JP2000272977A - Ceramics circuit substrate - Google Patents

Ceramics circuit substrate

Info

Publication number
JP2000272977A
JP2000272977A JP8299899A JP8299899A JP2000272977A JP 2000272977 A JP2000272977 A JP 2000272977A JP 8299899 A JP8299899 A JP 8299899A JP 8299899 A JP8299899 A JP 8299899A JP 2000272977 A JP2000272977 A JP 2000272977A
Authority
JP
Japan
Prior art keywords
circuit board
oxide layer
ceramic
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8299899A
Other languages
Japanese (ja)
Other versions
JP4467659B2 (en
Inventor
Takayuki Naba
隆之 那波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP08299899A priority Critical patent/JP4467659B2/en
Publication of JP2000272977A publication Critical patent/JP2000272977A/en
Application granted granted Critical
Publication of JP4467659B2 publication Critical patent/JP4467659B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the joining strength, heat-resistant cycle characteristics and bending strength by integrally joining metal circuit boards through a brazing filler metal layer containing one or more kinds of activated metals of Ti, Zr, Hf and Nb to the surface of a nitride ceramics substrate forming an oxide layer on the surface thereof. SOLUTION: When a nitride ceramics substrate comprises a silicon nitride sintered compact, an oxide layer preferably comprises silicon oxide. When the substrate comprises an aluminum nitride sintered compact, the oxide layer preferably comprises aluminum oxide. A thickness of 0.5-10 μm is required for the oxide layer; however, the thickness is more preferably 1-3 μm. The oxide layer is formed by heating the substrate at about 1,000-1,400 deg.C for 2-15 h in air, etc. Cu, Ni, Al or its alloy is preferred as a metal constituting metal circuit boards from the viewpoint of especially electroconductivity and cost.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はセラミックス回路基
板に係り、特に金属板路板の接合強度が高く、セラミッ
クス基板の割れの発生が少なく、優れた耐熱サイクル特
性を有するセラミックス回路基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic circuit board, and more particularly, to a ceramic circuit board having a high joining strength of a metal plate, a low cracking of the ceramic substrate, and excellent heat cycle characteristics.

【0002】[0002]

【従来の技術】近年、パワートランジスタモジュール用
基板やスイッチング電源モジュール用基板等の回路基板
として、セラミックス基板上に銅板等の金属板を接合し
たセラミックス回路基板が広く使用されている。また、
上記セラミックス基板としては、電気絶縁性を有すると
共に、熱伝導性に優れた窒化アルミニウム基板や窒化け
い素基板等が一般的に使用されている。
2. Description of the Related Art In recent years, a ceramic circuit board in which a metal plate such as a copper plate is joined to a ceramic substrate has been widely used as a circuit substrate such as a substrate for a power transistor module or a substrate for a switching power supply module. Also,
As the ceramic substrate, an aluminum nitride substrate, a silicon nitride substrate, and the like, which have electrical insulation and excellent thermal conductivity, are generally used.

【0003】上述したような銅板で回路を構成したセラ
ミックス回路基板11は、例えば図4〜図6に示すよう
にセラミックス基板12の一方の表面に金属回路板13
としての銅板を接合する一方、他方の表面に裏金属板1
4としての銅板を接合して形成される。上記セラミック
ス基板12表面に各種金属板や回路層を一体に形成する
手法としては、下記のような直接接合法,高融点金属メ
タライズ法,活性金属法などが使用されている。直接接
合法は、例えばセラミックス基板12上に銅板を、Cu
−O等の共晶液相を利用して直接接合する、いわゆる銅
直接接合法(DBC法:Direct Bonding
Copper法)であり、高融点金属メタライズ法は
MoやWなどの高融点金属をセラミックス基板表面に焼
き付けて回路層を一体に形成する方法である。また、活
性金属法は、4A族元素や5A族元素のような活性金属
を含むろう材層を介してセラミックス基板12上に金属
板を一体に接合する方法である。
A ceramic circuit board 11 having a circuit formed of a copper plate as described above has a metal circuit board 13 on one surface of a ceramic substrate 12 as shown in FIGS.
While joining the copper plate as the back metal plate 1 on the other surface
4 is formed by joining copper plates. As a method of integrally forming various metal plates and circuit layers on the surface of the ceramic substrate 12, a direct bonding method, a refractory metal metallizing method, an active metal method, and the like as described below are used. In the direct bonding method, for example, a copper plate is
Direct bonding using a eutectic liquid phase such as -O, so-called copper direct bonding method (DBC method: Direct Bonding)
The refractory metal metallization method is a method in which a refractory metal such as Mo or W is baked on the surface of the ceramic substrate to form a circuit layer integrally. The active metal method is a method of integrally joining a metal plate on the ceramic substrate 12 via a brazing material layer containing an active metal such as a 4A group element or a 5A group element.

【0004】また、具体的な回路の形成方法としては、
予めプレス加工やエッチング加工によりパターニングし
た銅板を用いたり、接合後にエッチング等の手法により
パターニングする等の方法が知られている。これらDB
C法や活性金属ろう付け法により得られるセラミックス
回路基板は、いずれも単純構造で熱抵抗が小さく、大電
流型や高集積型の半導体チップに対応できる等の利点を
有している。
Further, as a specific method of forming a circuit,
There are known methods of using a copper plate that has been patterned by press working or etching in advance, and performing patterning by a technique such as etching after bonding. These DB
Each of the ceramic circuit boards obtained by the C method or the active metal brazing method has advantages such as a simple structure, low thermal resistance, and compatibility with a large current type or highly integrated semiconductor chip.

【0005】近年、セラミックス回路基板を使用した半
導体装置の高出力化,半導体素子の高集積化が急速に進
行し、セラミックス回路基板に繰り返して作用する熱応
力や熱負荷も増加する傾向にあり、セラミックス回路基
板に対しても上記熱応力や熱サイクルに対して十分な接
合強度と耐久性や放熱性とが要求されている。
In recent years, the output of semiconductor devices using ceramic circuit boards and the integration of semiconductor elements have been rapidly increasing, and the thermal stress and thermal load repeatedly acting on the ceramic circuit boards have tended to increase. Ceramic circuit boards are also required to have sufficient bonding strength, durability, and heat dissipation for the thermal stress and thermal cycle.

