JPS6347955A - Laminated substrate for electronic component - Google Patents

Laminated substrate for electronic component

Info

Publication number
JPS6347955A
JPS6347955A JP19192886A JP19192886A JPS6347955A JP S6347955 A JPS6347955 A JP S6347955A JP 19192886 A JP19192886 A JP 19192886A JP 19192886 A JP19192886 A JP 19192886A JP S6347955 A JPS6347955 A JP S6347955A
Authority
JP
Japan
Prior art keywords
substrate
layer
melting point
high melting
point glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19192886A
Other languages
Japanese (ja)
Inventor
Tsuterou Toi
戸井 詰哲郎
Masakazu Umeda
梅田 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP19192886A priority Critical patent/JPS6347955A/en
Publication of JPS6347955A publication Critical patent/JPS6347955A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a laminated substrate which has a small difference in thermal expansion coefficient of a high melting point glass layer from that of a silicon semiconductor placed on a substrate, excellent heat resistance strength and easy manufacture by covering at least one main surface of a sealed alloy plate containing Cr with the glass layer through a priority oxide film made mainly of Cr2O3. CONSTITUTION:A high melting point glass layer 3 is covered through a priority oxide film 2 made mainly of Cr2O3. Or, one of both main surfaces of a sealed alloy plate 1 containing Cr is covered with the layer 3 through the film 2 made mainly of Cr2O3, and the other main surface is covered with a frit layer 4. For example, the substrate 1 containing Cr is interposed between flat ceramic plates, heated to 1000-1300 deg.C in wet H2 gas while pressurizing it to form the film 2 mainly made of Cr2O3, a high melting point glass plate having 550 deg.C or higher of melting point is disposed thereon, heated to the melting point or higher of the glass plate, and pressurized, and a laminated substrate on which the layer 3 is covered through the film 2 is obtained on the substrate 1.

Description

【発明の詳細な説明】 利用産業分野 この発明は、各種の電子部品を装着するための絶縁膜を
有する積層基板に係り、特に、基板上に載置するシリコ
ン半導体との熱膨脹係数差が少な(、耐熱強度がすぐれ
、かつ製造が容易なハイブリッLIC用の積層基板に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application This invention relates to a laminated substrate having an insulating film for mounting various electronic components, and particularly to a multilayer substrate having a small difference in coefficient of thermal expansion from a silicon semiconductor placed on the substrate ( The present invention relates to a multilayer substrate for a hybrid LIC that has excellent heat resistance and strength and is easy to manufacture.

背景技術 ハイブリットICを装着、積載するための基板として、
従来、エポキシ樹脂板をガラス繊維にて補強してなる基
板上に、Cu板を被着した積層構造の所謂、銅張りガラ
スエポキシ基板が良く知られている。
Background technology As a board for mounting and loading hybrid ICs,
BACKGROUND ART Conventionally, a so-called copper-clad glass epoxy substrate is well known, which has a laminated structure in which a Cu plate is adhered to a substrate made of an epoxy resin plate reinforced with glass fiber.

また、アルミナ系基板あるいは40%Ni  Fe合金
板、Cu合金板等の封着合金板上に、樹脂からなる絶縁
膜を被覆した積層構造の所謂、高分子絶縁膜形成金属、
阪、さらに、鉄板上にほうろうにて絶縁膜を)し成した
積層構造のほうろう引き鉄基板などが知られている。
In addition, a so-called polymer insulating film-forming metal with a laminated structure in which an insulating film made of resin is coated on an alumina-based substrate or a sealing alloy plate such as a 40% Ni Fe alloy plate or a Cu alloy plate,
Furthermore, enameled iron substrates with a laminated structure consisting of an enameled insulating film on a steel plate are known.

前記の銅張りガラスエポキシ基板は、熱伝導及び耐熱性
が低く、載置するシリコン半導体との熟膨脹係数差が大
きいため、割れ発生の問題があり、また、アルミナ系基
板は、熱伝導が悪い上に、耐衝撃に弱い欠点がある。
The above-mentioned copper-clad glass epoxy substrate has low thermal conductivity and heat resistance, and has a large difference in thermal expansion coefficient from the silicon semiconductor on which it is placed, so there is a problem of cracking, and alumina-based substrates have poor thermal conductivity. On the other hand, it has a weak impact resistance.

また、高分子絶縁膜形成金属板は、使用温度である45
0°Cでの耐、IjJ5性が悪い問題があり、はうろう
引き鉄基板は、装造上、1000°C以上の焼成を必要
とし、工程数、コスト的に種々の問題があった。
In addition, the polymer insulating film-formed metal plate has a working temperature of 45
There are problems with poor durability at 0°C and poor IjJ5 properties, and waxed iron substrates require firing at 1000°C or higher for installation, which poses various problems in terms of the number of steps and cost.

発明の目的 この発明は、ハイブリットIC用の絶縁膜を有する積層
基板のかかる現状に鑑み、基板上に載置するシリコン半
導体との熱膨張係数差が少なく、耐熱強度がすぐれ、か
つ製造が容易な積層基板を目的としている。
Purpose of the Invention In view of the current state of laminated substrates having an insulating film for hybrid ICs, the present invention has been made to provide a multilayer substrate that has a small difference in coefficient of thermal expansion from a silicon semiconductor placed on the substrate, has excellent heat resistance strength, and is easy to manufacture. It is aimed at laminated substrates.

発明の構成と効果 この発明は、450°Cの使用温度におけるすぐれた耐
熱性、熱伝導性を有し、強度が高く、基板上に載置する
シリコン半導体との熱膨張係数差が少なく、削れ発生が
少なく、かつ製造が容易である絶縁膜を有する積層基板
を目的に、種々検討した結果、Cr含有の封着合金板の
主面に、熱処理によりCr2O3を主とする酸化被膜を
形成して、前記酸化被膜上に絶縁膜であるガラス層ある
いはフリット層を設けると、前記封着合金板と絶縁膜と
の密着性が改善され、前記目的が達成されることを知見
し、発明を完成したものである。
Structure and Effects of the Invention The present invention has excellent heat resistance and thermal conductivity at an operating temperature of 450°C, is high in strength, has a small difference in coefficient of thermal expansion from the silicon semiconductor placed on the substrate, and is resistant to scratching. As a result of various studies aimed at producing a laminated substrate with an insulating film that is less likely to generate and is easy to manufacture, we decided to form an oxide film mainly composed of Cr2O3 on the main surface of a Cr-containing sealing alloy plate by heat treatment. discovered that by providing a glass layer or a frit layer, which is an insulating film, on the oxide film, the adhesion between the sealing alloy plate and the insulating film was improved, and the above object was achieved, and the invention was completed. It is something.

すなわち、この発明は、 Cr含有の封着合金板の少なくとも1主面に、Cr2O
3を主とする(凭先酸化被膜を介在させて、高融点ガラ
ス層を被覆したことを特徴とする電子部品用積層基板で
あり、 さらに、 Cr含有の封着合金板の両生面に、Cr2O3を主とす
る優先酸化被膜を介在させて、一主面に高融点ガラス層
を被覆し、他主面にフリット層を被覆したことを特徴と
する電子部品用積層基板である。
That is, this invention provides Cr2O on at least one main surface of a Cr-containing sealing alloy plate.
This is a multilayer substrate for electronic components, which is characterized in that it is coated with a high melting point glass layer with an oxide film interposed therebetween, and further includes Cr2O3 on both sides of the Cr-containing sealing alloy plate. This is a multilayer substrate for electronic components, characterized in that one principal surface is coated with a high melting point glass layer and the other principal surface is coated with a frit layer, with a preferential oxide film mainly consisting of:

発明の図面に基づく開示 第1図a、b、cはこの発明による積層基板の断面説明
図である。
DISCLOSURE OF THE INVENTION BASED ON DRAWINGS FIGS. 1a, b, and c are cross-sectional explanatory views of a laminated substrate according to the present invention.

この発明による積層基板の製造工程を説明すると、例え
ばa図に示す如く、板厚2mm以下のNi40〜50w
t%−Cr4〜8wt%−Fe合金板、あるいは、Cr
15〜30wt%−Fe合金板からなるCr含有の封着
合金基板(1)を、平坦なセラック板で挟み、加圧しな
がら露点10〜50℃の湿潤H2ガス中で、1000℃
〜1300°Cに加熱して、前記合金基板(1)の一主
面に、膜厚10μm以下、好ましくは1〜5pm厚みの
Cr2O3を主とする優先酸化被膜(2)を形成し、こ
の封着合金基板(1)のf発光酸化被膜(2)上に板厚
0.4mm〜1.0mmの溶融点550℃以上の高融点
ガラス板を配置し、高融点ガラス板の溶融温度以上に加
熱、加圧して、封着合金基板(1)上に優先酸化被膜(
2)を介して絶縁膜である高融点ガラス層(3)を被着
した積層基板を得る。
To explain the manufacturing process of the laminated board according to the present invention, for example, as shown in figure a, a Ni40 to 50w plate with a board thickness of 2 mm or less is used.
t%-Cr4~8wt%-Fe alloy plate or Cr
A Cr-containing sealing alloy substrate (1) made of a 15-30 wt%-Fe alloy plate is sandwiched between flat shellac plates and heated to 1000°C in a humid H2 gas with a dew point of 10-50°C while applying pressure.
A preferential oxide film (2) mainly composed of Cr2O3 with a thickness of 10 μm or less, preferably 1 to 5 pm is formed on one main surface of the alloy substrate (1) by heating to ~1300°C. A high melting point glass plate with a thickness of 0.4 mm to 1.0 mm and a melting point of 550°C or higher is placed on the f-emitting oxide film (2) of the deposited alloy substrate (1), and heated to a temperature higher than the melting temperature of the high melting point glass plate. , by applying pressure to form a preferential oxide film (
2) A laminated substrate is obtained on which a high melting point glass layer (3), which is an insulating film, is adhered via a layer (3) of high melting point glass.

また、b図に示す如く、前記合金基板(1)の両生面に
、Cr2O3を主とする優先酸化被膜(2)を形成し、
この封着合金基板(1)の両生面に前記高融点ガラス板
を配置し、高融点ガラス板の溶融温度以上に加熱、加圧
して、付着合金基板(1)両生面上に優先酸化被膜(2
)を介して絶縁膜である高融点ガラス層(3)を被着し
た積層基板を得ることができる。
In addition, as shown in Figure b, a preferential oxide film (2) mainly composed of Cr2O3 is formed on the amphibatic surface of the alloy substrate (1),
The above-mentioned high melting point glass plate is placed on both sides of the sealing alloy substrate (1), and heated and pressurized to a temperature higher than the melting temperature of the high melting point glass plate to form a preferential oxide film ( 2
) A laminated substrate can be obtained on which a high-melting point glass layer (3), which is an insulating film, is adhered via a layer (3) of high melting point glass.

さらに、C図に示す如く、11着金合金板(1)の一主
面にイ憂先酸化波膜(2)を介して高融点ガラス層(3
)を被着した積層基板の他主面に、粒度100mesh
〜300meshのフリットをスクリーン印刷により被
着させ、乾燥、脱バインダーした後、フリットの軟化点
以上に加熱、溶融させることにより、封着合金基板(1
)上に優先酸化被膜(2)を介して絶縁膜であるフリッ
ト層(4)を被着し、封着合金基板(1)の一主面に高
融点ガラス層(3)を、他主面にはフリット層(4)を
設けた積層基板が得られる。
Furthermore, as shown in Figure C, a high melting point glass layer (3
) on the other main surface of the laminated substrate coated with
A sealing alloy substrate (1
) is coated with a frit layer (4) which is an insulating film via a preferential oxide film (2), and a high melting point glass layer (3) is applied to one main surface of the sealing alloy substrate (1) and a high melting point glass layer (3) is applied to the other main surface. A laminated substrate provided with a frit layer (4) is obtained.

発明の好ましい実施態様 この発明において、Crを含有した封着合金基板のFe
−Cr−Ni系合金は、Niが40%未満では、熟膨脹
係数が小さくなりすぎ、高融点ガラス板との熱膨張係数
差が大きくなり好ましくなく、また、50%を越えると
、前記の熟膨脹係数差が大きくなりすぎるため、Niは
40〜50%に限定する。
Preferred Embodiment of the Invention In this invention, the Fe of the sealing alloy substrate containing Cr is
-Cr-Ni alloys are undesirable if the Ni content is less than 40%, the coefficient of thermal expansion becomes too small and the difference in coefficient of thermal expansion with the high melting point glass plate becomes large, and if it exceeds 50%, the coefficient of thermal expansion becomes too small. Since the difference in expansion coefficient becomes too large, Ni is limited to 40 to 50%.

また、Crは4%未満では、熱処理後に緻密な酸化1漠
が生成されず好ましくなく、また、8%を越えると、前
記の熟膨脹係数差が大きくなりすぎるため、Crは4〜
8%に限定する。
Further, if Cr is less than 4%, dense oxide particles will not be formed after heat treatment, which is undesirable, and if it exceeds 8%, the difference in the ripe expansion coefficient will become too large, so Cr should be 4 to 4%.
Limited to 8%.

Cは、絶縁膜との反応により生成される発泡防止のため
に、0.05%以下にする必要がある。
C needs to be kept at 0.05% or less in order to prevent foaming caused by reaction with the insulating film.

また、封着合金の溶製時の脱酸、表面酸化膜の生成、合
金基板と酸化被膜層との密着性改善のため、前記封着合
金にはMn0.1〜0.5%、5iO11〜0.5%、
AI 0.1〜0.5%のうち少なくとも1種の含有が
好ましく、また、必要に応じて、被膜密着性の改善のた
め、Ti、 Zr、 RE、 AIの少なくとも1種を
0.3%以下含有してもよい。
In addition, in order to deoxidize the sealing alloy during melting, generate a surface oxide film, and improve the adhesion between the alloy substrate and the oxide film layer, the sealing alloy contains 0.1 to 0.5% Mn, 5iO11 to 0.5%,
It is preferable to contain at least one of 0.1 to 0.5% of AI, and if necessary, 0.3% of at least one of Ti, Zr, RE, and AI to improve film adhesion. The following may be contained.

また、この発明において、Crを含有した封着合金基板
のFe−Cr系合金は、Crは15%未満では、熱膨張
係数が大きくなりすぎるため好ましくなく、30%を越
えると合金基板の加工性が劣化するため、Crは15〜
30%に限定する。
In addition, in the present invention, the Fe-Cr alloy for the sealing alloy substrate containing Cr is undesirable if the Cr content is less than 15% because the coefficient of thermal expansion becomes too large, and if it exceeds 30%, the processability of the alloy substrate becomes difficult. Cr deteriorates, so Cr is 15~
Limited to 30%.

Cは、絶縁膜との反応により生成される発泡防止のため
に、0.05%以下にする必要がある。
C needs to be kept at 0.05% or less in order to prevent foaming caused by reaction with the insulating film.

また、封着合金の溶製時の脱酸効果、表面酸化膜の生成
、合金基板と酸化被膜層との密着性改善のため、Mn 
0.1〜0.5%、Si O,1〜0.5%、 AIo
、1〜0.5%のうち少なくとも1種の含有が好ましく
、また、必要に応じて、被膜密着性の改善のため、Ti
、 Zr、 RE、 AIの少なくとも1種を0.6%
以下含有してもよい。
In addition, Mn
0.1-0.5%, SiO, 1-0.5%, AIo
, 1 to 0.5%, and if necessary, to improve film adhesion, Ti
, Zr, RE, and AI at 0.6%
The following may be contained.

この発明において、高融点ガラスは、板厚0.4mm〜
1.0mmのソーダガラス、ホウ珪酸ガラスなどの高融
点ガラスが好ましく、溶融温度は、フリット層の溶融温
度より50℃以上高く、かつ550℃以上のものが好ま
しい。また、熱膨張係数は、前記合金基板の熱膨張係数
(90〜110 X 10−7/’C)より小さく、か
つ70 X 10−77’Cより大きいものが好ましい
In this invention, the high melting point glass has a plate thickness of 0.4 mm to
High melting point glass such as 1.0 mm soda glass or borosilicate glass is preferable, and the melting temperature is preferably 50° C. or more higher than the melting temperature of the frit layer and 550° C. or more. Further, the thermal expansion coefficient is preferably smaller than the thermal expansion coefficient of the alloy substrate (90 to 110 x 10-7/'C) and larger than 70 x 10-77'C.

また、フリット層としては、粒度100mesh〜30
0meshのPbO−B2O3系、PbO−B2O3−
8i02系、等のガラス粉末が好ましく、溶融温度は、
500℃以下のものが好ましく、熱膨張係数は、前記合
金基板の熱膨張係数(90〜110 X 10−7/’
C)より小さく、かつ70 X 10−7/℃より大き
いものが好ましい。
In addition, the frit layer has a particle size of 100mesh to 30mesh.
0mesh PbO-B2O3 system, PbO-B2O3-
Glass powder such as 8i02 series is preferable, and the melting temperature is
The temperature is preferably 500°C or lower, and the thermal expansion coefficient is the thermal expansion coefficient of the alloy substrate (90 to 110 x 10-7/'
C) and preferably larger than 70 x 10-7/°C.

前記フリット層を封着合金基板に設ける際、スクリーン
印刷によるフリット膜厚みは最大0.15mmであり、
厚く絶縁層を設けるには、高融点ガラス層にて形成し、
薄く形成するには7リツト層にて形成するのが好ましい
When providing the frit layer on the sealing alloy substrate, the maximum thickness of the frit film by screen printing is 0.15 mm,
To provide a thick insulating layer, form it with a high melting point glass layer,
In order to form it thinly, it is preferable to form it with 7 lit layers.

この発明による積層基板において、封着合金基板(A)
と前記基板の一生面に被着した高融点ガラス層(B)と
の層厚比は、人出=1010.5〜5が好ましく、層厚
比が1010.5を超えると、絶縁耐圧が小さくなり、
静電容量が大きくなり好ましくなく、また、層厚比が1
015未満では、熱膨張差による熱応力により、そりや
ガラスクラックの発生、また熱伝導低下等の問題を生じ
る。
In the laminated substrate according to the present invention, a sealing alloy substrate (A)
The layer thickness ratio between and the high melting point glass layer (B) adhered to the entire surface of the substrate is preferably 1010.5 to 5, and when the layer thickness ratio exceeds 1010.5, the dielectric breakdown voltage is low. Become,
The capacitance increases, which is undesirable, and the layer thickness ratio is 1.
If it is less than 0.015, thermal stress caused by the difference in thermal expansion causes problems such as warping, glass cracking, and a decrease in thermal conductivity.

また、封着合金基板の両生面に高融点ガラス層を設ける
場合の層厚比は、 B/AfB = 0.5〜5/1010.5〜5が好ま
しい。
Further, when a high melting point glass layer is provided on both surfaces of the sealing alloy substrate, the layer thickness ratio is preferably B/AfB = 0.5-5/1010.5-5.

また、封着合金基板の一生面に高融点ガラス層、他主面
にフリット層(C)を設ける場合の層厚比は、B/A/
C= 0.5〜5/1010.5〜5が好ましい。A/
Cの層厚比が1010.5を越えると、絶縁耐圧が小さ
くなり、静電界′俄が大きくなり好ましくなく、また、
層厚比が1015未満では、熱膨張差による熱応力によ
り、そりやガラスクラックの発生等及び熱伝導の低下等
の問題を生じるため好ましくない。
In addition, when a high melting point glass layer is provided on one main surface of the sealing alloy substrate and a frit layer (C) is provided on the other main surface, the layer thickness ratio is B/A/
C=0.5-5/1010.5-5 is preferred. A/
If the layer thickness ratio of C exceeds 1010.5, the dielectric strength will decrease and the electrostatic field will increase, which is undesirable.
If the layer thickness ratio is less than 1015, it is not preferable because problems such as warpage, glass cracks, etc., and a decrease in thermal conductivity occur due to thermal stress due to the difference in thermal expansion.

実施例 実施例I CO,01wt%、Si 0.2wt%、Mn 0.2
wt%、Cr 6.0wt%、Ni 42.5wt%、
AI、0.25 wt%、Zr O,05wt%、残部
Feからなり、熟膨脹係数95 X 10−7℃を有し
輻100mmX板厚1.0mmX長さ300mm寸法か
らなる封着合金基板の両生面を、アルカリ脱脂により清
浄化した後、前記合金基板を平坦なアルミナ系セラミッ
ク板にて挟み、10 g/cm2の加圧力にて、露点4
0℃の湿潤H2中で1200℃に加熱し、前記合金基板
表面に、3pm厚みのCr2O3を主とする優先酸化被
膜層を形成した。
Examples Example I CO, 01 wt%, Si 0.2 wt%, Mn 0.2
wt%, Cr 6.0wt%, Ni 42.5wt%,
A sealing alloy substrate consisting of 0.25 wt% AI, 05 wt% ZrO, and the balance Fe, has a mature expansion coefficient of 95 x 10-7°C, and has dimensions of 100 mm in diameter, 1.0 mm in thickness, and 300 mm in length. After cleaning the surface by alkaline degreasing, the alloy substrate was sandwiched between flat alumina ceramic plates and heated to a dew point of 4 with a pressure of 10 g/cm2.
It was heated to 1200° C. in moist H2 at 0° C. to form a preferential oxide film layer mainly composed of Cr2O3 with a thickness of 3 pm on the surface of the alloy substrate.

前記合金基板の一生面の優先酸化被膜層」二に、溶融温
度760℃、熱膨張係数8? X 10−7/’Cの性
質を有し、幅95mmX板厚0.7mmX長さ280m
m寸法からなるソーダ系ガラスを載せ、30 g/cm
2の加圧力、900℃の加熱温度にて、加熱、加圧して
接着した。
Second, the melting temperature is 760°C and the coefficient of thermal expansion is 8? X 10-7/'C properties, width 95mm x plate thickness 0.7mm x length 280m
Place soda-based glass of m size, 30 g/cm
Bonding was carried out by heating and pressing at a pressure of 2 and a heating temperature of 900°C.

この積層時の合金基4反と高融点ガラス層との層厚比は
、1010.6であった。
The layer thickness ratio between the four alloy base layers and the high melting point glass layer during this lamination was 1010.6.

得られたこの発明による積層基板について、その耐熱性
、熱膨張率、熱伝導度及び強度を評価した。その結果は
第1表に示すとおりである。
The heat resistance, coefficient of thermal expansion, thermal conductivity, and strength of the obtained laminated substrate according to the present invention were evaluated. The results are shown in Table 1.

耐熱性、熱膨張率、り(5伝導度及び強度の評価方法は
以下のとうりである。
The evaluation methods for heat resistance, thermal expansion coefficient, conductivity and strength are as follows.

耐熱性;30℃×30分、500℃×30分、30°C
×30分のヒートパターンを3回繰り返し、 全体形状の変化及びガラス、フリット にクラック、欠は等の欠陥発生の有 無を確認する。
Heat resistance: 30°C x 30 minutes, 500°C x 30 minutes, 30°C
Repeat the heat pattern for 30 minutes three times to check for changes in the overall shape and for defects such as cracks and chips in the glass and frit.

熱膨張率;30°Cから500℃までの伸びを測定した
Coefficient of thermal expansion; elongation from 30°C to 500°C was measured.

熱伝導度:30℃における値を測定した。11を位はc
al/cm−s−degで表示する。
Thermal conductivity: Measured at 30°C. The 11th place is c
Displayed in al/cm-s-deg.

強度; 板厚みの100倍の半径を有する円弧面に71
¥って曲げが可能か否かにて評価した。表中の○印は割
れ発生せず、△印 は微小割れ発生、X印は完全に割れ る、を表している。
Strength: 71 on a circular arc surface with a radius 100 times the plate thickness
The evaluation was based on whether or not bending was possible. In the table, the ○ mark indicates that no cracking occurred, the △ mark indicates that minute cracks occurred, and the X mark indicates that cracking occurred completely.

なお、第1表の比較例の銅張りガラスエポキシ基板、ア
ルミナ系基板及びほうろう引き鉄基板の試料寸法は、幅
100mm X tFi、厚1mmX長さ300mmで
あった。
Note that the sample dimensions of the copper-clad glass epoxy substrate, alumina-based substrate, and enameled iron substrate of the comparative examples shown in Table 1 were 100 mm wide x tFi, 1 mm thick x 300 mm long.

実施例2 CO,01wt%、Si O,2wt%、Mn 0.2
wt%、Cr 6.0wt%、Ni 42.5wt%、
Al 0.25 wt%、Zr O,05wt%、残部
Feからなり、熱膨張係数95 X 10−7/”Cを
有し、幅100mmX板厚1.0mmX長さ300mm
寸法からなる封着合金基板の両生面を、アルカリ脱脂に
より清浄化した後、前記合金基板を平jIiなアルミナ
系セラミック板にて挟み、10 g/cm2の加圧力に
て、露点40°Cの湿潤H2中で1150°Cに加熱し
、前記合金基板表面に、31.1m厚みのCr2O3を
主とする優先酸化被膜層を形成した。
Example 2 CO, 01wt%, SiO, 2wt%, Mn 0.2
wt%, Cr 6.0wt%, Ni 42.5wt%,
Consists of 0.25 wt% Al, 05 wt% ZrO, balance Fe, has a thermal expansion coefficient of 95 x 10-7/''C, width 100 mm x plate thickness 1.0 mm x length 300 mm
After cleaning both sides of the sealing alloy substrate by alkaline degreasing, the alloy substrate was sandwiched between flat alumina ceramic plates and heated to a dew point of 40°C under a pressure of 10 g/cm2. It was heated to 1150° C. in wet H2 to form a 31.1 m thick preferential oxide film layer mainly composed of Cr2O3 on the surface of the alloy substrate.

前記合金基板の両面の優先酸化被膜層上に、溶融温度7
60℃、熟膨脹係数87 X 10−7/’Cの性質を
有し、幅95mmX板厚0.55mmX長さ280mm
寸法からなるソーダガラスを載せ、25 g/cm2の
加圧力、880℃の加熱温度にて、加熱、加圧して接着
し、封着合金基板の両生面に高融点ガラス層を設けた積
層基板を得た。
A melting temperature of 7 is applied on the preferential oxide film layer on both sides of the alloy substrate.
60℃, mature expansion coefficient 87 x 10-7/'C, width 95mm x plate thickness 0.55mm x length 280mm
A laminated substrate with a high melting point glass layer on both sides of the sealing alloy substrate was created by placing soda glass of the following dimensions on the substrate and bonding it by heating and pressing at a pressure of 25 g/cm2 and a heating temperature of 880°C. Obtained.

この積層時の合金基板と高融点ガラス層の層厚比は、0
.5/ 1010.5であった。
The layer thickness ratio between the alloy substrate and the high melting point glass layer during this lamination is 0.
.. It was 5/1010.5.

14トられたこの発明による積層基板について、その耐
熱性、熱膨張率、熱伝導度及び強度を評価した。その結
果は第1表に示すとおりである。
The heat resistance, coefficient of thermal expansion, thermal conductivity, and strength of the laminated substrate according to the present invention were evaluated. The results are shown in Table 1.

実靭例3 CO,01wt%、Si O,2wt%、Mn O,2
wt%、Cr 18.0wt%、  Ti 0.5wt
%、  AI 0.25 wt%、Zr O,05wt
%、残部Feからなり、熟膨脹係数105 X 10−
7/”Cを有し、幅100mmX板厚1mmX長さ30
0mm寸法からなる封着合金基板の一生面を、アルカ1
月11L脂により清浄化した後、前記合金基板を平坦な
アルミナ系セラミック板にて挟み、20g/cm2の加
圧力にて、露点40℃の湿潤H2中で1200°Cに加
熱し、])11記重合基板表面に、3μm厚みのCr2
O3を主とする憂先酸化彼膜層を形成した。
Actual toughness example 3 CO, 01 wt%, Si O, 2 wt%, Mn O, 2
wt%, Cr 18.0wt%, Ti 0.5wt
%, AI 0.25 wt%, Zr O, 05 wt
%, balance Fe, mature expansion coefficient 105 x 10-
7/”C, width 100mm x plate thickness 1mm x length 30
The entire surface of a sealing alloy substrate with a size of 0 mm was coated with Alka 1
After cleaning with 11L fat, the alloy substrate was sandwiched between flat alumina ceramic plates and heated to 1200°C in humid H2 with a dew point of 40°C under a pressure of 20g/cm2.])11 3 μm thick Cr2 on the surface of the polymerized substrate.
A pre-oxidized membrane layer consisting mainly of O3 was formed.

この合金基板の一生面の優先酸化被膜層上に、溶融温度
760℃、熟膨脹係数87×10−7/°Cの性質を有
し、幅95mmX板厚0.7mmX長さ280 mm寸
法からなるソーダガラスを載せ、30 g/cm2の加
圧力、900℃の加熱温度にて、加熱、加圧して接着し
た。
This alloy substrate has a preferential oxide film layer on its entire surface, has a melting temperature of 760°C, a mature expansion coefficient of 87 x 10-7/°C, and has dimensions of 95 mm width x 0.7 mm thickness x 280 mm length. Soda glass was placed on it, and it was bonded by heating and pressing at a pressure of 30 g/cm2 and a heating temperature of 900°C.

さらに合金基板の他主面のイ憂先酸化被膜層上に、スク
リーン印刷により、溶融温度760°C,熟膨脹係数8
7X10−7/″Cの性質を有する粒度300mesh
のPbO系ガラス粉末を、幅95mmX長さ280mm
寸法に被着させ、乾燥、脱バインダーした後、前記フリ
ットの軟化点以上に加熱、溶融させることにより、封着
合金基板上に優先酸化被膜を介してフリット層を被着し
、封着合金基板の一生面に高融点ガラス層を、他主面に
はフリット層を設けた積層基板を得た。
Furthermore, on the other main surface of the alloy substrate, the first oxide film layer was printed with a melting temperature of 760°C and a mature expansion coefficient of 8.
Particle size 300mesh with properties of 7X10-7/″C
PbO-based glass powder with a width of 95 mm and a length of 280 mm.
After adhering to the dimensions, drying, and removing the binder, the frit is heated to a temperature higher than the softening point of the frit and melted, thereby adhering the frit layer to the sealing alloy substrate via a preferential oxide film, thereby forming a sealing alloy substrate. A laminated substrate was obtained in which a high melting point glass layer was provided on one main surface and a frit layer was provided on the other main surface.

この積層時の高融点ガラス層と合金基板とフリット層の
層厚比は、0.6/ 1010.10であった。
The layer thickness ratio of the high melting point glass layer, alloy substrate, and frit layer during this lamination was 0.6/1010.10.

得られたこの発明による積層基板について、その耐熱性
、熱膨張率、熱伝導度及び強度を9・ト価した。その結
果は第1表に示すとおりである。
The heat resistance, coefficient of thermal expansion, thermal conductivity and strength of the obtained laminated substrate according to the present invention were rated 9. The results are shown in Table 1.

第1表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、b、cは、この発明による積層基板の断面説
明図である。 1・・・封着合金基板、2・・・優先酸化被膜層、3・
・・高融点ガラス層、4・・・フリット層。 第1図 (a) (b) (C)
FIGS. 1A, 1B, and 1C are cross-sectional explanatory views of a laminated substrate according to the present invention. DESCRIPTION OF SYMBOLS 1...Sealing alloy substrate, 2...Priority oxide film layer, 3...
...High melting point glass layer, 4...Frit layer. Figure 1 (a) (b) (C)

Claims (1)

【特許請求の範囲】 1 Cr含有の封着合金板の少なくとも1主面に、Cr_2
O_3を主とする優先酸化被膜を介在させて、高融点ガ
ラス層を被覆したことを特徴とする電子部品用積層基板
。 2 Cr含有の封着合金板の両主面に、Cr_2O_3を主
とする優先酸化被膜を介在させて、一主面に高融点ガラ
ス層を被覆し、他主面にフリット層を被覆したことを特
徴とする電子部品用積層基板。
[Claims] 1. Cr_2 on at least one main surface of the Cr-containing sealing alloy plate.
A multilayer substrate for electronic components, characterized in that it is coated with a high melting point glass layer with a preferential oxide film mainly composed of O_3. 2 A preferential oxide film mainly composed of Cr_2O_3 is interposed on both main surfaces of a Cr-containing sealing alloy plate, and one main surface is coated with a high melting point glass layer and the other main surface is coated with a frit layer. Characteristic multilayer substrate for electronic components.
JP19192886A 1986-08-15 1986-08-15 Laminated substrate for electronic component Pending JPS6347955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19192886A JPS6347955A (en) 1986-08-15 1986-08-15 Laminated substrate for electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19192886A JPS6347955A (en) 1986-08-15 1986-08-15 Laminated substrate for electronic component

Publications (1)

Publication Number Publication Date
JPS6347955A true JPS6347955A (en) 1988-02-29

Family

ID=16282774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19192886A Pending JPS6347955A (en) 1986-08-15 1986-08-15 Laminated substrate for electronic component

Country Status (1)

Country Link
JP (1) JPS6347955A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332376A (en) * 1976-09-07 1978-03-27 Tokyo Shibaura Electric Co Electric device substrate
JPS5344871A (en) * 1976-10-04 1978-04-22 Tokyo Shibaura Electric Co Electric device substrate
JPS53116473A (en) * 1977-03-23 1978-10-11 Tokyo Shibaura Electric Co Electric device board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332376A (en) * 1976-09-07 1978-03-27 Tokyo Shibaura Electric Co Electric device substrate
JPS5344871A (en) * 1976-10-04 1978-04-22 Tokyo Shibaura Electric Co Electric device substrate
JPS53116473A (en) * 1977-03-23 1978-10-11 Tokyo Shibaura Electric Co Electric device board

Similar Documents

Publication Publication Date Title
US5011732A (en) Glass ceramic substrate having electrically conductive film
US10834823B2 (en) Producing metal/ceramic circuit board by removing residual silver
JPS59141289A (en) Method of producing coated board for electronic device
JPS6347955A (en) Laminated substrate for electronic component
JP2024517391A (en) Thermal printhead substrate with composite lead-free protective layer and method of manufacture thereof
US6013357A (en) Power module circuit board and a process for the manufacture thereof
RU2384027C2 (en) Method of chip fabrication
US4842959A (en) Aluminum enamel board
JP2000272977A (en) Ceramics circuit substrate
JPS6149829B2 (en)
JPWO2019131000A1 (en) Copper foil with carrier
JPS6347956A (en) Laminated substrate for electronic component
JPS6347957A (en) Laminated substrate for electronic component
JPS62216979A (en) Aluminum nitride sintered body with glass layer and manufacture
JPH0297686A (en) Production of enameled substrate
JPH0297687A (en) Production of enameled substrate
JPH0812825B2 (en) Thin plate material for laminated magnetic core and manufacturing method thereof
JPS5951904B2 (en) Metal substrate with inorganic electrical insulation layer
JPS6149833B2 (en)
JP2001244586A (en) Ceramic circuit board
JPS63192290A (en) Printed circuit substrate
JPH01142089A (en) Metal-cored substrate and production thereof
JPH0436478B2 (en)
JP2005276893A (en) Method for manufacturing ceramics multilayer wiring board
JPS6072185A (en) Panel heater