHAを用いたときは反応速度は硝酸とスルファミン酸の混合物を用いたときよりもかなり速くなり、効率も改善する。即ち、60℃で4時間の収率は99%である。
【0032】
この第2工程は特に核燃料再処理プラントの溶解ガス処理設備では一般に不連続、又は回分式で行われる。滞留時間は1秒〜48時間、好ましくは4〜25時間、更に好ましくは4〜6時間である。
【0033】
本発明での過酸化水素の使用は既存装置、特に核燃料再処理プラントの溶解ガス洗浄溶液の離脱反応用処理装置での既存設備に完全にみあっている。装置、特に回分方式を使用する既存離脱反応器における装置に改造を加えずに硝酸スルファミン酸混合物を過酸化水素で代替できるので、これが本発明の特別の長所であり、これは滞留時間が抑制パラメータではないことを意味している。本発明の方法では60℃で4時間後の収率は99%であるが、先行技術の酸系の方法では離脱方法は17時間たっても続行しており、60℃でのこのときの収率は僅か98%であることが判った。
【0034】
本方法の終了時に得られる溶液はガラス化設備で使用するのに好ましく、塩濃度が低下しており、硫黄が存在しないためその処理は容易である。本発明の方法はその発生源の如何にかかわらず窒素酸化物と、場合によりヨウ素とを含有する如何なる流出物の処理に用いることができ、既存又は新設のガス処理設備で用いることができる。
本発明のこのほかの特徴と利点は図面を参照しながら説明する下記の記載から読みとることができるが、下記は何等本発明を限定するためのものではない。
【0035】
【実施例】
以下の実施例は本発明の方法で用いる反応を説明する。実施例では下記の3種の実験方法を用いて溶液とガス相中の生成物の性質と濃度を測定した。
・溶液中の亜硝酸イオンNO2 - (又はpHの関数としての亜硝酸HNO2 )とヨウ素の還元をダイオードアレー分光光度計の石英セルで検討した。
・ガスをガスクロマトグラフィで分析した。
・ヨウ素イオンを酸化してこれの第1の洗浄溶液からの離脱を2種の緩衝媒体、即ち、ヨウ素陰イオンのみを測定する硝酸ナトリウムと、ヨウ素イオンの形での全ヨウ素を測定するアセト酢酸とアスコルビン酸混合物を用いる特定ヨウ素イオン電極で追跡した。
【0036】
適切なモル濃度の溶液を硝酸ヒドロキシルアンモニウム(NHA)を含む市販の分析用品質の試薬から調製した。分子状ヨウ素溶液(最大濃度1.2ミリモル/l)は下記の反応式によりヨウ素イオンI- とヨウ素酸イオンIO3 - との定量的ダッシュマン(Dushman )反応で得た。
IO3 -+5I- +6H+ →3I2 +3H2O
pHは硝酸で調整した。それぞれの試験の前に、NHA、亜硝酸イオン、またはヨウ素の新しい溶液を定温制御の浴中で所要温度にしてから自動ピヘットを用いて分光光度計のセルに注入した。ガス分析では窒素を検知するため高純度ヘリウムを用いた焼結板洗びん中に入れたNHA溶液中にガスをバブリンさせた。洗びん中にヨウ素溶液を20分間少しづつ導入した。操作中はNHAはヨウ素に較べて大過剰にした。溶液から溶解ガス成分を離脱させるためのヨウ素の注入期間中、およびその後も一定間隔でガス分析を行った。ヨウ素の離脱はアルゴン・バブリング下定温制御ガラスセル中で行った。
【0037】
実施例1〔NHAで亜硝酸イオン(又はpHにより亜硝酸)の還元〕
a)反応と生成物:
平衡反応化学量論量を既知量のNHAを硝酸水溶液中の過剰の亜硝酸ナトリウムに添加してpH6、又はそれ以下で測定した。亜硝酸イオン(又は亜硝酸)濃度の測定は周囲温度で反応を完了させるのに充分な時間が経ってから行った。表1はR比(消費亜硝酸イオンのモル数/はじめに存在するNHAのモル数)は1に極めて近いため、反応はモル対モルで進行していることを示している。従って反応式は次のようになる。
HNO2+ NH3OH+ →N2O (ガス)+2H2O+ H+
【0038】
【表1】

Figure 0004136016
ガスクロマトグラフィから亜酸化窒素が生成しただけであることが判った。
【0039】
b)反応速度:
周囲温度(20℃)で反応速度の測定試験を行った。反応速度はpHが低くなると速くなる。pHを3.5から1に低下させたときはっきりし、これにより還元速度は2倍になった。pHが1の場合について図1から亜硝酸イオン(又はこの場合は亜硝酸)についての見掛け反応次数は1であり、8秒(洗滌塔での滞留時間)に外挿すると収率は96%になることが判る。
【0040】
実施例2〔NHAによる分子状ヨウ素の還元〕
a)反応と生成物:
例えば下記のようないくつかの反応が同時に起るので化学量論量を測定することは本例ではこの前と違ってできなかった
2NH3OH+ +2I2 →N2O +4I- +H2O +6H +
4NH3OH+ +3I2 →N2+N2O +5I- +3H2O+10 H+
これらの反応全体はそれ自体中間工程から成るもので、その中間工程のいくつかは一酸化物NOを生成する。1つの反応が他の反応に対して優位であるかはpH次第であり、この特異点はガスクロマトグラフィの示すところであった。従って、pH=1では一酸化窒素が主生成物であるが、プロトキサイド(含有酸素原子数が最小の酸化物)が例えばN2 よりも約3倍も少ない量で発生する。pH=2.5ではこの事情は逆転する(一酸化窒素と窒素の7倍量のプロトキサイドが発生する)
【0041】
b)反応速度論
20℃で反応速度測定試験を行った。反応速度はpHが高くなると速くなる。pHを1から2.5に高くすると反応速度は20だけ向上する。8秒(洗浄塔の滞留時間)に外挿するとpH2.5で反応は定量的になる。同一pH範囲でのヨウ素に関する見掛け反応次数は1である。図2はpH=1のときの速度例である。総ての事例ではNHAはヨウ素と較べてかなり過剰であった。初めのイオン濃度1.2ミリモル/lで125、150、175であった。最適NHA過剰率は100に近い。NHAは化学量論量に較べて大過剰である。初めの亜硝酸イオン濃度が14、11、9.4ミリモル/lではそれぞれ100、125、150であり、最適NHA過剰率は50〜100である。追加試験を30°、40°、50℃で行った。反応速度は10℃増加毎に倍になることが巾広く認められた。
【0042】
実施例3〔吸収溶液中での過酸化水素によるヨウ素イオンの酸化〕
a)反応と生成物
ヨウ素イオン酸化反応を下記の標準条件下で検討した、pH=1(硝酸添加で調整)、ヨウ化ナトリウム濃度:1ミリモル/l、過酸化水素濃度:0.2モル/l、NHA濃度:0.1モル/l。
【0043】
b)速度についての結果
図3は0.1M NHAの存在下はじめの15分間での時間関数としてのlog〔I- 〕の変化を示すもので、図4は初めの5時間での試験を示すものである。はじめの2分間で収率は90%に達し、その後ヨウ素イオン濃度は僅かに増加し、その6時間後には逆に減少し、反応時間が25時間経てば、収率は少なくとも99%となる。20℃での時間関数としてのlog〔I- 〕の変化はH2 2 による酸化はNHAが存在しないと速くなり、20分後には収率が98%になる。その後、ヨウ素イオン濃度は規則的に減少し、5時間後には3.8×10-6Mとなり、この値は収率99%に相当する。温度効果は極めて著しく収率99%を達成するには所要時間は30℃の6時間から60℃での4時間に短縮される。これらの温度と時間は硝酸とスルファミン酸混合物にもとずく試薬を用いている既存の回分式方法に完全にみあうもので、これ等の試薬を過酸化水素と代替するだけでよく既存の装置に何等を改造を加える必要はない。
【図面の簡単な説明】
【図1】pH=1、20℃での各種NHA過剰率に対する時間(秒)関数としての亜硝酸濃度(モル/l)の常用対数log〔HNO2 〕を示すグラフであり、図中の記号は下記NHA過剰率で行った測定結果を示すもので、各曲線は線形的に逆累進性である。
◇〔NHA〕=〔NO2 - 〕×100
◆〔NHA〕=〔NO2 - 〕×125
×〔NHA〕=〔NO2 - 〕×150
【図2】pH=1、20℃での各種NHA過剰率に対する時間(秒)関数としてのヨウ素濃度(モル/l)の常用対数log〔I2 〕を示すグラフであり、図中の記号は下記NHA過剰率で行った測定結果を示すもので、各曲線は線形的に逆累進性である:
◇〔NHA〕=〔I2 〕×125
○〔NHA〕=〔I2 〕×150
*〔NHA〕=〔I2 〕×175
【図3】NHAの存在下でのH2 2 による酸化での最初の15分間での時間(分)関数としてのヨウ素イオン濃度(モル/l)の常用対数log〔I- 〕を示すグラフである。
【図4】NHAの存在下でのH2 2 による酸での最初の5時間での時間(分)関数としてのヨウ素イオン濃度(モル/l)の常用対数log〔I- 〕を示すグラフであり、25時間ではヨウ素イオン濃度(図示していない)は1.42×10-6モル/lである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for wet-purifying exhaust gas by washing exhaust gas containing nitrogen oxides or nitrite vapor with an aqueous solution containing a nitrite-decomposable ammonium derivative.
[0002]
In addition to nitrous acid vapor, the treated gas contains iodine, in particular iodine 129, and is composed of so-called “dissolved” gas formed during the melting of the reprocessing plant of irradiated nuclear fuel in particular. The method thus comprises a first step of removing nitrous acid vapor from the treated gas and treating iodine and a second step of desorbing iodine from the aqueous solution used using hydrogen peroxide.
[0003]
[Prior art]
Gases obtained from various industrial facilities such as fossil fuel-fired power plants, waste incineration plants, etc., especially exhaust gas containing nitrogen oxides generally called NO x , and flue gas are various reagents so far Has been processed by a wet method in a cleaning facility using The most frequently used reagent is soda in the form of an aqueous solution. Thus, a large amount of sodium nitrite-containing solution is produced, which in turn requires one or more processing steps before being recycled or released, and is more stringent than ever before to regulate such emissions. Fulfill.
[0004]
Exhaust gas containing NO x is steam of nitrogen oxides nitrite nuclear industry, in particular a dissolver, for example nuclear fuel dissolution wheels, in particular by contacting the UO 2 and boiling nitric acid dissolved gas upon dissolving in the following reaction Generate in the form.
UO 2 + 3HNO 3 → UO 2 (NO 3 ) 2 + 0.5NO 2 + 0.5NO + 1.5H 2 O
[0005]
These exhaust gases produced by dissolution of irradiated fuel cannot be released directly into the atmosphere. This is because these exhaust gases contain, in addition to nitrogen oxides NO x , certain fission products (particularly Kr, Xe, I 2 (iodine 129) and tritium), volatile fission products (eg ruthenium oxide RuO 4). ), Radioactive aerosol, scavenging gas for the shearing and dissolving means, air lift or bubbling gas used in the dissolving machine, and water vapor due to boiling of the dissolved solution.
[0006]
Accordingly, iodine present in the spent nuclear fuel in the form of iodide, such as cesium iodide, or organic iodide, is released upon dissolution. The amount of release is related to the evaporation rate of the solution, but part of the iodine remains in the solution in the form of non-volatile iodate.
[0007]
It is essential to subject these gases to several treatments after filtration and before being released into the chimney of the reprocessing plant, removing water vapor and regenerating NO, NO 2 as nitrite vapor in nitric acid. It passes through several devices in series arrangement to be combined: condenser, recombination tower, finishing tower. Recombination of the not perfect, the exhaust gas nitrogen oxide NO x and other gases, for example Kr, Ze, tritium, air containing iodine is contained mainly.
[0008]
Thus, this gas is further subjected to a wet process consisting essentially of two continuous steps. The first step consists of, for example, continuously absorbing in a 0.4 M soda solution at ambient temperature (20 ° C.) to capture iodine and remove unrecombined nitrogen oxides NO x. Then, it is considered that the following chemical reaction proceeds.
4NaOH + I 2 + 2NO → 2NaI + 2NaNO 2 + 2H 2 O
(Proceed with a yield of 95%)
2NaOH + 2NO + 1 / 2O 2 → 2NaNO 2 + H 2 O
(Proceed with a yield of 67%)
[0009]
The solution obtained at the end of this process consists essentially of sodium, nitrite and iodide, and this solution used to capture iodine can usually be directly dumped into the ocean if its radioactivity is below the emission standards. .
[0010]
The measurement of the degree of contamination of a sodium solution that has trapped iodine is not performed with the amount of iodine contained in the solution. Because the specific activity of iodine 129 is low, it is porous pollutants, such as ruthenium, that cause the activity to exceed the current standards for direct ocean dumping.
[0011]
Therefore, when the cleaning solution is so contaminated that it cannot be disposed of, the cleaning solution needs to be re-acidified and subjected to a second iodine desorption step in which nitrite is decomposed. It is carried out discontinuously (batch type) at a temperature of 60 ° C. and a contact time of 10 to 17 hours using a reagent consisting of 1.5 M sulfamic acid for nitrate decomposition and 4 M nitric acid for iodine elimination.
[0012]
It is considered that the next chemical reaction proceeds in this process.
NH 2 HSO 3 + NaNO 2 → NaHSO 4 + N 2 + H 2 O
2NH 2 HSO 3 + H 2 O + 2NaI → (NN 4 ) 2 SO 3 + Na 2 SO 4 + I 2 (2)
2NaI + 2NaNO 2 + 4HNO 3 → I 2 + 2NO + 2H 2 O + 4NaNO 3 (3)
2NaNO 2 + HNO 3 → NO + NO 2 + 2NaNO 3 + H 2 O
The cumulative yield of the above reactions (2) and (3) is 98%.
[0013]
The detached iodine is reconverted to sodium iodide before ocean dumping. The final traces of iodine and volatile organic iodides, such as methyl iodide (which does not react in this process) leaking from this sodium wash, are captured in particular by a catalyst-supported solid material.
[0014]
The final solution obtained in this separation step is an LA-MA solution containing essentially sodium ions and sulfate ions, which is preferably vitrified. However, the presence of sulfate and sodium ions in this solution is particularly harmful to the vitrification process. Sulfate ions have the problem of causing equipment corrosion and are evaded as harmful to vitrification facilities, while the amount of sodium ions taken into the glass is limited.
[0015]
Nitrogen oxides NO x or industrial waste gas containing nitrous acid vapor, or other may be using the processing method of the exhaust gas, the reagent without the above disadvantages associated with the soda used, i.e., one containing sodium ions, A high salt concentration solution does not form, and one is the presence of a large amount of nitrite in the same washing solution (this makes it impossible to dispose of it, and a removal process involving one or more additional processes is required. There has been a need for gas scrubbing reagents that are free of Accordingly, there is a need for a nitrogen oxide-containing exhaust gas cleaning reagent that can produce an inert product or a product that can be easily removed instead of nitrite and sodium contained in the cleaning solutions used so far. I came.
[0016]
In the case of gases and exhaust gases containing nitrogen oxides and iodine, especially in the nuclear industry, especially so-called dissolved gases, the reagents are sodium ions and sulfate ions for vitrification as a post-treatment in addition to the above-mentioned conditions. Is an organic non-salt reagent that does not contain any impurities, and is at least as efficient as soda in capturing iodine, removing nitrogen oxides and decomposing nitrites to produce inert products, preferably gaseous It is necessary to use a reagent that does not require the addition of a nitrite-resistant reducing reagent in a post-treatment, for example, a separation step. Such a reagent must also be detrimental to the use of stabilizers for iodide in the product effluent.
[0017]
The second step or the separation step is an alternative to the nitric acid-sulfamic acid mixture that has been used so far, and unlike the above mixture, does not particularly generate ions that interfere with the vitrification reaction, such as sulfate ions, There is a need for a reagent that oxidizes iodide to molecular iodine. In addition, such reagents must be able to be used with maximum efficiency in existing equipment and equipment, such as those that provide a reaction rate that matches the residence time in existing equipment, particularly gas-washing towers in continuous operation. Must.
[0018]
[Problems to be solved by the invention]
The object of the present invention viewed from the first angle is to provide a method for purifying or treating a nitrogen oxide-containing exhaust gas by absorption and washing using a reagent that satisfies all the above-mentioned conditions and overcomes the above problems. is there. The object of the present invention from the second angle is to provide a method for treating or purifying exhaust gas containing iodine in addition to nitrogen oxide or nitrous acid vapor, and this exhaust gas is particularly suitable for dissolving irradiated nuclear fuel. This method consists of a dissolved gas to be generated, and this method removes the vapor of nitrous acid and captures iodine, and a first washing and absorption step for capturing iodine, and a second iodine desorption that oxidizes iodine ions to molecular iodine. Consisting of steps, the method meets all the above conditions and criteria and overcomes the problems with prior art methods.
[0019]
[Means for Solving the Problems]
According to the present invention as viewed from the first angle, the above and other objects are obtained by wet purifying exhaust gas by washing exhaust gas containing nitrogen oxide with an aqueous solution, wherein the cleaning water solution is hydroxylammonium nitrate (having 1 to 30 carbon atoms). The alkyl group may be O-substituted and / or N-substituted with one or more alkyl groups. This ammonium derivative has the advantage that it does not contain sulfur, sodium or other elements that are detrimental to the aftertreatment of the cleaning solution. The effluent generated at the end of this washing process has a low salt concentration, and the nitrous acid vapor is decomposed to remove gaseous N 2 and N 2 O (which can be easily released and is inert). As it forms, it contains no nitrite. Furthermore, residual excess reagent in the solution is pyrolyzed.
[0020]
From the second angle, the method of the present invention is a method for purifying or treating a gas containing iodine other than nitrogen oxides or exhaust gas. According to this method, the exhaust gas is treated as follows. Hydroxyl ammonium nitrate (which may be O-substituted and / or N-substituted with one or more alkyl groups having 1 to 30 carbon atoms) to capture iodine present in the exhaust gas in the first step In this second step, the aqueous solution of the reagent selected from (1) is removed by removing the nitrogen oxides and decomposing the nitrite. The iodine contained in it is released. These exhaust gases are gases generated by the industry regardless of the type of industry, especially the exhaust gas from the nuclear industry containing iodine in the form of iodine 129, especially the dissolution produced when reprocessing spent nuclear fuel by the dissolution method Gas.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The ammonium nitrate used in the present invention from the first angle is preferably selected from O-alkyl hydroxyl ammonium nitrate, N-alkyl hydroxyl ammonium nitrate, and hydroxyl ammonium nitrate (NHA), of which NHA is Preferred as a reagent. The reagent is used in an aqueous solution, preferably at a concentration of 0.05 to 0.5 mol / l. A preferred concentration of NHA is, for example, 0.1 mol / l, which is optimal for industrial operation. In addition, it is preferable that the reagent, for example, NHA is present in excess, and it is even better that the amount is larger than the stoichiometric amount (= 1). That is, the concentration (mol / l) ratio between the first reagent and nitrous acid is 5 or more, preferably 25 to 200, more preferably 50 to 100, and ratios of 125, 150 and 175 can also be used.
[0022]
The pH of the cleaning aqueous solution can be adjusted by adding a strong inorganic acid, preferably nitric acid, and is preferably 6 or less, more preferably 3.5 or less, and further preferably 2.5 to 1. Under a certain temperature, the reaction efficiency increases with a decrease in pH. It can be carried out at ambient temperature, generally around 20 ° C., but may be as low as 10 ° C. or as high as 90 ° C., preferably 30 ° -50 ° C., for example 40 ° C. High temperatures are preferred because yields and reaction rates are significantly improved.
[0023]
The cleaning aqueous solution contains the above-mentioned ammonium derivative as a reagent and can be used in any known gas purification and cleaning apparatus. The method is preferably performed continuously. Although the contact time can be easily determined by those skilled in the art, it is usually 6 to 20 seconds in a continuous operation apparatus. The exhaust gas to be treated by the method of the present invention is an exhaust gas industry containing nitrogen oxides or a non-industrial exhaust gas. In particular, exhaust gas from fossil fuel-fired power plants, such as industrial or household waste incineration plants.
[0024]
The first step in the method of the present invention as seen from the second angle essentially corresponds to the method of the present invention as seen from the first angle for exhaust gas containing only nitrogen oxides and is used. The operating conditions are essentially the same as those described above, and the preferred reagent is NHA, but the operating conditions and parameters of the first step of the method of the invention from the second angle are nitrogen oxide and iodine in the exhaust gas. Of course, it can be optimized and adapted in view of the existence of both. Therefore, the temperature is from 10 ° to 90 ° C., and it can be carried out at ambient temperature. However, the higher the temperature, the more advantageous the reaction efficiency. The pH is preferably 6 or less, preferably 3.5 or less, more preferably 2.5 to 1.0.
[0025]
The reagent is used in an aqueous solution, preferably at a concentration of 0.05 to 0.5 mol / l. In particular in the case of NHA, the preferred concentration of this reagent is 0.1 mol / l, which is particularly suitable for industrial operation using existing equipment. In addition, the reagent, for example, NHA is excessive, preferably in excess of iodine, and the concentration ratio (mol / l) of the first reagent to iodine is preferably 5 or more, more preferably 25 to 200, More preferably, it is 50-100, 100 is a preferable ratio, However, 125, 150, 175 can also be used.
[0026]
This step is preferably carried out continuously, and the contact or residence time can be easily determined by a person skilled in the art, but is usually 6 to 20 seconds in continuous operation equipment. It is also possible to determine various parameters, in particular values such as pH, temperature, reagent excess, etc., in order to set a residence time suitable for the equipment used, preferably existing, especially continuously operated equipment. Unlike the soda, the reagent used in the first step, especially NHA, does not contain sodium and does not contain sulfur. Therefore, the discharge cleaning solution has a very low salt concentration and does not cause any problems in post-treatment vitrification. . This reagent effectively captures iodine, removes nitrogen oxides, and decomposes nitrite.
[0027]
Since the cleaning solution obtained at the end of the first step is substantially free of nitrite, it is not necessary to add a nitrite-resistant reagent in the withdrawal step (second step of the method), and thus the specific solution of the present invention. Reagents, N-substituted and / or O-substituted hydroxylammonium nitrate reduce iodine and nitrite, and mainly remove nitrogen N 2 and nitrous oxide N 2 O, which are inert gas products that can be easily discharged. Generate. According to the present invention, iodine can be captured and nitrite can be quantitatively (100%) decomposed by using the reagents described above, which represents a significant efficiency improvement over prior art methods using soda.
[0028]
Iodine reduction in the first step is performed at an efficiency of 100%, or depending on the conditions, the decomposition of nitrite becomes a residence time or a limiting function in the first step and is not completely decomposed. Continues, but is completely disassembled at the end of the entire method.
[0029]
The advantages of the reaction and reagent used in the present invention are optimized so that the temperature, pH, and reagent excess conditions become the reaction rate that matches the residence time of the existing equipment, especially the residence time of the dissolved gas absorption treatment equipment of the nuclear fuel reprocessing plant It can be done. Soda can be replaced with the reagent of the present invention without any modification to the apparatus, which is a special advantage of the present invention. For example, in an existing dissolved gas scrubber with a residence time of 8 seconds, iodine is needed at this time, at a pH of 25, a temperature of 20 ° C., and an NHA excess of at least 100 (which corresponds to an NHA concentration of 0.1 mol / l). The reduction yield approaches 100%. In the method using soda, the yield is only 95%. Of course, in other apparatuses, for example, when the temperature rises, the residence time becomes shorter.
[0030]
The reagent used in the second step of the method of the present invention as seen from the second angle is hydrogen peroxide, which oxidizes iodine ions by the following reaction to release iodine.
H 2 O 2 + 2I - + 2H + → I 2 + 2H 2 O
This reagent used in place of the nitric acid and sulfamic acid mixture has the advantage that it does not contain sulfur harmful to vitrification, which is a post-treatment, especially in nuclear fuel reprocessing plants, and does not generate salty emissions. This reagent is also capable of quasi-quantitatively oxidizing iodine ions and detaching iodine, which is an important improvement over the second step of prior art methods using a mixture of nitric acid and sulfamic acid.
[0031]
Hydrogen peroxide is preferably used at a concentration of 0.1 to 0.5 mol / l, and is preferably used in excess as compared with iodine ions. The preferred concentration of hydrogen peroxide is 0.2-0.25M, which is perfectly suitable for industrial operation.
The second step is preferably performed at a pH of 6 or less, more preferably 4 or less, particularly preferably around 1. Generally, it operates at an ambient temperature of about 20 ° C, but low temperatures up to a minimum of 10 ° C, high temperatures up to 30 °, 40 °, 50 °, 60 °, up to 90 ° C are used. When the temperature is increased, the reaction rate is remarkably improved. However, when the residence time is constant, the yield or efficiency is improved. For example, when NHA is used, the reaction rate is considerably faster than when a mixture of nitric acid and sulfamic acid is used, and the efficiency is also improved. That is, the yield for 4 hours at 60 ° C. is 99%.
[0032]
This second step is generally performed discontinuously or batchwise, particularly in the dissolved gas treatment facility of a nuclear fuel reprocessing plant. The residence time is 1 second to 48 hours, preferably 4 to 25 hours, and more preferably 4 to 6 hours.
[0033]
The use of hydrogen peroxide in the present invention is perfectly matched to existing equipment, particularly existing equipment in the dissociation treatment system for dissolved gas cleaning solutions in nuclear fuel reprocessing plants. This is a particular advantage of the present invention because the sulfamic acid nitrate mixture can be replaced by hydrogen peroxide without modification to the equipment, particularly in existing stripped reactors using batch systems, which is a residence time suppression parameter. It means not. In the method of the present invention, the yield after 4 hours at 60 ° C. is 99%, but in the acid-based method of the prior art, the release method continues even after 17 hours, and the yield at this time at 60 ° C. Was found to be only 98%.
[0034]
The solution obtained at the end of the process is preferred for use in a vitrification facility and has a reduced salt concentration and is easy to treat because there is no sulfur present. The method of the present invention can be used to treat any effluent containing nitrogen oxides and, optionally, iodine, regardless of its source, and can be used in existing or new gas treatment facilities.
Other features and advantages of the present invention can be read from the following description, which will be described with reference to the drawings, but the following is not intended to limit the present invention in any way.
[0035]
【Example】
The following examples illustrate the reactions used in the method of the present invention. In the examples, the properties and concentrations of the products in the solution and the gas phase were measured using the following three experimental methods.
· Nitrite ion NO in solution 2 - (or nitrous acid HNO 2 as a function of pH) the reduction of the iodine discussed quartz cell diode array spectrophotometer.
-The gas was analyzed by gas chromatography.
Oxidation of iodine ions and their release from the first wash solution, two buffer media: sodium nitrate measuring only iodine anions and acetoacetic acid measuring total iodine in the form of iodine ions Followed by specific iodine ion electrode using ascorbic acid mixture.
[0036]
Appropriate molar solutions were prepared from commercially available analytical quality reagents containing hydroxylammonium nitrate (NHA). A molecular iodine solution (maximum concentration 1.2 mmol / l) was obtained by a quantitative Dushman reaction between iodine ion I and iodate ion IO 3 − according to the following reaction formula.
IO 3 - + 5I - + 6H + → 3I 2 + 3H 2 O
The pH was adjusted with nitric acid. Prior to each test, a fresh solution of NHA, nitrite ions, or iodine was brought to the required temperature in a constant temperature bath and then injected into the spectrophotometer cell using an automatic piget. In gas analysis, gas was bubbled into an NHA solution placed in a sintered plate washing bottle using high purity helium to detect nitrogen. Iodine solution was introduced into the washing bottle little by little for 20 minutes. During the operation, NHA was in a large excess compared with iodine. Gas analysis was performed at regular intervals during and after the iodine injection to release dissolved gas components from the solution. The release of iodine was carried out in a constant temperature controlled glass cell under argon bubbling.
[0037]
Example 1 [Reduction of nitrite ion (or nitrite depending on pH) with NHA]
a) Reactions and products:
The equilibrium reaction stoichiometry was measured at pH 6 or lower by adding a known amount of NHA to excess sodium nitrite in aqueous nitric acid. The nitrite ion (or nitrite) concentration was measured after a sufficient time to complete the reaction at ambient temperature. Table 1 shows that the reaction proceeds in mole to mole because the R ratio (number of moles of nitrite consumed / number of moles of NHA initially present) is very close to 1. Therefore, the reaction formula is as follows.
HNO 2 + NH 3 OH + → N 2 O (gas) + 2H 2 O + H +
[0038]
[Table 1]
Figure 0004136016
It was found from gas chromatography that only nitrous oxide was produced.
[0039]
b) Reaction rate:
A test for measuring the reaction rate was carried out at ambient temperature (20 ° C.). The reaction rate increases with decreasing pH. Clearly when the pH was lowered from 3.5 to 1, this doubled the reduction rate. When the pH is 1, the apparent reaction order for nitrite ions (or nitrous acid in this case) is 1 from FIG. 1, and extrapolated to 8 seconds (residence time in the washing tower) yields a yield of 96%. It turns out that it becomes.
[0040]
Example 2 [Reduction of molecular iodine by NHA]
a) Reactions and products:
For example, since several reactions such as the following occur simultaneously, the stoichiometric amount could not be measured in this example unlike before.
2NH 3 OH + + 2I 2 → N 2 O + 4I - + H 2 O + 6H +
4NH 3 OH + + 3I 2 → N 2 + N 2 O + 5I - + 3H 2 O + 10 H +
These reactions as a whole consist of intermediate steps, some of which produce monoxide NO. Whether one reaction is dominant over the other depends on the pH, and this singularity is what gas chromatography shows. Therefore, although nitric oxide is the main product at pH = 1, protoxide (an oxide having the smallest number of oxygen atoms) is generated in an amount about three times smaller than N 2, for example. At pH = 2.5 this situation is reversed (nitrogen monoxide and 7 times as much protocide as nitrogen are generated).
[0041]
b) Reaction kinetics A reaction rate measurement test was conducted at 20 ° C. The reaction rate increases with increasing pH. Increasing the pH from 1 to 2.5 increases the reaction rate by 20. Extrapolating to 8 seconds (wash tower residence time) makes the reaction quantitative at pH 2.5. The apparent reaction order for iodine in the same pH range is 1. FIG. 2 shows an example of the speed when pH = 1. In all cases, NHA was significantly in excess compared to iodine. The initial ion concentration was 125, 150, 175 at 1.2 mmol / l. The optimal NHA excess is close to 100. NHA is in large excess compared to the stoichiometric amount. When the initial nitrite ion concentration is 14, 11, and 9.4 mmol / l, they are 100, 125, and 150, respectively, and the optimum NHA excess is 50 to 100. Additional tests were performed at 30 °, 40 ° and 50 ° C. It was widely observed that the reaction rate doubled for every 10 ° C. increase.
[0042]
Example 3 [Oxidation of iodine ion by hydrogen peroxide in absorbing solution]
a) Reaction and product iodine ion oxidation reaction were examined under the following standard conditions, pH = 1 (adjusted by adding nitric acid), sodium iodide concentration: 1 mmol / l, hydrogen peroxide concentration: 0.2 mol / l, NHA concentration: 0.1 mol / l.
[0043]
b) Results for rate FIG. 3 shows the change in log [I ] as a function of time in the first 15 minutes in the presence of 0.1M NHA, and FIG. 4 shows the test in the first 5 hours. Is. In the first 2 minutes, the yield reaches 90%, after which the iodine ion concentration increases slightly, then decreases 6 hours later, and if the reaction time is 25 hours, the yield is at least 99%. The change in log [I ] as a function of time at 20 ° C. is accelerated by H 2 O 2 in the absence of NHA, and the yield is 98% after 20 minutes. Thereafter, the iodine ion concentration decreases regularly, and after 5 hours becomes 3.8 × 10 −6 M, which corresponds to a yield of 99%. The temperature effect is very significant and the time required to achieve a yield of 99% is reduced from 6 hours at 30 ° C. to 4 hours at 60 ° C. These temperatures and times are perfectly compatible with existing batch methods that use reagents based on a mixture of nitric acid and sulfamic acid, and it is only necessary to replace these reagents with hydrogen peroxide. There is no need to modify anything.
[Brief description of the drawings]
FIG. 1 is a graph showing the common logarithm log [HNO 2 ] of nitrous acid concentration (mol / l) as a function of time (seconds) for various NHA excess ratios at pH = 1 and 20 ° C. Shows the measurement results of the following NHA excess, each curve is linearly reverse progressive.
◇ [NHA] = [NO 2 ] × 100
◆ [NHA] = [NO 2 ] × 125
× [NHA] = [NO 2 ] × 150
FIG. 2 is a graph showing the common logarithm log [I 2 ] of iodine concentration (mol / l) as a function of time (seconds) for various NHA excess rates at pH = 1 and 20 ° C. The following shows the results of measurements made with the NHA excess, each curve being linearly reverse progressive:
◇ [NHA] = [I 2 ] × 125
○ [NHA] = [I 2 ] × 150
* [NHA] = [I 2 ] × 175
FIG. 3 is a graph showing the common logarithm log [I ] of iodine ion concentration (mol / l) as a function of time (minutes) in the first 15 minutes for oxidation with H 2 O 2 in the presence of NHA. It is.
FIG. 4 is a graph showing the common logarithm log [I ] of iodine ion concentration (mol / l) as a function of time (minutes) in the first 5 hours with acid with H 2 O 2 in the presence of NHA. In 25 hours, the iodine ion concentration (not shown) is 1.42 × 10 −6 mol / l.

Claims (19)

試薬の水溶液を用いて窒素酸化物含有排ガスを洗滌することにより排ガスを精製する方法において、試薬が硝酸ヒドロキシルアンモニウム(炭素数が1〜30のアルキル基1個以上でO−置換、及び/又はN−置換されていてもよい)から選ばれることを特徴とする方法。  In a method for purifying exhaust gas by washing exhaust gas containing nitrogen oxide using an aqueous solution of the reagent, the reagent is hydroxylammonium nitrate (O-substituted with one or more alkyl groups having 1 to 30 carbon atoms, and / or N -Optionally substituted). 試薬が硝酸O−アルキルヒドロキシルアンモニウム、硝酸N−アルキルヒドロキシルアンモニウム、硝酸ヒドロキシルアンモニウム(NHA)から選ばれる、請求項1記載の方法。  The method according to claim 1, wherein the reagent is selected from O-alkylhydroxylammonium nitrate, N-alkylhydroxylammonium nitrate, hydroxylammonium nitrate (NHA). 試薬が0.05〜0.5モル/lの濃度で用いられる、請求項1記載の方法。  The method according to claim 1, wherein the reagent is used at a concentration of 0.05 to 0.5 mol / l. 試薬が試薬と亜硝酸塩との反応の化学量論量よりも過剰に存在する、請求項1記載の方法。  The method of claim 1, wherein the reagent is present in excess of the stoichiometric amount of the reaction between the reagent and nitrite. 初めの試薬と亜硝酸塩の濃度比が5以上である、請求項1記載の方法。  The method of claim 1, wherein the concentration ratio of the initial reagent and nitrite is 5 or more. 初めの試薬と亜硝酸塩の濃度比が25〜200である、請求項5に記載の方法。  6. The method of claim 5, wherein the concentration ratio of the initial reagent to nitrite is 25-200. 初めの試薬と亜硝酸塩の濃度比が50〜100である、請求項1記載の方法。  The method of claim 1, wherein the concentration ratio of the initial reagent to nitrite is 50-100. 方法をpH6以下で行う、請求項1記載の方法。  The process according to claim 1, wherein the process is carried out at a pH of 6 or less. 方法を10°〜90℃の温度で行う、請求項1記載の方法。  The process according to claim 1, wherein the process is carried out at a temperature between 10 ° and 90 ° C. 方法を連続的に行い、洗浄液と排ガスを6〜20秒接触させる、請求項1記載の方法。  The method according to claim 1, wherein the method is continuously performed, and the cleaning liquid and the exhaust gas are contacted for 6 to 20 seconds. 排ガスは分子状ヨウ素も含有している、請求項1〜10のいずれか1項に記載の方法。  The method according to any one of claims 1 to 10, wherein the exhaust gas also contains molecular iodine. 排ガスを第1工程で硝酸ヒドロキシルアンモニウム(炭素数が1〜30のアルキル基1個以上でO−置換、及び/又はN−置換されていてもよい)から選ばれた試薬の水溶液で洗浄処理して排ガス中に存在するヨウ素を捕捉し、窒素酸化物を除去し、亜硝酸塩を分解し、第2工程で第1工程からの洗浄水溶液に含有されているヨウ素はこの溶液を過酸化水素と接触させて離脱させる、請求項11記載の方法。Cleaning the exhaust gas in the first step nitrate hydroxylammonium (carbon atoms O- substituted by one or more alkyl groups of 1 to 30, and / or N- substituted may be) with an aqueous solution of a selected reagent from Then, the iodine present in the exhaust gas is captured, nitrogen oxides are removed, nitrite is decomposed, and iodine contained in the cleaning aqueous solution from the first step in the second step is treated with hydrogen peroxide. The method of claim 11, wherein the method is contacted and released. 第1工程で使用する試薬が硝酸ヒドロキシルアンモニウム(NHA)である、請求項12記載の方法。  The method according to claim 12, wherein the reagent used in the first step is hydroxylammonium nitrate (NHA). 第2工程で過酸化水素を0.1〜0.5モル/lの濃度で使用する、請求項12記載の方法。  The method according to claim 12, wherein hydrogen peroxide is used in the second step at a concentration of 0.1 to 0.5 mol / l. 第2工程で接触をpH6以下で行う、請求項12記載の方法。  The method according to claim 12, wherein the contact is performed at a pH of 6 or less in the second step. 第2工程を10°〜90℃の温度で行う、請求項12記載の方法。  The method according to claim 12, wherein the second step is performed at a temperature of 10 ° to 90 ° C. 第2工程を不連続回分式で行い、滞留時間が1秒〜48時間である、請求項12記載の方法。  The method according to claim 12, wherein the second step is performed in a discontinuous batch mode, and the residence time is 1 second to 48 hours. 方法で生ずる溶液は次いでガラス化設備に供給する、請求項12記載の方法。  The method of claim 12, wherein the solution resulting from the process is then fed to a vitrification facility. ヨウ素がヨウ素129である、請求項11記載の方法。  The method of claim 11, wherein the iodine is iodine 129.
JP23628796A 1995-09-08 1996-09-06 Exhaust gas purification method Expired - Fee Related JP4136016B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9510542A FR2738502B1 (en) 1995-09-08 1995-09-08 WET PURIFICATION PROCESS FOR GASEOUS EFFLUENTS CONTAINING NITROGEN OXIDES AND POSSIBLY IODINE
FR9510542 1995-09-08

Publications (2)

Publication Number Publication Date
JPH09103642A JPH09103642A (en) 1997-04-22
JP4136016B2 true JP4136016B2 (en) 2008-08-20

Family

ID=9482381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23628796A Expired - Fee Related JP4136016B2 (en) 1995-09-08 1996-09-06 Exhaust gas purification method

Country Status (3)

Country Link
JP (1) JP4136016B2 (en)
FR (1) FR2738502B1 (en)
GB (1) GB2304707B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100401996B1 (en) * 1998-12-24 2004-01-24 주식회사 포스코 Improved method of wet scrubbing of nitrogen oxides from flue gas
KR20210121562A (en) 2020-03-30 2021-10-08 한국원자력연구원 Selective pretreatment method of radioactive waste

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1050735A (en) * 1974-03-28 1979-03-20 Donald Ethington Method of removing nitrogen oxides from a gas stream
JPS5285056A (en) * 1976-01-08 1977-07-15 Toray Ind Inc Removal of nitrogen oxides
US4219534A (en) * 1979-03-15 1980-08-26 Goodpasture, Inc. Method for removing nitrogen oxides from a gas stream
US4575455A (en) * 1984-11-23 1986-03-11 Atlantic Richfield Company Process for removing hydrogen sulfide with reduced fouling

Also Published As

Publication number Publication date
FR2738502A1 (en) 1997-03-14
GB9617183D0 (en) 1996-09-25
GB2304707B (en) 1999-01-20
GB2304707A (en) 1997-03-26
JPH09103642A (en) 1997-04-22
FR2738502B1 (en) 1997-10-17

Similar Documents

Publication Publication Date Title
US7998445B2 (en) Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system
US20040005262A1 (en) Process for reducing NOx in waste gas streams using chlorine dioxide
JPS6351732B2 (en)
KR101863940B1 (en) Method and apparatus for denoxing exhaust gas
JPH02172590A (en) Process for removing nitrite and nitrate from aqueous solution without leaving residue
JP4136016B2 (en) Exhaust gas purification method
JP4191486B2 (en) Decontamination method for solid iodine filter
CN115537828A (en) Pickling waste liquid recycling treatment system and method
CN104548877A (en) Preparation method of compound absorbent capable of realizing desulfurization and denitrification simultaneously
JPH0521609B2 (en)
US20230182116A1 (en) Regenerating agent for radionuclide adsorbent, method for regenerating spent radionuclide adsorbent using same, and method for treating spent regenerating agent
JPS6380831A (en) Removal of iodine in gas
JPH0763893A (en) Chemical decontamination of radioactive crud
JPH11231097A (en) Chemical decontamination method
JP4860040B2 (en) Method for melting plutonium or plutonium alloys
CN117965910A (en) Method for extracting vanadium from vanadium-containing waste residues in denitration catalyst regeneration process
US4294928A (en) Denitrification of a gas stream
KR100471977B1 (en) Chemical oxygen demand control method of the scrubbing water
Voskresenskaya et al. Ruthenium Capture from the Gas Phase during Reprocessing of Spent Uranium-Plutonium Nitride Fuel from Fast Reactors
KR960003607B1 (en) Manufacturing method of solution-liquid for mno2
Devisme et al. Strategy and current state of research on enhanced iodine separation during spent fuel reprocessing by the PUREX process
JP2003202396A (en) Method for treating chemical decontamination waste liquid
Sakurai et al. Influence of NOx and HNO2 on iodine quantity in spent-fuel solutions
KR100293202B1 (en) REGENERATION METHOD OF WASTE NOx GAS GENERATED WHEN PICKLING STAINLESS STEEL WITH MIXED ACID OF SULFURIC ACID AND HYDROGEN PEROXIDE
JPS6388024A (en) Removal of mercury in exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060620

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070307

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070911

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees