JPS63480A - Vapor growth device - Google Patents
Vapor growth deviceInfo
- Publication number
- JPS63480A JPS63480A JP14328686A JP14328686A JPS63480A JP S63480 A JPS63480 A JP S63480A JP 14328686 A JP14328686 A JP 14328686A JP 14328686 A JP14328686 A JP 14328686A JP S63480 A JPS63480 A JP S63480A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum container
- sample
- vacuum
- heating
- frequency power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 25
- 238000001947 vapour-phase growth Methods 0.000 claims description 16
- 239000010409 thin film Substances 0.000 abstract description 13
- 238000005268 plasma chemical vapour deposition Methods 0.000 abstract description 10
- 238000001816 cooling Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 150000001875 compounds Chemical class 0.000 description 11
- 239000010408 film Substances 0.000 description 11
- 239000000470 constituent Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、プラグ7 CV D (Chemi ca
l VaporDepos i t ton)法によっ
て、被加工物である試料の表面に薄膜を形成するための
気相成長装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to plug 7 CV D (Chemi ca
The present invention relates to a vapor phase growth apparatus for forming a thin film on the surface of a sample, which is a workpiece, by a vapor deposition method.
従来の技術
プラズマCVD法は真空容器内に試料を保持し、形成す
べき薄膜の組成元素を含む化合物ガスを供給しながら、
高周波エネルギによって、前記の化合物ガスを励起し、
試料表面をその低温プラズマ雰囲気に配置することによ
って、試料表面に薄膜を形成(堆積)する方法である。In the conventional plasma CVD method, a sample is held in a vacuum container, and a compound gas containing the constituent elements of the thin film to be formed is supplied.
Exciting the compound gas by high frequency energy,
This is a method of forming (depositing) a thin film on a sample surface by placing the sample surface in a low-temperature plasma atmosphere.
以下図面を参照しながら気相成長装置の従来例について
説明する。A conventional example of a vapor phase growth apparatus will be described below with reference to the drawings.
第3図に従来の気相成長装置を示す。第3図において、
11は真空容器、12は試料、13は試料台、14は試
料台13の内部に搭載されたヒータ、15は交流電源、
16は高周波電力が供給される電極、17は高周波電源
、18は真空ポンプ、19は真空排気用のパイプ、20
は真空容器内の圧力を制御するためのバタフライバルブ
、21は真空容器11内に薄膜の組成元素を含む化合物
ガスを供給するためのガス供給口である。FIG. 3 shows a conventional vapor phase growth apparatus. In Figure 3,
11 is a vacuum container, 12 is a sample, 13 is a sample stage, 14 is a heater mounted inside the sample stage 13, 15 is an AC power supply,
16 is an electrode to which high frequency power is supplied, 17 is a high frequency power source, 18 is a vacuum pump, 19 is a pipe for evacuation, 20
21 is a butterfly valve for controlling the pressure inside the vacuum vessel, and 21 is a gas supply port for supplying a compound gas containing the constituent elements of the thin film into the vacuum vessel 11.
以上のように構成された気相成長装置について、以下そ
の動作を説明する。The operation of the vapor phase growth apparatus configured as described above will be described below.
まず、真空容器11内を真空ポンプ18で所定の圧力ま
で真空排気した後、試料12表面に形成すべき薄膜の組
成元素を含む化合物ガスをガス供給装置21を介して真
空容器11内に導入しながら、バタフライバルブ20を
操作して、薄膜形成条件である圧力すなわち100〜4
00 mTo r rに真空容器11内を制御する。ま
た試料12は試料台13によって300’C程度の温度
に加熱制御する。First, the inside of the vacuum container 11 is evacuated to a predetermined pressure using the vacuum pump 18, and then a compound gas containing the constituent elements of the thin film to be formed on the surface of the sample 12 is introduced into the vacuum container 11 via the gas supply device 21. At the same time, the butterfly valve 20 is operated to maintain the thin film forming conditions, that is, the pressure of 100 to 4
The inside of the vacuum vessel 11 is controlled to 00 mTorr. Further, the sample 12 is heated and controlled to a temperature of about 300'C by the sample stage 13.
次に、電極16に周波数50KHz の高周波電力を
供給することによって、前記化合物ガスを励起し、゛試
料12表面をその低温プラズマ雰囲気にさらすことによ
って、試料12表面にプラズマCVD膜を形成する。Next, the compound gas is excited by supplying high-frequency power with a frequency of 50 KHz to the electrode 16, and the surface of the sample 12 is exposed to the low-temperature plasma atmosphere, thereby forming a plasma CVD film on the surface of the sample 12.
ところが、プラズマCVD膜は試料12表面に堆積する
だけでなく、真空容器11内面や試料台13表面にも堆
積する。このような不要堆積膜は、その膜厚が大きくな
ってゆくと割れて薄片となり、試料12表面に付着する
ので、通常数μm堆積する毎にクリーニングする必要が
ある。クリーニングは、CF とOの混合ガスやSF
6を真空容器11に導入しながら電極16に高周波電力
を供給することによるドライエツチング法によって行な
う。However, the plasma CVD film is not only deposited on the surface of the sample 12 but also on the inner surface of the vacuum container 11 and the surface of the sample stage 13. As such unnecessary deposited film increases in thickness, it breaks into thin pieces and adheres to the surface of the sample 12, so it is usually necessary to clean it every few micrometers of deposition. For cleaning, use a mixed gas of CF and O or SF.
This is carried out by a dry etching method in which high frequency power is supplied to the electrode 16 while introducing 6 into the vacuum container 11.
しかし真空容器11の内部を隅々まで完全にクリーニン
グすることは不可能であるため定期的に、ヒータ14を
止めて室温近くまで降温させたのち、真空容器11を解
体して洗浄を行なう。However, since it is impossible to completely clean the interior of the vacuum container 11 from corner to corner, the heater 14 is periodically turned off and the temperature is lowered to near room temperature, and then the vacuum container 11 is dismantled and cleaned.
発明が解決しようとする問題点
しかしながら上記のような構成では次のような問題点を
有していた。すなわち、試料台は試料の温度を一定に保
つように熱容量が犬きくなっており、また300°C程
度に保たれているため室温近くまで温度が下がるのに2
〜3時間程度を必要とする。又、逆に一旦温度を下げる
と300 ’C程度に上昇させるのに約2時間を必要と
する。また断線等の原因でヒータを交換する場合も同様
の時間を必要とする。Problems to be Solved by the Invention However, the above configuration has the following problems. In other words, the sample stage has a high heat capacity to keep the sample temperature constant, and since it is kept at around 300°C, it takes 200°F for the temperature to drop to near room temperature.
It takes about 3 hours. Conversely, once the temperature is lowered, it takes about 2 hours to raise it to about 300'C. Furthermore, a similar amount of time is required when replacing the heater due to a breakage or the like.
本発明は上記問題点に鑑み、試料台の温度の上昇、下降
の時間のロスを少なくできる気相成長装置を提供するも
のである。In view of the above-mentioned problems, the present invention provides a vapor phase growth apparatus that can reduce the loss of time for raising and lowering the temperature of the sample stage.
問題点を解決するための手段
上記問題点を解決するための本発明の第1の発明は気相
成長装置被加工物保持手段を真空容器の外部から加熱す
る着脱可能な加熱手段を備えたものである。Means for Solving the Problems A first aspect of the present invention for solving the above problems is a vapor phase growth apparatus that is equipped with a detachable heating means for heating the workpiece holding means from the outside of the vacuum vessel. It is.
また、本発明の第2の発明は、真空容器の加熱手段と接
触する面に複数の板状の突起を設け、前記加熱手段には
前記複数の板状の突起とかみ合う複数の溝を設けたもの
である。Further, in a second aspect of the present invention, a plurality of plate-shaped protrusions are provided on a surface of the vacuum container that contacts the heating means, and a plurality of grooves that engage with the plurality of plate-shaped protrusions are provided in the heating means. It is something.
作 用
本発明の第1の発明は上記した構成によって下記のよう
に作用する。熱容量の小さい被加工物保持手段と熱容量
の大きい加熱手段を分離しているので、被加工物保持手
段の温度を上げるためにばあらかじめ所定の温度に保持
した加熱手段を真空容器の外部に密着させる。被加工物
保持手段は熱容量が小さいので短い時間で温度が上昇す
る。温度を下げる時は加熱手段を真空容器の外部から引
き離すことにより被加工物保持手段は短い時間で降温す
る。Operation The first aspect of the present invention operates as follows due to the above-mentioned configuration. Since the workpiece holding means with a small heat capacity and the heating means with a large heat capacity are separated, in order to raise the temperature of the workpiece holding means, the heating means, which has been maintained at a predetermined temperature, is brought into close contact with the outside of the vacuum container. . Since the workpiece holding means has a small heat capacity, the temperature rises in a short period of time. When lowering the temperature, the temperature of the workpiece holding means is lowered in a short time by separating the heating means from the outside of the vacuum container.
また、本発明の第2の発明は、真空容器に設けた板状の
突起の放熱フィンとしての効果シてより、冷却時の降温
速度がさらに速くなる。Further, in the second aspect of the present invention, the rate of temperature drop during cooling is further increased due to the effect of the plate-shaped protrusions provided on the vacuum container as heat radiation fins.
実施例
以下本発明の一実施例の気相成長装置について、図面を
参照しながら説明する。EXAMPLE Hereinafter, a vapor phase growth apparatus according to an example of the present invention will be described with reference to the drawings.
第1図は、本発明の第1の実施例における気相成長装置
の概略断面図を示すものである。FIG. 1 shows a schematic cross-sectional view of a vapor phase growth apparatus in a first embodiment of the present invention.
第1図において、41は真空状態の維持が可能な真空容
器、42はプラズマCVD膜が形成される被加工物とし
ての試料、43aは試料42を保持し、かつ、下面に加
熱手段としてのヒーターブロック62aが接面すること
で試料42を加熱することが可能なアース接地された被
加工物保持手段としての試料台、46は交流電源、46
は50KHz の高周波電力を供給することが可能な
、材質がアルミニウムの電極、47は化合物ガスを真空
容器41内に導入するためのガス供給口、48は周波数
50 KHz の高周波電源、49は真空容器41内
の圧力を大気圧以下の真空度にするための真空排気手段
としての真空ポンプ、50は真空容器41と真空ポンプ
49との間を気密に接続する真空排気用のパイプ、51
ri:真空容器41内の圧力を制御するための圧力制御
装置、52aは試料台43aを介して試料42を加熱す
るための可動な加熱手段としてのヒーターブロック、6
3はヒーターブロック内部のヒーターである。In FIG. 1, 41 is a vacuum container capable of maintaining a vacuum state, 42 is a sample as a workpiece on which a plasma CVD film is formed, and 43a is a heater that holds the sample 42 and has a heater on the bottom surface as a heating means. A sample stand serving as a grounded workpiece holding means capable of heating the sample 42 by being in contact with the block 62a;
47 is a gas supply port for introducing compound gas into the vacuum container 41; 48 is a high frequency power source with a frequency of 50 kHz; 49 is a vacuum container A vacuum pump as a means for evacuation to bring the pressure inside 41 to a degree of vacuum below atmospheric pressure; 50 is a pipe for evacuation that airtightly connects the vacuum container 41 and the vacuum pump 49; 51;
ri: a pressure control device for controlling the pressure inside the vacuum container 41; 52a: a heater block as a movable heating means for heating the sample 42 via the sample stage 43a; 6;
3 is a heater inside the heater block.
以上のように構成された気相成長装置について、以下そ
の動作を説明する。The operation of the vapor phase growth apparatus configured as described above will be described below.
まず、真空容器41内を真空ポンプ48で所定の圧力ま
で真空排気した後、試料42表面に形成すべき薄膜の組
成元素を含む化合物ガスをガス供給口47を介して真空
容器41内に導入しながら、バタフライバルブ61を操
作して、薄膜形成条件である圧力すなわち100〜40
0 mTo r rに真空容器41内を制御する。また
試料42は試料台43aによって300°C程度の温度
に加熱制御する。次に、電極46に周波数50 KHz
の高周波電力を供給することによって、前記化合物ガ
スを励起し、試料42表面をその低温プラズマ雰囲気に
さらすことによって、試料42表面にプラズマCVD膜
を形成する。First, the inside of the vacuum container 41 is evacuated to a predetermined pressure using the vacuum pump 48, and then a compound gas containing the constituent elements of the thin film to be formed on the surface of the sample 42 is introduced into the vacuum container 41 through the gas supply port 47. At the same time, the butterfly valve 61 is operated to adjust the pressure, which is the thin film forming condition, i.e., 100 to 40
The inside of the vacuum container 41 is controlled to 0 mTorr. Further, the sample 42 is heated and controlled to a temperature of about 300° C. by the sample stage 43a. Next, a frequency of 50 KHz is applied to the electrode 46.
The compound gas is excited by supplying high frequency power, and the surface of the sample 42 is exposed to the low-temperature plasma atmosphere, thereby forming a plasma CVD film on the surface of the sample 42.
ところが、プラズマCVD膜は試料42表面;て堆積す
るだけでなく真空容器41内面や試料台438表面にも
堆積する。このような不要堆積膜は、その膜厚が大きく
なってゆくと割れて薄片とな9試料42表面に付着する
ので、通常数μm堆積する毎にクリーニングする必要が
ある。クリーニングは、CF とOの混合ガスやSF
、を真空容器41に導入しながら電極46に高周波電力
を供給することによるドライエツチング法によって行な
う。However, the plasma CVD film is deposited not only on the surface of the sample 42 but also on the inner surface of the vacuum container 41 and the surface of the sample stage 438. As such unnecessary deposited film becomes thicker, it cracks and adheres to the surface of the sample 42 in thin pieces, so it is usually necessary to clean it every several micrometers of deposition. For cleaning, use a mixed gas of CF and O or SF.
is carried out by a dry etching method in which high frequency power is supplied to the electrode 46 while introducing it into the vacuum vessel 41.
しかし真空容器41の内部を隅々まで完全にクリーニン
グすることは不可能であるため、真空容器41を分離し
てクリーニングする必要がある。この時ヒーターブロッ
ク52aを試料台43aより引き離すことで熱容量の小
さい試料台43の温度は約20分根度が下がる。However, since it is impossible to completely clean every corner of the inside of the vacuum container 41, it is necessary to separate the vacuum container 41 and clean it. At this time, by separating the heater block 52a from the sample stage 43a, the temperature of the sample stage 43, which has a small heat capacity, is reduced by about 20 minutes.
次に真空容器41の分解クリーニングを行なって元通り
組立てた後、ヒーターブロック52a’i−試料台43
aに元通り密着させる。ヒーターブロック52aは温度
制御されており、常に一定温度を保つようになっている
ので、試料台43aから離れていた間に温度が変わるこ
とはない。またヒーターブロック52aの熱容量は試料
台43aの熱容量に比べて充分大きいので試料台43a
の温度は約15分程度で元にもどる。Next, after disassembling and cleaning the vacuum container 41 and reassembling it, the heater block 52a'i-sample stage 43
Place it back on a. Since the temperature of the heater block 52a is controlled to always maintain a constant temperature, the temperature does not change while the heater block 52a is away from the sample stage 43a. In addition, since the heat capacity of the heater block 52a is sufficiently larger than that of the sample stand 43a, the sample stand 43a
The temperature will return to normal in about 15 minutes.
以上のように本実施例によれば、試料台43を真空容器
41の外部から加熱する着脱可能なヒーターブロック5
2を設けることにより、試料台43aの温度の上昇下降
による時間のロスを少なくすることができる。As described above, according to this embodiment, the removable heater block 5 heats the sample stage 43 from the outside of the vacuum container 41.
2, it is possible to reduce time loss due to rises and falls in the temperature of the sample stage 43a.
次に本発明の第2の実施例について図面を参照しながら
説明する。Next, a second embodiment of the present invention will be described with reference to the drawings.
第2図は本発明の第2の実施例を示す気相成長装置の断
面図である。同図ておいて、41は真空状態の維持が可
能な真空容器、42はプラズマCVD膜が形成される被
加工物としての試料、43bは試f!42を保持し、か
つ、下面に加熱手段としてのヒーターブロックs2bが
接面することで試料42を加熱することが可能なアース
接地された被加工物保持手段としての試料台、45は交
流電源、46は50KH2の高周波電力を供給すること
が可能な材質がアルミニウムの電極、47は化合物ガス
を真空容器41内に導入するためのガス供給口、48は
周波数60KHz の高周波電源、49は真空容器41
内の圧力を大気圧以下の真空度にするための真空排気手
段としての真空ポンプ、60は真空容器41と真空ポン
プ49との間を気密に接続する真空排気用のパイプ、6
1は真空容器41内の圧力を制御するための圧力制御装
置、52bは試料台43bを介して試料42を加熱する
ための可動な加熱手段としてのヒーターブロック、53
はヒーターブロック内部のヒーターである。以上は第1
図の構成と同じものである。FIG. 2 is a sectional view of a vapor phase growth apparatus showing a second embodiment of the present invention. In the figure, 41 is a vacuum container capable of maintaining a vacuum state, 42 is a sample as a workpiece on which a plasma CVD film is formed, and 43b is a sample f! 42, and a grounded sample stand as a workpiece holding means capable of heating the sample 42 by having a heater block s2b as a heating means in contact with the lower surface thereof; 45 is an AC power source; 46 is an electrode made of aluminum that can supply high frequency power of 50 KH2, 47 is a gas supply port for introducing compound gas into the vacuum container 41, 48 is a high frequency power source with a frequency of 60 KHz, and 49 is a vacuum container 41
a vacuum pump as a means for evacuation to reduce the internal pressure to a degree of vacuum below atmospheric pressure; reference numeral 60 denotes a vacuum evacuation pipe that airtightly connects the vacuum container 41 and the vacuum pump 49;
1 is a pressure control device for controlling the pressure inside the vacuum container 41; 52b is a heater block as a movable heating means for heating the sample 42 via the sample stage 43b; 53
is the heater inside the heater block. The above is the first
The configuration is the same as the one shown in the figure.
第1図の構成と異なるのは、複数の板状の突起54を、
真空容器41の外部のヒーターブロック62bと接する
面に設けたことと、複数の溝65をヒーターブロックs
2bの真空容器41と接する面に、板状の突起54とか
み合うように設けたことである。The difference from the configuration shown in FIG. 1 is that the plurality of plate-shaped protrusions 54 are
The provision of a plurality of grooves 65 on the surface of the vacuum container 41 that is in contact with the heater block 62b outside the heater block s
2b is provided on the surface in contact with the vacuum container 41 so as to engage with the plate-shaped protrusion 54.
以上のように構成された気相成長装置について、以下そ
の動作を説明する。The operation of the vapor phase growth apparatus configured as described above will be described below.
まず、真空容器41内を真空ポンプ48で所定の圧力ま
で真空排気した後、試料42表面に形成すべき薄膜の組
成元素を含む化合物ガスをガス供給口47を介して真空
容器41内に導入しながら、バタフライバルブ61を操
作して、薄膜形成条件である圧力すなわち1Q○〜40
0mT o r rに真空容器41内を制御する。また
試料42は試料台43bによって300°C程度の温度
に加熱制御する。次に、電極46に周波数50KHz
の高周波電力を供給することによって、前記化合物ガ
スを励起し、試料42表面をその低温プラズマ雰囲気に
さらすことによって、試料42表面にプラズマCVD膜
を形成する。First, the inside of the vacuum container 41 is evacuated to a predetermined pressure using the vacuum pump 48, and then a compound gas containing the constituent elements of the thin film to be formed on the surface of the sample 42 is introduced into the vacuum container 41 through the gas supply port 47. While operating the butterfly valve 61, the pressure that is the thin film forming condition, that is, 1Q○~40
The inside of the vacuum container 41 is controlled to 0 mT o r r. Further, the sample 42 is heated and controlled to a temperature of about 300°C by the sample stage 43b. Next, a frequency of 50 KHz is applied to the electrode 46.
The compound gas is excited by supplying high frequency power, and the surface of the sample 42 is exposed to the low-temperature plasma atmosphere, thereby forming a plasma CVD film on the surface of the sample 42.
ところが、プラズマCVD膜は試料42表面に堆積する
だけでなく、真空容器41内面や試料台43b表面にも
堆積する。このような不要堆積膜は、その膜厚が大きく
なってゆくと割れて薄片となり試料42表面に付着する
ので、通常数μm堆積する毎にクリーニングする必要が
ある。クリーニングは、CF4と02の混合ガスやSF
6を真空容器41に導入しながら電極46に高周波電力
を供給することによるドライエツチング法によって行な
う。しかし真空容器41の内部を隅々まで完全にクリー
ニングすることは不可能であるため、真空容器41を分
解してクリーニングする必要がある。この時、ヒーター
ブロックs2bを試料台43bより引き離すと、試料台
43bの熱容量の小さいことに加えて複数の板状の突起
64が放熱フィンの役割を果たして試料台43bの温度
は約15分根度で下がる。次に真空容器410分解クリ
ーニングを行なって元通り組立てた後、ヒーターブロッ
ク52bを試料台43bに元通り密着させる。ヒーター
ブロックs2bは温度制御されており常に一定温度を保
つようになっているので試料台43bから離れていた間
に温度が変わることはない。またヒーターブロックs2
bの熱容量は試、科白43bの熱容量に比べて充分大き
く、またA仝容器41の外部の板状の突起54とヒータ
ーブロック52bの苛65のかみ合わせによって接する
面積が大きくなり、熱の9動かす速く行なわれるため、
試料台43bの已度は約10分根度で元にもどる。However, the plasma CVD film is not only deposited on the surface of the sample 42, but also on the inner surface of the vacuum container 41 and the surface of the sample stage 43b. As such unnecessary deposited film becomes thicker, it cracks and becomes flakes and adheres to the surface of the sample 42, so it is usually necessary to clean it every several micrometers of deposition. For cleaning, use a mixed gas of CF4 and 02 or SF.
This is done by a dry etching method in which high frequency power is supplied to the electrode 46 while introducing 6 into the vacuum container 41. However, it is impossible to completely clean every corner of the inside of the vacuum container 41, so it is necessary to disassemble the vacuum container 41 and clean it. At this time, when the heater block s2b is pulled away from the sample stage 43b, the temperature of the sample stage 43b decreases by approximately 15 minutes due to the small heat capacity of the sample stage 43b and the plurality of plate-shaped protrusions 64 acting as radiation fins. It goes down. Next, the vacuum container 410 is disassembled and cleaned and reassembled, and then the heater block 52b is brought back into close contact with the sample stage 43b. Since the heater block s2b is temperature-controlled and always maintains a constant temperature, the temperature does not change while it is away from the sample stage 43b. Also heater block s2
The heat capacity of b is sufficiently large compared to that of the test case 43b, and the contact area between the plate-shaped protrusion 54 on the outside of the container A and the heater block 52b is increased, and the heat transfer speed is increased. Because it is done,
The strength of the sample stage 43b returns to its original state in about 10 minutes.
以上のように板状の突起54と溝55を設けることによ
って試料台43bの温度の上昇下降による時間のロスを
、第1の実施例より一層少なくすることができる。By providing the plate-shaped protrusions 54 and the grooves 55 as described above, it is possible to further reduce the time loss due to rises and falls in the temperature of the sample stage 43b than in the first embodiment.
発明の効果
以上のように本発明の第1の発明は、被加工物保持手段
を真空容器の外部から加熱する着脱可能な加熱手段を設
けることにより、被加工物保持手段の温度の上昇下降に
要する時間を少なくすることができる。Effects of the Invention As described above, the first aspect of the present invention is to provide a removable heating means for heating the workpiece holding means from the outside of the vacuum container, thereby controlling the rise and fall of the temperature of the workpiece holding means. The time required can be reduced.
また、本発明の第2の発明は、第1の発明の構成に加え
て、真空容器に複数の板状の突起を設けることにより、
冷却時の降温速度をさらに速くすることができる。Moreover, the second invention of the present invention provides, in addition to the configuration of the first invention, by providing a plurality of plate-shaped protrusions on the vacuum container.
The rate of temperature drop during cooling can be further increased.
第1図は本発明のMlの実施例における気相成長装置の
断面図、第2図は本発明の第2の実施例における気相成
長装置の断面図、第3図は従来の気相成長装置の断面図
である。
41・・・・・・真空容器、43a、43b・・・・・
・試料台、46・・・・・・電極、48・・・・・・高
周波電源、49・・・・・・真空ポンプ、61・・・・
・・圧力制御装置、47・・・・・・ガス供給口、62
a 、 52 b・・・・・・ヒーターブロック、6
3・・・・・・ヒーター、54・・・・・・板状の突起
、55・・・・・・溝。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図Fig. 1 is a sectional view of a vapor phase growth apparatus in an embodiment of Ml of the present invention, Fig. 2 is a sectional view of a vapor phase growth apparatus in a second embodiment of the invention, and Fig. 3 is a sectional view of a vapor phase growth apparatus in an embodiment of the present invention. FIG. 2 is a cross-sectional view of the device. 41...Vacuum container, 43a, 43b...
・Sample stage, 46... Electrode, 48... High frequency power supply, 49... Vacuum pump, 61...
...Pressure control device, 47... Gas supply port, 62
a, 52 b... Heater block, 6
3...Heater, 54...Plate-like protrusion, 55...Groove. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
figure
Claims (2)
器内を減圧雰囲気にするための真空排気手段と、前記真
空容器内の圧力を所定の値にするための圧力制御手段と
、前記真空容器内にガスを導入するためのガス供給手段
と、被加工物を保持する被加工物保持手段と、前記真空
容器内に位置し、高周波電力が供給され所定の圧力状態
で少なくとも被加工物を含む空間に低温プラズマを発生
させる電極と、電極に整合回路を介して高周波電力を供
給するための高周波電源と、前記被加工物保持手段を前
記真空容器の外部から加熱する着脱可能な加熱手段とか
らなる気相成長装置。(1) a vacuum container capable of maintaining a vacuum state; a vacuum evacuation means for creating a reduced pressure atmosphere in the vacuum container; a pressure control means for bringing the pressure inside the vacuum container to a predetermined value; a gas supply means for introducing gas into the vacuum container; a workpiece holding means for holding the workpiece; a high-frequency power source for supplying high-frequency power to the electrode via a matching circuit, and a detachable heating means for heating the workpiece holding means from outside the vacuum container. A vapor phase growth device consisting of.
器内を減圧雰囲気にするための真空排気手段と、前記真
空容器内の圧力を所定の値にするための圧力制御手段と
、前記真空容器内にガスを導入するためのガス供給手段
と、被加工物を保持する被加工物保持手段と、前記真空
容器内に位置し高周波電力が供給され所定の圧力状態で
少なくとも被加工物を含む空間に低温プラズマを発生さ
せる電極と、電極に整合回路を介して高周波電力を供給
するための高周波電源と前記被加工物保持手段を前記真
空容器の外部から加熱する着脱可能な加熱手段とかなり
、前記真空容器の前記加熱手段と接する面には複数の板
状の突起を有し、加熱手段の真空容器と接する面には前
記複数の板状の突起とかみ合う複数の溝を設けたことを
特徴とする気相成長装置。(2) a vacuum container capable of maintaining a vacuum state; a vacuum evacuation means for creating a reduced pressure atmosphere in the vacuum container; a pressure control means for bringing the pressure inside the vacuum container to a predetermined value; a gas supply means for introducing gas into the vacuum container; a workpiece holding means for holding the workpiece; an electrode for generating low-temperature plasma in a space contained therein, a high-frequency power supply for supplying high-frequency power to the electrode via a matching circuit, and a removable heating means for heating the workpiece holding means from outside the vacuum container. , a surface of the vacuum container in contact with the heating means has a plurality of plate-shaped protrusions, and a surface of the heating means in contact with the vacuum container is provided with a plurality of grooves that engage with the plurality of plate-shaped protrusions. Characteristic vapor phase growth equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14328686A JPS63480A (en) | 1986-06-19 | 1986-06-19 | Vapor growth device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14328686A JPS63480A (en) | 1986-06-19 | 1986-06-19 | Vapor growth device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63480A true JPS63480A (en) | 1988-01-05 |
Family
ID=15335195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14328686A Pending JPS63480A (en) | 1986-06-19 | 1986-06-19 | Vapor growth device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63480A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6793735B2 (en) * | 1999-08-03 | 2004-09-21 | International Business Machines Corporation | Integrated cobalt silicide process for semiconductor devices |
-
1986
- 1986-06-19 JP JP14328686A patent/JPS63480A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6793735B2 (en) * | 1999-08-03 | 2004-09-21 | International Business Machines Corporation | Integrated cobalt silicide process for semiconductor devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5310453A (en) | Plasma process method using an electrostatic chuck | |
JP4644943B2 (en) | Processing equipment | |
CN111564357A (en) | Plasma processing apparatus | |
CN108346568A (en) | The method for handling machined object | |
JPH1116858A (en) | Method of cleaning and processing film forming device | |
JPH0794488A (en) | Cleaning method of vacuum treatment device assembly | |
KR101139165B1 (en) | Ti FILM FORMING METHOD AND STORAGE MEDIUM | |
WO1993023978A1 (en) | Process apparatus | |
JPH07321097A (en) | Treating device and washing method for ring body or baffle board used in the treating device | |
JPH0794487A (en) | Treating apparatus and cleaning method thereof | |
JPS63480A (en) | Vapor growth device | |
JPH0878392A (en) | Plasma processing apparatus and method for forming films for semiconductor wafer | |
JPH07331445A (en) | Treatment device and method for washing cover body used in the treatment device | |
JP4782316B2 (en) | Processing method and plasma apparatus | |
JPH09232290A (en) | Semiconductor manufacturing apparatus | |
TWI385724B (en) | The substrate processing apparatus and the processing method of the state of stability chamber | |
JP2553590B2 (en) | Method and apparatus for selectively depositing metal | |
JPH1088372A (en) | Surface treating device and surface treating method | |
JPH10223620A (en) | Semiconductor manufacturing device | |
JP2000183145A (en) | Wafer stage and vacuum heat treatment apparatus | |
JPS62287079A (en) | Plasma cvd apparatus | |
JPH06168877A (en) | Device for fabrication of semiconductor | |
JPH0513348A (en) | Device for manufacturing semiconductor | |
JP2882254B2 (en) | Plasma processing method | |
JPS6295828A (en) | Plasma processor |