【0006】上記技術的要求に対応するため、最近では
各種電子機器の構成部品として、70W/m・Kクラス
の高熱伝導率を有する窒化けい素(Si)基板や
100〜170W/m・Kクラスの高熱伝導率を有する
窒化アルミニウム(AlN)基板に銅などの金属板路板
を一体に接合したセラミックス回路基板が広く使用され
始めている。
In order to meet the above technical requirements, recently, as a component of various electronic devices, a silicon nitride (Si 3 N 4 ) substrate having a high thermal conductivity of 70 W / m · K class or a 100 to 170 W / m. A ceramic circuit board in which a metal plate such as copper is integrally joined to an aluminum nitride (AlN) substrate having a K-class high thermal conductivity has begun to be widely used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
セラミックス回路基板においては、セラミックス基板の
種類や金属板の接合方法を改良することにより、ある程
度の接合強度は得られていたが、耐熱サイクル性および
抗折強度が十分に得られず、セラミックス回路基板を用
いた半導体装置の信頼性や製品歩留りが低くなるという
問題点があった。
However, in the conventional ceramic circuit board, a certain degree of bonding strength has been obtained by improving the type of the ceramic substrate and the bonding method of the metal plate. There was a problem that sufficient bending strength was not obtained, and the reliability and product yield of a semiconductor device using a ceramic circuit board were reduced.

【0008】すなわち、セラミックス回路基板に搭載す
る半導体素子の高集積化および高出力化に対応して熱サ
イクル負荷も大幅に上昇し、熱応力によって基板に割れ
が発生して回路基板の機能が喪失されてしまう問題点が
あった。また、上記窒化けい素基板を使用した車載用半
導体モジュールなどにおいて、より過酷な熱負荷が作用
した場合には、回路基板の接合強度および抗折強度(曲
げ強度)が低下し、電子機器としての動作信頼性が低下
する問題点があった。
That is, the thermal cycle load is greatly increased in accordance with the high integration and high output of the semiconductor element mounted on the ceramic circuit board, and the board is cracked by thermal stress, and the function of the circuit board is lost. There was a problem that was done. Also, in a semiconductor module for a vehicle using the above-mentioned silicon nitride substrate, when a more severe heat load is applied, the bonding strength and the bending strength (bending strength) of the circuit board are reduced, and as a result, the electronic equipment may be used. There was a problem that operation reliability was reduced.

【0009】一方、窒化アルミニウム(AlN)基板を
使用した回路基板においては、AlN材料自体が窒化け
い素などと比較して曲げ強度および破壊靭性値が大幅に
劣っているため、回路基板に大きな熱負荷が作用した場
合、接合強度が低下するとともに銅回路板が剥離して放
熱性が急減し、電子機器の動作信頼性が低下する問題点
もあった。
On the other hand, in a circuit board using an aluminum nitride (AlN) substrate, since the AlN material itself has much lower flexural strength and fracture toughness than silicon nitride or the like, a large heat is applied to the circuit board. When a load acts, there is also a problem that the bonding strength is reduced, the copper circuit board is peeled off, the heat dissipation is rapidly reduced, and the operation reliability of the electronic device is reduced.

【0010】本発明は上記問題点を解決するためになさ
れたものであり、高い接合強度および優れた耐熱サイク
ル特性に加えて、高い曲げ強度(抗折強度)を有し、大
きな熱負荷が作用した場合においても割れや破壊を招く
ことなく、耐久性が優れたセラミックス回路基板を提供
することを目的とする。
The present invention has been made to solve the above problems, and has high bending strength (flexural strength) in addition to high bonding strength and excellent heat resistance cycle characteristics, so that a large heat load acts. It is an object of the present invention to provide a ceramic circuit board having excellent durability without causing cracking or destruction even in the case where it is performed.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本願発明者らは、特にセラミックス回路基板の接合
強度を高め、使用時に発生する割れを防止するための構
造を種々検討した。その結果、特にセラミックス基板の
表面に酸化物層を形成しておき、その表面に活性金属を
含有するろう材層を介して金属回路板を一体に接合した
ときに、金属回路板の剥離が少なく接合強度が高く、ま
たセラミックス回路基板全体の曲げ強度を大きくするこ
とができ、割れの発生が少ないセラミックス回路基板が
得られるという知見を得た。
Means for Solving the Problems To achieve the above object, the present inventors have studied various structures especially for increasing the bonding strength of a ceramic circuit board and for preventing cracks occurring during use. As a result, especially when an oxide layer is formed on the surface of the ceramic substrate and the metal circuit board is integrally joined to the surface via a brazing material layer containing an active metal, peeling of the metal circuit board is small. It has been found that the bonding strength is high, the bending strength of the entire ceramic circuit board can be increased, and a ceramic circuit board with few cracks can be obtained.

【0012】本発明は上記知見に基づいて完成されたも
のである。すなわち、本発明に係るセラミックス回路基
板は、表面に酸化物層を形成した窒化物セラミックス基
板表面に、Ti,Zr,HfおよびNbから選択される
少なくとも1種の活性金属を含有するろう材層を介して
金属回路板が一体に接合されていることを特徴とする。
The present invention has been completed based on the above findings. That is, in the ceramic circuit board according to the present invention, a brazing material layer containing at least one active metal selected from Ti, Zr, Hf and Nb is provided on the surface of the nitride ceramic substrate having an oxide layer formed on the surface. The metal circuit board is integrally joined through the interposition.

【0013】また、窒化物セラミックス基板が窒化けい
素(Si)焼結体から成り、上記酸化物層が酸化
けい素(SiO)および/または酸窒化けい素(Si
ON)から成ることを特徴とする。さらに、窒化物セラ
ミックス基板が窒化アルミニウム(AlN)焼結体から
成り、上記酸化物層を酸化アルミニウム(Al
および/または酸窒化アルミニウム(AlON)から構
成してもよい。
Further, the nitride ceramic substrate is made of a silicon nitride (Si 3 N 4 ) sintered body, and the oxide layer is made of silicon oxide (SiO 2 ) and / or silicon oxynitride (Si
ON). Further, the nitride ceramic substrate is made of an aluminum nitride (AlN) sintered body, and the oxide layer is made of aluminum oxide (Al 2 O 3 ).
And / or aluminum oxynitride (AlON).

【0014】また、酸化物層の厚さは、0.5〜10μ
m,より好ましくは1〜3μmの範囲であることが望ま
しい。さらに、金属回路板は、銅回路板,またはニッケ
ル回路板であることが好ましい。
The thickness of the oxide layer is 0.5 to 10 μm.
m, more preferably in the range of 1 to 3 μm. Further, the metal circuit board is preferably a copper circuit board or a nickel circuit board.

【0015】本発明に係るセラミックス回路基板に使用
されるセラミックス基板としては、窒化アルミニウム
(AlN),窒化けい素(Si),窒化チタン
(TiN)等の窒化物焼結体から成る窒化物系セラミッ
クス基板が使用される。これらのセラミックス基板には
酸化イットリウムなどの焼結助剤等が含有されていても
よい。
The ceramic substrate used for the ceramic circuit board according to the present invention is preferably a nitride substrate made of a nitride sintered body such as aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), titanium nitride (TiN) or the like. Material-based ceramic substrate is used. These ceramic substrates may contain a sintering aid such as yttrium oxide.

【0016】また上記金属回路板を構成する金属として
は、銅,ニッケル,アルミニウム,鉄,クロム,銀,モ
リブデン,コバルトの単体またはその合金,コバール合
金など、活性金属法を適用できる金属であれば特に限定
されないが、特に導電性および価格の観点から銅,ニッ
ケル,アルミニウムまたはその合金が好ましい。
The metal constituting the metal circuit board may be any metal to which the active metal method can be applied, such as a simple substance of copper, nickel, aluminum, iron, chromium, silver, molybdenum, cobalt or an alloy thereof, or a Kovar alloy. Although not particularly limited, copper, nickel, aluminum or an alloy thereof is particularly preferable from the viewpoints of conductivity and cost.

【0017】金属回路板の厚さは、通電容量等を勘案し
て決定されるが、セラミックス基板の厚さを0.25〜
1.2mmの範囲とする一方、金属回路板の厚さを0.
1〜0.5mmの範囲に設定して両者を組み合せると熱
膨張差による変形などの影響を受けにくくなる。
The thickness of the metal circuit board is determined in consideration of the current carrying capacity and the like.
The thickness of the metal circuit board is set to 0.1 mm while the thickness is set to 1.2 mm.
If they are set in the range of 1 to 0.5 mm and they are combined, they are less likely to be affected by deformation due to the difference in thermal expansion.

【0018】上記のような金属回路板を、ろう材層を介
してセラミックス基板表面に接合する場合、窒化アルミ
ニウムや窒化けい素などの窒化物系セラミックス基板に
そのままろう材を塗布してもろう材の基板に対する濡れ
性や反応性が低いため、金属回路板の充分な接合強度が
得られない。
When the above metal circuit board is joined to the surface of the ceramic substrate via the brazing material layer, the brazing material can be applied to a nitride-based ceramic substrate such as aluminum nitride or silicon nitride as it is. Is low in wettability and reactivity with respect to the substrate, so that sufficient bonding strength of the metal circuit board cannot be obtained.

【0019】そこで本発明に係るセラミックス回路基板
においては、窒化物系セラミックス基板の表面に予め酸
化物層を形成し、基板に対する濡れ性および反応性を高
めている。この酸化物層は上記窒化物系セラミックス基
板を、空気中などの酸化雰囲気中で温度1000〜14
00℃程度で2〜15時間加熱して形成される。
Therefore, in the ceramic circuit board according to the present invention, an oxide layer is previously formed on the surface of the nitride-based ceramic substrate to enhance wettability and reactivity with the substrate. This oxide layer is formed by subjecting the nitride-based ceramic substrate to a temperature of 1000 to 14 in an oxidizing atmosphere such as air.
It is formed by heating at about 00 ° C. for 2 to 15 hours.

【0020】したがって、上記窒化物セラミックス基板
が窒化けい素(Si)焼結体から成る場合には、
酸化物層は窒化けい素(SiO:シリカ)から構成さ
れる。このシリカから成る酸化物層は、Si基板
本体と比較して曲げ強度は、かなり劣る反面、耐熱衝撃
性は優れている。そのため、シリカから成る酸化物層を
形成したSi基板自体の耐熱衝撃性が向上し、セ
ラミックス基板自体に熱応力によるクラック(割れ)が
生じにくくなる。また、ろう材中の活性金属成分は、窒
化物セラミックス基板自体のN成分よりも酸化物層の酸
素(O)成分と、より反応し易い性質があるため、金属
回路板の接合強度も、より増加させることができる。
Therefore, when the nitride ceramics substrate is made of a silicon nitride (Si 3 N 4 ) sintered body,
The oxide layer is composed of silicon nitride (SiO 2 : silica). The bending strength of the oxide layer made of silica is considerably inferior to that of the Si 3 N 4 substrate body, but the thermal shock resistance is excellent. Therefore, the thermal shock resistance of the Si 3 N 4 substrate itself on which the oxide layer made of silica is formed is improved, and the ceramic substrate itself is less likely to crack due to thermal stress. Further, the active metal component in the brazing material has a property of reacting more easily with the oxygen (O) component of the oxide layer than the N component of the nitride ceramic substrate itself, so that the bonding strength of the metal circuit board is also higher. Can be increased.

【0021】一方、上記窒化物セラミックス基板が窒化
アルミニウム(AlN)焼結体から成る場合には、酸化
物層は窒化アルミニウム(Al:アルミナ)から
構成される。このアルミナから成る酸化物層は、AlN
基板本体と比較して曲げ強度はやや劣る反面、ビッカー
ス硬度および破壊靭性値には優れている。またアルミナ
の線膨張係数は、AlN基板と金属回路板とのほぼ中間
に位置している。そのため、AlN基板表面が酸化され
てアルミナから成る酸化物層を形成すると、基板の硬度
および靭性値が向上し、セラミックス基板自体にクラッ
ク(割れ)が生じにくくなると同時に、金属回路板とA
lN基板との線膨張係数差に起因してAlN基板に発生
する熱応力が緩和される。その結果、金属回路板の接合
強度が増加し、熱負荷に対する耐クラック性(耐熱サイ
クル性)も大幅に向上させることができる。
On the other hand, when the nitride ceramics substrate is made of an aluminum nitride (AlN) sintered body, the oxide layer is made of aluminum nitride (Al 2 O 3 : alumina). The oxide layer made of alumina is made of AlN
Although the flexural strength is slightly inferior to that of the substrate body, it is excellent in Vickers hardness and fracture toughness. Further, the coefficient of linear expansion of alumina is located almost in the middle between the AlN substrate and the metal circuit board. Therefore, when the surface of the AlN substrate is oxidized to form an oxide layer made of alumina, the hardness and toughness of the substrate are improved, and cracks (cracks) are less likely to occur in the ceramic substrate itself.
The thermal stress generated in the AlN substrate due to the difference in linear expansion coefficient from the 1N substrate is reduced. As a result, the joining strength of the metal circuit board is increased, and the crack resistance to heat load (heat cycle resistance) can be significantly improved.

【0022】上記酸化物層の厚さが0.5μm未満の場
合には、上記濡れ性,耐熱衝撃性,機械的強度の改善効
果が少ない一方、10μmを超えるように厚く形成して
も改善効果が飽和するため、酸化物層の厚さは0.5〜
10μmの範囲が必要であり、より好ましくは1〜3μ
mの範囲が望ましい。
When the thickness of the oxide layer is less than 0.5 μm, the effect of improving the wettability, the thermal shock resistance and the mechanical strength is small, but the improvement effect is obtained even if the oxide layer is formed thicker than 10 μm. Is saturated, the thickness of the oxide layer is 0.5 to
A range of 10 μm is required, and more preferably 1-3 μm.
The range of m is desirable.

【0023】本発明に係るセラミックス回路基板におい
て、活性金属法によって金属回路板を接合する際に形成
される活性金属ろう材層は、Ti,Zr,HfおよびN
bから選択される少なくとも1種の活性金属を含有し適
切な組成比を有するAg−Cu系ろう材等で構成され、
このろう材組成物を有機溶媒中に分散して調製した接合
用組成物ペーストをセラミックス基板表面にスクリーン
印刷する等の方法で形成される。
In the ceramic circuit board according to the present invention, the active metal brazing material layer formed when joining the metal circuit boards by the active metal method includes Ti, Zr, Hf and N.
b containing at least one active metal selected from the group consisting of Ag-Cu brazing material having an appropriate composition ratio,
The joining composition paste prepared by dispersing the brazing material composition in an organic solvent is formed by a method such as screen printing on a ceramic substrate surface.

【0024】上記接合用組成物ペーストの具体例として
は、下記のようなものがある。すなわち重量%でCuを
15〜35%,Ti,Zr,HfおよびNbから選択さ
れる少なくとも1種の活性金属を1〜10%、残部が実
質的にAgから成る組成物を有機溶媒中に分散して調製
した接合用組成物ペーストを使用するとよい。
Specific examples of the bonding composition paste include the following. That is, a composition consisting of 15 to 35% by weight of Cu, 1 to 10% of at least one active metal selected from Ti, Zr, Hf and Nb and a balance substantially composed of Ag is dispersed in an organic solvent. It is good to use the bonding composition paste prepared in this way.

【0025】上記活性金属はセラミックス基板に対する
ろう材の濡れ性および反応性を改善し接合強度を高める
ための成分であり、特に窒化アルミニウム(AlN)基
板に対して有効である。上記の活性金属の配合量は、接
合用組成物全体に対して1〜10重量%が適量である。
The active metal is a component for improving the wettability and reactivity of the brazing material with respect to the ceramic substrate and increasing the bonding strength, and is particularly effective for an aluminum nitride (AlN) substrate. An appropriate amount of the active metal is 1 to 10% by weight based on the whole bonding composition.

【0026】上記構成に係るセラミックス回路基板によ
れば、窒化物セラミックス基板の表面に所定の酸化物層
を形成し、活性金属を含有するろう材層を介して金属回
路板をセラミックス基板表面に一体に接合しているた
め、酸化物層によってセラミックス基板の硬度,耐熱衝
撃性および靭性値が向上し、セラミックス基板自体にク
ラック(割れ)が生じにくくなると同時に、金属回路板
とセラミックス基板との熱膨張係数差に起因してセラミ
ックス基板に発生する応力が緩和される。その結果、金
属回路板の接合強度が増加し、熱負荷に対する耐クラッ
ク性(耐熱サイクル性)も大幅に向上させることができ
る。そして、このセラミックス回路基板を使用すること
により、割れの発生が少なく耐久性および動作信頼性に
優れた半導体装置を高い製造歩留りで量産することが可
能になる。
According to the ceramic circuit board having the above structure, a predetermined oxide layer is formed on the surface of the nitride ceramic substrate, and the metal circuit board is integrated with the ceramic substrate surface via the brazing material layer containing the active metal. The hardness, thermal shock resistance, and toughness of the ceramic substrate are improved by the oxide layer, and the ceramic substrate itself is less likely to crack, and at the same time, the thermal expansion of the metal circuit board and the ceramic substrate The stress generated in the ceramic substrate due to the coefficient difference is reduced. As a result, the joining strength of the metal circuit board is increased, and the crack resistance to heat load (heat cycle resistance) can be significantly improved. By using this ceramic circuit board, it becomes possible to mass-produce semiconductor devices with less cracks and excellent durability and operation reliability with a high production yield.

【0027】[0027]

【発明の実施の形態】次に本発明の実施形態について添
付図面を参照して以下の実施例に基づいて、より具体的
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described more specifically with reference to the accompanying drawings based on the following examples.

【0028】窒化物セラミックス基板として、図1〜図
2に示す寸法を有し、熱伝導率が70W/m・Kであ
り、厚さが0.635mmである窒化けい素(Si
)基板素材と、熱伝導率が170W/m・Kであり、
厚さが0.635mmである窒化アルミニウム(Al
N)基板素材とを同一焼成ロットから多数用意した。
As a nitride ceramic substrate, silicon nitride (Si 3 N) having dimensions shown in FIGS. 1 and 2 and having a thermal conductivity of 70 W / m · K and a thickness of 0.635 mm is used.
4 ) The substrate material has a thermal conductivity of 170 W / m · K,
Aluminum nitride (Al) having a thickness of 0.635 mm
N) Many substrate materials were prepared from the same baking lot.

【0029】一方、金属板として図1〜図3に示す形状
および厚さを有し、Cu(無酸素銅),Ni,コバール
合金(28%Ni−18Co−Fe)の各金属材から成
る金属板路板(厚さ0.3mm)および裏金属板(厚さ
0.25mm)をそれぞれ調製した。なお上記金属材は
窒素ガス(N)雰囲気中において温度400℃でアニ
ール処理を実施したものを使用した。
On the other hand, the metal plate has the shape and thickness shown in FIGS. 1 to 3 and is made of each metal material of Cu (oxygen-free copper), Ni, and Kovar alloy (28% Ni-18Co-Fe). A board (thickness 0.3 mm) and a back metal plate (thickness 0.25 mm) were prepared. The metal material used was annealed at a temperature of 400 ° C. in a nitrogen gas (N 2 ) atmosphere.

【0030】一方、重量比でTi粉末を3%、In粉末
を10%、Ag粉末を62%、Cu粉末を25%含有す
る粉末混合体100重量部に対して、溶媒としてのテレ
ピネオールにバインダーとしてのエチルセルロースを溶
解したバインダー溶液を20重量部添加して、擂回機で
混合後、三段ロールで混練してペースト状の接合用組成
物を調製した。
On the other hand, with respect to 100 parts by weight of a powder mixture containing 3% by weight of Ti powder, 10% by weight of In powder, 62% by weight of Ag powder, and 25% by weight of Cu powder, terpineol as a solvent was used as a binder. Then, 20 parts by weight of a binder solution in which ethyl cellulose was dissolved was added, mixed with a mortar, and kneaded with a three-stage roll to prepare a paste-like joining composition.

【0031】実施例1〜6および実施例7〜12 表1および表2に示すように窒化けい素(Si
基板素材(実施例1〜6用)および窒化アルミニウム
(AlN)基板素材(実施例7〜12用)を空気雰囲気
の加熱炉内で温度1100〜1300℃で12時間加熱
することにより、基板全表面を酸化し、SiO皮膜ま
たはAl皮膜から成る厚さ1〜40μmの酸化物
層を形成した。酸化物層を形成したSi基板単体
およびAlN基板単体の抗折強度を測定して、表1およ
び表2に示す結果を得た。
Examples 1 to 6 and Examples 7 to 12 As shown in Tables 1 and 2, silicon nitride (Si 3 N 4 )
By heating the substrate material (for Examples 1 to 6) and the aluminum nitride (AlN) substrate material (for Examples 7 to 12) at a temperature of 1100 to 1300 ° C. for 12 hours in a heating furnace in an air atmosphere, the entire surface of the substrate is heated. Was oxidized to form an oxide layer having a thickness of 1 to 40 μm consisting of a SiO 2 film or an Al 2 O 3 film. The bending strength of the Si 3 N 4 substrate alone and the AlN substrate alone on which the oxide layer was formed was measured, and the results shown in Tables 1 and 2 were obtained.

【0032】次に上記のように酸化物層を形成した各S
基板およびAlN基板の両面に前記ペースト状
接合用組成物を介在させて、それぞれ表1〜表2に示す
金属回路板および裏金属板を接触配置して3層構造の積
層体とし、この各積層体を加熱炉内に配置し、炉内を
1.3×10−8MPaの真空度に調整した後に温度8
00℃にて15分間加熱して図1〜図3に示すように、
各セラミックス基板2に酸化物層5およびろう材層6を
介して金属回路板3および裏金属板4を一体に接合し
て、多数の接合体を得た。そして各接合体についてエッ
チング処理を実施して所定の回路パターンを有する実施
例1〜12に係るセラミックス回路基板を調製した。
Next, each S on which the oxide layer was formed as described above was formed.
A metal circuit board and a back metal plate shown in Tables 1 and 2 are placed in contact with each other with the paste-form bonding composition interposed on both surfaces of an i 3 N 4 substrate and an AlN substrate to form a three-layer laminate. After placing each of the laminates in a heating furnace and adjusting the inside of the furnace to a degree of vacuum of 1.3 × 10 −8 MPa, a temperature of 8
Heat at 00 ° C. for 15 minutes, as shown in FIGS.
The metal circuit board 3 and the back metal plate 4 were integrally joined to each ceramics substrate 2 via the oxide layer 5 and the brazing material layer 6 to obtain a large number of joined bodies. Then, an etching process was performed on each bonded body to prepare ceramic circuit boards according to Examples 1 to 12 having a predetermined circuit pattern.

【0033】比較例1〜2 一方、Si基板素材に酸化処理を実施せず、酸化
物層(SiO皮膜)を形成しない点以外は、実施例1
および実施例6と同様に活性金属法にてSi基板
表面にCu回路板(比較例1)またはNi回路板(比較
例2)を一体に接合して、それぞれそ比較例1〜2に係
るセラミック回路基板を調製した。
Comparative Examples 1 and 2 On the other hand, Example 1 was repeated except that no oxidation treatment was applied to the Si 3 N 4 substrate material and no oxide layer (SiO 2 film) was formed.
And a Cu circuit board (Comparative Example 1) or a Ni circuit board (Comparative Example 2) integrally joined to the surface of the Si 3 N 4 substrate by the active metal method in the same manner as in Example 6. Was prepared.

【0034】比較例3〜4 一方、AlN基板素材に酸化処理を実施せず、酸化物層
(Ai皮膜)を形成しない点以外は、実施例7お
よび実施例12と同様に活性金属法にてAlN基板表面
にCu回路板(比較例3)またはNi回路板(比較例
4)を一体に接合して、それぞれそ比較例3〜4に係る
セラミック回路基板を調製した。
Comparative Examples 3 and 4 On the other hand, an active metal was prepared in the same manner as in Examples 7 and 12 except that no oxidation treatment was performed on the AlN substrate material and no oxide layer (Ai 2 O 3 film) was formed. A Cu circuit board (Comparative Example 3) or a Ni circuit board (Comparative Example 4) was integrally joined to the AlN substrate surface by a method, and ceramic circuit boards according to Comparative Examples 3 and 4, respectively, were prepared.

【0035】こうして調製した各セラミックス回路基板
1は、図1〜図3に模式的に示すようにセラミックス基
板2の表面側に形成された酸化物層5およびろう材層6
を介して金属回路板3が一体に接合される一方、背面側
にも酸化物層5およびろう材層6を介して裏金属板4が
一体に接合した構造を有する。
Each of the thus prepared ceramic circuit boards 1 has an oxide layer 5 and a brazing material layer 6 formed on the surface side of the ceramic substrate 2 as schematically shown in FIGS.
The metal circuit board 3 is integrally joined via a metal layer, and the back metal plate 4 is also integrally joined via an oxide layer 5 and a brazing material layer 6 on the back side.

【0036】上記のように調製した各実施例および比較
例に係るセラミックス回路基板について、金属回路板の
接合強度をピール強度として測定するとともにセラミッ
クス基板全体の抗折強度を測定して下記表1および表2
に示す結果を得た。
With respect to the ceramic circuit boards according to Examples and Comparative Examples prepared as described above, the bonding strength of the metal circuit board was measured as the peel strength and the bending strength of the entire ceramic substrate was measured. Table 2
Were obtained.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】上記表1および表2に示す結果から明らか
なように、酸化物層を表面に形成したSi基板ま
たはAlN基板に、活性金属を含有する銀ろう材を用い
て金属回路板等を接合した各実施例に係るセラミックス
回路基板においては、酸化物層を形成していないセラミ
ックス基板を用いた比較例1〜4に係るセラミックス回
路基板と比較して、金属回路板の接合強度(ピール強
度)および抗折強度が大幅に増加し、割れに対して優れ
た耐性が発揮されることが判明した。
As is clear from the results shown in Tables 1 and 2, a metal circuit board was formed on a Si 3 N 4 substrate or an AlN substrate having an oxide layer formed on the surface thereof by using a silver brazing material containing an active metal. In the ceramic circuit board according to each of the examples, the bonding strength of the metal circuit board (in comparison with the ceramic circuit boards according to Comparative Examples 1 to 4 using the ceramic substrate without the oxide layer formed thereon) was increased. (Peel strength) and bending strength were significantly increased, and it was found that excellent resistance to cracking was exhibited.

【0040】また各実施例および比較例に係るセラミッ
クス回路基板の耐久性および信頼性を評価するために、
各回路基板を−40℃で30分間保持し、次に室温(R
T:25℃)で10分間保持し、さらに125℃で30
分間保持し、さらに室温で10分間保持するという加熱
・冷却操作を1サイクルとするヒートサイクル試験(熱
衝撃試験)を繰り返して実施し、回路基板の耐クラック
性を測定した。その結果を表1,2に健全率η(%)と
して併記した。ここで健全率ηとは、ファインクラック
が発生し得る基板上の金属回路板の周辺長の合計をL
o,ヒートサイクル試験により実際に発生したファイン
クラックの長さの合計をLとした際に、
In order to evaluate the durability and reliability of the ceramic circuit boards according to each of the examples and comparative examples,
Each circuit board is kept at -40 ° C for 30 minutes, then at room temperature (R
T: 25 ° C) for 10 minutes, and further at 125 ° C for 30 minutes.
A heat cycle test (thermal shock test) in which the heating / cooling operation of holding for 1 minute and holding at room temperature for 10 minutes was repeated, and the crack resistance of the circuit board was measured. The results are also shown in Tables 1 and 2 as the soundness factor η (%). Here, the soundness factor η is the sum of the peripheral lengths of the metal circuit board on the board where the fine crack can occur, which is represented by L
o, when the total length of the fine crack actually generated in the heat cycle test is L,

【数1】 で表わされる。すなわち、健全率ηが100%ではファ
インクラックは全く発生しておらず、ηが100%より
小さくなるに従ってファインクラックが増加することを
示す指数である。
(Equation 1) Is represented by That is, when the soundness factor η is 100%, no fine crack occurs at all, and the index indicates that the fine crack increases as η becomes smaller than 100%.

【0041】表1,2に示す結果から、同一材料から成
るセラミックス回路基板同士を比較すると、明らかに実
施例は比較例よりファインクラックの発生量が少ないこ
とを示している。
The results shown in Tables 1 and 2 clearly show that when the ceramic circuit boards made of the same material are compared with each other, the amount of the fine crack generated in the example is smaller than that in the comparative example.

【0042】このように、表面に酸化物層を形成したセ
ラミックス基板を用いた各実施例に係るセラミックス回
路基板においては、酸化物層によって熱衝撃が緩和さ
れ、またセラミックス基板と金属回路板との熱膨張差が
緩和されるため、セラミックス基板と金属回路板等との
接合端の角部における集中残留応力が小さくなり、熱負
荷に対する耐クラック性(耐熱サイクル特性)が大幅に
向上することが判明した。
As described above, in the ceramic circuit board according to each of the embodiments using the ceramic substrate having the oxide layer formed on the surface, the thermal shock is reduced by the oxide layer, and the ceramic substrate and the metal circuit board are separated. Since the difference in thermal expansion is reduced, the concentrated residual stress at the corner of the joint end between the ceramic substrate and the metal circuit board etc. is reduced, and the crack resistance against heat load (heat cycle characteristics) is significantly improved. did.

【0043】[0043]

【発明の効果】以上説明の通り、本発明に係るセラミッ
クス回路基板によれば、窒化物セラミックス基板の表面
に所定の酸化物層を形成し、活性金属を含有するろう材
層を介して金属回路板をセラミックス基板表面に一体に
接合しているため、酸化物層によってセラミックス基板
の硬度,耐熱衝撃性および靭性値が向上し、セラミック
ス基板自体にクラック(割れ)が生じにくくなると同時
に、金属回路板とセラミックス基板との熱膨張係数差に
起因してセラミックス基板に発生する応力が緩和され
る。その結果、金属回路板の接合強度が増加し、熱負荷
に対する耐クラック性(耐熱サイクル性)も大幅に向上
させることができる。そして、このセラミックス回路基
板を使用することにより、割れの発生が少なく耐久性お
よび動作信頼性に優れた半導体装置を高い製造歩留りで
量産することが可能になる。
As described above, according to the ceramic circuit board of the present invention, a predetermined oxide layer is formed on the surface of the nitride ceramic substrate, and the metal circuit is formed via the brazing material layer containing the active metal. Since the board is integrally joined to the surface of the ceramic substrate, the oxide layer improves the hardness, thermal shock resistance, and toughness of the ceramic substrate, making it difficult for the ceramic substrate to crack. The stress generated in the ceramic substrate due to the difference in thermal expansion coefficient between the ceramic substrate and the ceramic substrate is reduced. As a result, the joining strength of the metal circuit board is increased, and the crack resistance to heat load (heat cycle resistance) can be significantly improved. By using this ceramic circuit board, it becomes possible to mass-produce semiconductor devices with less cracks and excellent durability and operation reliability with a high production yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るセラミックス回路基板の一実施例
を模式的に示す平面図。
FIG. 1 is a plan view schematically showing one embodiment of a ceramic circuit board according to the present invention.

【図2】図1に示すセラミックス回路基板の断面図。FIG. 2 is a cross-sectional view of the ceramic circuit board shown in FIG.

【図3】図1に示すセラミックス回路基板の底面図。FIG. 3 is a bottom view of the ceramic circuit board shown in FIG. 1;

【図4】従来のセラミックス回路基板の平面図。FIG. 4 is a plan view of a conventional ceramic circuit board.

【図5】図4に示す従来のセラミックス回路基板の断面
図。
5 is a cross-sectional view of the conventional ceramic circuit board shown in FIG.

【図6】図4に示す従来のセラミックス回路基板の底面
図。
FIG. 6 is a bottom view of the conventional ceramic circuit board shown in FIG.

【符号の説明】[Explanation of symbols]

1,11 セラミックス回路基板 2,12 セラミックス基板 3,13 金属回路板(銅回路板) 4,14 裏金属板(裏銅板) 5 酸化物層(SiO皮膜,Al皮膜) 6 ろう材層1,11 ceramic circuit board 2,12 ceramic board 3,13 metal circuit board (copper circuit board) 4,14 back metal plate (back copper plate) 5 oxide layer (SiO 2 film, Al 2 O 3 film) 6 brazing material layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 表面に酸化物層を形成した窒化物セラミ
ックス基板表面に、Ti,Zr,HfおよびNbから選
択される少なくとも1種の活性金属を含有するろう材層
を介して金属回路板が一体に接合されていることを特徴
とするセラミックス回路基板。
1. A metal circuit board is formed on a surface of a nitride ceramic substrate having an oxide layer formed on the surface thereof through a brazing material layer containing at least one active metal selected from Ti, Zr, Hf and Nb. A ceramic circuit board characterized by being integrally joined.
【請求項2】 窒化物セラミックス基板が窒化けい素
(Si)焼結体から成り、上記酸化物層が酸化け
い素(SiO)から成ることを特徴とする請求項1記
載のセラミックス回路基板。
2. The ceramic according to claim 1, wherein said nitride ceramic substrate is made of a silicon nitride (Si 3 N 4 ) sintered body, and said oxide layer is made of silicon oxide (SiO 2 ). Circuit board.
【請求項3】 窒化物セラミックス基板が窒化アルミニ
ウム(AlN)焼結体から成り、上記酸化物層が酸化ア
ルミニウム(Al)から成ることを特徴とする請
求項1記載のセラミックス回路基板。
3. The ceramic circuit board according to claim 1, wherein said nitride ceramic substrate is made of a sintered body of aluminum nitride (AlN), and said oxide layer is made of aluminum oxide (Al 2 O 3 ).
【請求項4】 酸化物層の厚さが0.5〜10μmであ
ることを特徴とする請求項1記載のセラミックス回路基
板。
4. The ceramic circuit board according to claim 1, wherein the thickness of the oxide layer is 0.5 to 10 μm.
【請求項5】 酸化物層の厚さが1〜3μmであること
を特徴とする請求項1記載のセラミックス回路基板。
5. The ceramic circuit board according to claim 1, wherein the thickness of the oxide layer is 1 to 3 μm.
【請求項6】 金属回路板が銅回路板であることを特徴
とする請求項1記載のセラミックス回路基板。
6. The ceramic circuit board according to claim 1, wherein the metal circuit board is a copper circuit board.
【請求項7】 金属回路板がニッケル回路板であること
を特徴とする請求項1記載のセラミックス回路基板。
7. The ceramic circuit board according to claim 1, wherein the metal circuit board is a nickel circuit board.
JP08299899A 1999-03-26 1999-03-26 Ceramic circuit board Expired - Fee Related JP4467659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08299899A JP4467659B2 (en) 1999-03-26 1999-03-26 Ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08299899A JP4467659B2 (en) 1999-03-26 1999-03-26 Ceramic circuit board

Publications (2)

Publication Number Publication Date
JP2000272977A true JP2000272977A (en) 2000-10-03
JP4467659B2 JP4467659B2 (en) 2010-05-26

Family

ID=13789904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08299899A Expired - Fee Related JP4467659B2 (en) 1999-03-26 1999-03-26 Ceramic circuit board

Country Status (1)

Country Link
JP (1) JP4467659B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201072A (en) * 2000-12-27 2002-07-16 Toshiba Corp AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
WO2002085081A1 (en) * 2001-04-06 2002-10-24 Mitsui Mining & Smelting Co., Ltd. Printed circuit board and production method therefor, and laminated printed circuit board
JP2002344101A (en) * 2001-03-15 2002-11-29 Mitsui Mining & Smelting Co Ltd Printed circuit board and its manufacturing method
JP2009520344A (en) * 2005-12-19 2009-05-21 キュラミーク エレクトロニクス ゲーエムベーハー Metal-ceramic substrate
WO2012090740A1 (en) * 2010-12-28 2012-07-05 株式会社日立製作所 Circuit board for semiconductor module
DE102012101057A1 (en) * 2011-12-27 2013-06-27 Curamik Electronics Gmbh Process for the preparation of DCB substrates
JP2013211546A (en) * 2012-02-29 2013-10-10 Hitachi Metals Ltd Ceramic-copper assembly and manufacturing method of the same
WO2017003128A1 (en) * 2015-06-30 2017-01-05 주식회사 코멧네트워크 Method for manufacturing ceramic circuit board
JP2017034075A (en) * 2015-07-31 2017-02-09 富士電機株式会社 Electronic device
CN110248465A (en) * 2019-06-20 2019-09-17 天津荣事顺发电子有限公司 A kind of thick film and cover copper one ceramic circuit board and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201072A (en) * 2000-12-27 2002-07-16 Toshiba Corp AlN SINTERED COMPACT AND AlN CIRCUIT SUBSTRATE USING IT
JP2002344101A (en) * 2001-03-15 2002-11-29 Mitsui Mining & Smelting Co Ltd Printed circuit board and its manufacturing method
WO2002085081A1 (en) * 2001-04-06 2002-10-24 Mitsui Mining & Smelting Co., Ltd. Printed circuit board and production method therefor, and laminated printed circuit board
JP2009520344A (en) * 2005-12-19 2009-05-21 キュラミーク エレクトロニクス ゲーエムベーハー Metal-ceramic substrate
EP2661156A4 (en) * 2010-12-28 2016-06-01 Hitachi Ltd Circuit board for semiconductor module
WO2012090740A1 (en) * 2010-12-28 2012-07-05 株式会社日立製作所 Circuit board for semiconductor module
JP2012138541A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Circuit board for semiconductor module
DE102012101057A1 (en) * 2011-12-27 2013-06-27 Curamik Electronics Gmbh Process for the preparation of DCB substrates
JP2013211546A (en) * 2012-02-29 2013-10-10 Hitachi Metals Ltd Ceramic-copper assembly and manufacturing method of the same
WO2017003128A1 (en) * 2015-06-30 2017-01-05 주식회사 코멧네트워크 Method for manufacturing ceramic circuit board
KR101740453B1 (en) * 2015-06-30 2017-05-26 주식회사 코멧네트워크 Method of manufacturing ceramic circuit board
JP2017034075A (en) * 2015-07-31 2017-02-09 富士電機株式会社 Electronic device
CN110248465A (en) * 2019-06-20 2019-09-17 天津荣事顺发电子有限公司 A kind of thick film and cover copper one ceramic circuit board and preparation method thereof
CN110248465B (en) * 2019-06-20 2024-03-19 上海铠琪科技有限公司 Thick film and copper-clad integrated ceramic circuit board and preparation method thereof

Also Published As

Publication number Publication date
JP4467659B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
US8518554B2 (en) Ceramic metal composite and semiconductor device using the same
JPH07202063A (en) Ceramic circuit board
WO1998008256A1 (en) Silicon nitride circuit board and semiconductor module
JP4467659B2 (en) Ceramic circuit board
JP3949270B2 (en) Manufacturing method of ceramic circuit board
JP6907546B2 (en) Power module
EP0915512B1 (en) Ceramic substrate having a metal circuit
JPH1065296A (en) Ceramic circuit board
JP3847954B2 (en) Manufacturing method of ceramic circuit board
JP3193305B2 (en) Composite circuit board
JP2772273B2 (en) Silicon nitride circuit board
JPH022836B2 (en)
JP3833410B2 (en) Ceramic circuit board
JP4476428B2 (en) Aluminum nitride circuit board and manufacturing method thereof
JP2003192462A (en) Silicon nitride circuit board and method of producing the same
JP2000086368A (en) Nitride ceramic substrate
JPH06329480A (en) Joined body of ceramics and metal and its production
JP2006199584A (en) Method for producing ceramic circuit board
JP4668476B2 (en) Manufacturing method of joined body
JPS61121489A (en) Cu wiring sheet for manufacture of substrate
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture
JP3561197B2 (en) Wiring board
JP2004134703A (en) Circuit board with terminal
JPH0794624A (en) Circuit board
JP4584764B2 (en) Method for manufacturing ceramic-metal composite circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Ref document number: 4467659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees