JPS6347612Y2 - - Google Patents

Info

Publication number
JPS6347612Y2
JPS6347612Y2 JP1983146280U JP14628083U JPS6347612Y2 JP S6347612 Y2 JPS6347612 Y2 JP S6347612Y2 JP 1983146280 U JP1983146280 U JP 1983146280U JP 14628083 U JP14628083 U JP 14628083U JP S6347612 Y2 JPS6347612 Y2 JP S6347612Y2
Authority
JP
Japan
Prior art keywords
flow path
exhaust gas
fluidized bed
heat exchanger
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983146280U
Other languages
Japanese (ja)
Other versions
JPS6054754U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983146280U priority Critical patent/JPS6054754U/en
Publication of JPS6054754U publication Critical patent/JPS6054754U/en
Application granted granted Critical
Publication of JPS6347612Y2 publication Critical patent/JPS6347612Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 本考案は、デイーゼルエンジン等の内燃機関の
排気ガスの熱回収装置に関する。
[Detailed Description of the Invention] The present invention relates to a heat recovery device for exhaust gas from an internal combustion engine such as a diesel engine.

一般に、デイーゼルエンジン等の内燃機関の排
気ガスは多量の熱エネルギーを有しており、この
熱エネルギーを有効利用する方法の一つとして、
流動層熱交換器を用いて熱エネルギーを回収する
方法がある。この方法に用いられる流動層熱交換
器は、例えば第1図に示すように、箱体1内に設
けられた多孔板2の上の2本の熱回収用ヘツダ
(管寄せ)3,4の間に、内部に水を流通させて
排気ガスの熱を回収する伝熱体5が連結され、箱
体1の下部側面及び上面に、排気ガス用パイプ
6,7が連結されると共に、箱体1内に砂(固体
粒子)が充填されて成り、下部側面の排気ガス用
パイプ6から排気ガスを箱体1内に送ることによ
つて、箱体1内の砂を流動化させて流動層を形成
させ、水を熱回収ヘツダ3、伝熱体5、熱回収ヘ
ツダ4内に流通させて、効率的に排気ガスの熱エ
ネルギーを回収するようにした装置である。
Generally, exhaust gas from internal combustion engines such as diesel engines has a large amount of thermal energy, and one way to effectively utilize this thermal energy is to
There is a method of recovering thermal energy using a fluidized bed heat exchanger. The fluidized bed heat exchanger used in this method, as shown in FIG. A heat transfer body 5 that circulates water inside to recover the heat of the exhaust gas is connected between them, and exhaust gas pipes 6 and 7 are connected to the lower side and top surface of the box 1, and the box 1 1 is filled with sand (solid particles), and by sending exhaust gas into the box 1 from the exhaust gas pipe 6 on the lower side, the sand in the box 1 is fluidized to form a fluidized bed. This device is designed to efficiently recover the thermal energy of exhaust gas by forming water and circulating water through the heat recovery header 3, heat transfer body 5, and heat recovery header 4.

しかしながら、このように構成された流動層熱
交換器にあつては、内燃機関運転開始時に、箱体
1内を予熱しない状態で排気ガスを箱体1内に送
ると、排気ガス内に含まれる水蒸気が凝縮して、
砂を固着させるため流動層を形成することができ
なくなるという不具合がある。従つて、従来は内
燃機関運転開始時に、箱体1内の砂を暖めるため
に温水ボイラやヒータ等を設ける必要があり、こ
のため設備費が極めて高くなるというのが欠点で
あつた。
However, in the fluidized bed heat exchanger configured in this way, if the exhaust gas is sent into the box body 1 without preheating the inside of the box body 1 at the start of internal combustion engine operation, the gas contained in the exhaust gas Water vapor condenses and
There is a problem that a fluidized bed cannot be formed because the sand is stuck. Therefore, conventionally, it has been necessary to provide a hot water boiler, a heater, etc. to warm the sand in the box 1 when the internal combustion engine starts operating, and this has resulted in an extremely high equipment cost.

本考案は、流動層熱交換器の排気ガス流路に、
内燃機関運転開始時に排気ガス流路を閉鎖するを
ダンパを設け、熱回収用流路と内燃機関の冷却用
液体を流通させる冷却用流路との間に、ダンパに
よる排気ガス流路閉鎖時には、冷却用液体を熱回
収用流路に流通させて流動層熱交換器を暖気し、
かつ流動層熱交換器使用時には、熱回収用流路と
冷却用流路との流通を遮断する切換弁を設けるこ
とによつて、上記従来の欠点を解消したもので、
温水ボイラやヒータ等の暖気運転のための設備を
設ける必要がなく、設備費を大幅に低減すること
ができる排気ガスの熱回収装置を提供することを
目的とする。
The present invention provides a
A damper is provided to close the exhaust gas flow path when the internal combustion engine starts operating, and when the exhaust gas flow path is closed by the damper, the damper is installed between the heat recovery flow path and the cooling flow path through which cooling liquid for the internal combustion engine flows. Warming up the fluidized bed heat exchanger by circulating the cooling liquid through the heat recovery channel,
In addition, when a fluidized bed heat exchanger is used, the above-mentioned conventional drawbacks are solved by providing a switching valve that shuts off the flow between the heat recovery flow path and the cooling flow path.
It is an object of the present invention to provide an exhaust gas heat recovery device that does not require equipment for warm-up operation such as a hot water boiler or a heater, and can significantly reduce equipment costs.

以下、図面を参照して本考案を具体的に説明す
る。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

第2図は本考案の一実施例を示すもので、図中
符号10は流動層熱交換器であり、その構造は上
記従来の流動層熱交換器と同様なので説明は省略
する。この流動層熱交換器10の水流入側の熱回
収用ヘツダ3は流入配管11を介して逆止弁12
及び流入配管18を介して三方弁から成る第1切
換弁13に連結されており、逆止弁12は配管1
4を介して給水ヘツダ(管寄せ)15に連結され
ている。そして、第1切換弁13は配管16を介
して温水ヘツダ(管寄せ)17に連結されている
と共に、流入配管18を介して温度によつて流路
が切換わる温調弁19に連結されている。また、
この温調弁19は流入配管20を介してデイーゼ
ルエンジン等の内燃機関21に連結されていると
共に、配管22を介して上記給水ヘツダ15及び
ジヤケツト冷却水ポンプ23に連結されている。
そして、ジヤケツト冷却水ポンプ23は配管24
を介してエンジン21に連結されている。なお、
25は給水ヘツダ15に水を供給する給水ポンプ
である。
FIG. 2 shows an embodiment of the present invention, and the reference numeral 10 in the figure is a fluidized bed heat exchanger, whose structure is the same as that of the conventional fluidized bed heat exchanger described above, so a description thereof will be omitted. The heat recovery header 3 on the water inflow side of the fluidized bed heat exchanger 10 is connected to a check valve 12 via an inflow pipe 11.
The check valve 12 is connected to the first switching valve 13 which is a three-way valve via the inlet pipe 18 and the inlet pipe 18.
4 to a water supply header (header) 15. The first switching valve 13 is connected to a hot water header (header) 17 via a pipe 16, and is also connected to a temperature control valve 19 whose flow path is switched depending on the temperature via an inflow pipe 18. There is. Also,
The temperature control valve 19 is connected to an internal combustion engine 21 such as a diesel engine via an inflow pipe 20, and is also connected to the water supply header 15 and the jacket cooling water pump 23 via a pipe 22.
The jacket cooling water pump 23 is connected to the piping 24.
It is connected to the engine 21 via. In addition,
25 is a water supply pump that supplies water to the water supply header 15.

一方上記流動層熱交換器10の水流出側の熱回
収用ヘツダ4は環流配管26を介して三方弁から
成る第2切換弁27に連結されており、この第2
切換弁27は配管28を介して上記温水ヘツダ1
7に連結されていると共に、配管29を介してジ
ヤケツト冷却水ポンプ23に連結されている。
On the other hand, the heat recovery header 4 on the water outflow side of the fluidized bed heat exchanger 10 is connected via a reflux pipe 26 to a second switching valve 27 consisting of a three-way valve.
The switching valve 27 is connected to the hot water header 1 via the piping 28.
7 and is also connected to the jacket cooling water pump 23 via piping 29.

また、上記内燃機関21の排気出口21aは排
気管30を介して、第1ダンパ31及び第2ダン
パ32に連結されている。そして、第1ダンパ3
1は熱交換器排気入口6に連結されており同じく
熱交換器排気出口7は第3ダンパ33に連結され
ている。また、第2ダンパ32及び第3ダンパ3
3は排気バイパス管34に連結されている。
Further, the exhaust outlet 21a of the internal combustion engine 21 is connected to a first damper 31 and a second damper 32 via an exhaust pipe 30. And the first damper 3
1 is connected to a heat exchanger exhaust inlet 6, and similarly, a heat exchanger exhaust outlet 7 is connected to a third damper 33. In addition, the second damper 32 and the third damper 3
3 is connected to an exhaust bypass pipe 34.

次に、上記のように構成された排気ガスの熱回
収装置の作用について説明する。
Next, the operation of the exhaust gas heat recovery device configured as described above will be explained.

まず、第1ダンパ31と第3ダンパ33を閉
じ、かつ第2ダンパ32を開いて、排気ガスが流
動層熱交換器10内を通らない状態にした後、内
燃機関21の運転を開始し、同時にジヤケツト冷
却水ポンプ23を作動させる。すると、温調弁1
9が配管20,22を連通させているので、冷却
水はジヤケツト冷却水ポンプ23、内燃機関2
1、温調弁19を循環して冷却水温度は上昇す
る。この時、給水ポンプ25は作動していないの
で、他の部分の水は流通していない。冷却水温度
が約85℃に達すると、温調弁19が切換わり、流
入配管20と流入配管18が連通すると共に、第
1切換弁13を切換えて流入配管18と流入配管
11を連通させ、かつ第2切換弁27を切換えて
環流配管26と環流配管29を連通させる。この
結果、内燃機関21で熱せられた温水は温調弁1
9、第1切換弁13を介して流動層熱交換器10
内を通つて、第2切換弁27から、ジヤケツト冷
却水ポンプ23に戻る流路を循環する。この状態
を約15分間続けて流動層熱交換器10内を暖め
る。この時、逆止弁12があるので、温水は環流
配管11から配管14側には流れることはない。
First, after closing the first damper 31 and the third damper 33 and opening the second damper 32 to prevent exhaust gas from passing through the fluidized bed heat exchanger 10, the operation of the internal combustion engine 21 is started, At the same time, the jacket cooling water pump 23 is activated. Then, temperature control valve 1
9 connects the pipes 20 and 22, so the cooling water flows between the jacket cooling water pump 23 and the internal combustion engine 2.
1. The temperature of the cooling water increases as it circulates through the temperature control valve 19. At this time, the water supply pump 25 is not operating, so water in other parts is not flowing. When the cooling water temperature reaches about 85° C., the temperature control valve 19 is switched to connect the inflow pipe 20 and the inflow pipe 18, and the first switching valve 13 is switched to connect the inflow pipe 18 and the inflow pipe 11, Then, the second switching valve 27 is switched to connect the reflux pipe 26 and the reflux pipe 29. As a result, the hot water heated by the internal combustion engine 21 is transferred to the temperature control valve 1.
9. Fluidized bed heat exchanger 10 via first switching valve 13
The water circulates through a flow path that returns from the second switching valve 27 to the jacket cooling water pump 23. This state continues for about 15 minutes to warm up the inside of the fluidized bed heat exchanger 10. At this time, since the check valve 12 is provided, hot water does not flow from the reflux pipe 11 to the pipe 14 side.

流動層熱交換器10が暖められた後第2ダンパ
32を閉じ、第1ダンパ31及び第3ダンパ33
を開いて排気ガスを流動層熱交換器10内に送る
と共に、第1切換弁13を切り換えて流入配管1
8と配管16とを連通させ、かつ第2切換弁27
を切り換えて環流配管26と配管28とを連通さ
せる。それと同時に、給水ポンプ25を運転する
と、給水ヘツダ15、配管14、逆止弁12及び
配管11を経て水が流動層熱交換器10内に供給
される。従つて、内燃機関21から発生した排気
ガスは流動層熱交換器10内を通る時に、その熱
エネルギーを流動層熱交換器10内で形成された
流動層を介して給水ポンプ25から供給された水
に伝え、水の温度を上昇させる。そして、流動層
熱交換器10内で暖められた水は環流配管26、
第2切換弁27、配管28及び温水ヘツド17を
通つて回収される。また、給水ポンプ25から供
給された水は給水ヘツダ15、ジヤケツト冷却水
ポンプ23を経て、内燃機関21内を冷却する。
そして、冷却後の水は流入配管20、温調弁1
9、流入配管18、第1切換弁13、配管16及
び温水ヘツダ17を通つて回収される。
After the fluidized bed heat exchanger 10 is warmed up, the second damper 32 is closed, and the first damper 31 and the third damper 33 are closed.
The first switching valve 13 is opened to send the exhaust gas into the fluidized bed heat exchanger 10, and the first switching valve 13 is switched to open the inflow pipe 1.
8 and the pipe 16, and the second switching valve 27
is switched to connect the reflux pipe 26 and the pipe 28. At the same time, when the water supply pump 25 is operated, water is supplied into the fluidized bed heat exchanger 10 via the water supply header 15, piping 14, check valve 12, and piping 11. Therefore, when the exhaust gas generated from the internal combustion engine 21 passes through the fluidized bed heat exchanger 10, its thermal energy is supplied from the water supply pump 25 through the fluidized bed formed within the fluidized bed heat exchanger 10. into the water, increasing the temperature of the water. Then, the water warmed in the fluidized bed heat exchanger 10 flows through the reflux pipe 26,
The water is collected through the second switching valve 27, the piping 28 and the hot water head 17. Further, water supplied from the water supply pump 25 passes through the water supply header 15 and the jacket cooling water pump 23 to cool the inside of the internal combustion engine 21.
After cooling, the water is transferred to the inflow pipe 20 and the temperature control valve 1.
9, the inflow pipe 18, the first switching valve 13, the pipe 16, and the hot water header 17.

このようにして、エンジン運転開始時には、第
1、第2、第3ダンパ31,32,33の開閉に
よつて、排気ガスが流動層熱交換器10内に送ら
れないようにすると共に、内燃機関21で暖めら
れた冷却水を循環させて流動層熱交換器10内を
暖め流動層熱交換器10が十分暖まつた後に、排
気ガスを流動層熱交換器10内に送つて、排気ガ
スのもつ熱エネルギーを回収するようにしたので
エンジン運転開始時に流動層熱交換器10内の砂
が排気ガスの水蒸気の凝縮によつて固着すること
はない。また、第1及び第2切換弁13,27や
温調弁19等を用いて、エンジンの冷却系と排気
ガスの熱回収系の2つの流体回路系を合理的に制
御する構成にしたので、エンジンの冷却あるいは
排気ガスの熱回収を行なうのに複雑な構造の装置
や手間のかかる操作の必要がない。
In this way, at the start of engine operation, the first, second, and third dampers 31, 32, and 33 are opened and closed to prevent exhaust gas from being sent into the fluidized bed heat exchanger 10, and to prevent internal combustion. The cooling water heated by the engine 21 is circulated to warm the inside of the fluidized bed heat exchanger 10, and after the fluidized bed heat exchanger 10 has sufficiently warmed up, the exhaust gas is sent into the fluidized bed heat exchanger 10, and the exhaust gas is Since the heat energy contained in the engine is recovered, the sand in the fluidized bed heat exchanger 10 will not become stuck due to condensation of water vapor in the exhaust gas when the engine starts operating. In addition, the configuration uses the first and second switching valves 13, 27, the temperature control valve 19, etc. to rationally control the two fluid circuit systems, the engine cooling system and the exhaust gas heat recovery system. There is no need for complicated structures or time-consuming operations to cool the engine or recover heat from exhaust gas.

以上説明したように、本考案は、排気ガス流路
に、内燃機関運転開始時に一定時間排気ガス流路
を閉鎖するダンパが設けられ熱回収用流路と冷却
用流路との間に、ダンパによる排気ガス流路閉鎖
時には、内燃機関の冷却後の冷却用液体を熱回収
用流路にエンジンのジヤケツト冷却水ポンプによ
つて流通させ、又流動層熱交換器使用時には、熱
回収用流路と冷却用流路との流通を遮断する切換
弁が設けられているから、従来のように、エンジ
ン運転開始時に流動層熱交換器内に充填されてい
る砂を暖めて、排気ガス中に含まれる水蒸気の凝
縮によつて砂が固着して流動層が形成できなくな
るのを防止するために設けていた温水ボイラやヒ
ータ等の暖気運転用の設備を設置する必要がな
く、設備費を大幅に低減できる上に、排気ガス中
に含まれる熱エネルギーを効率的に回収できると
いう優れた効果を有する。
As explained above, in the present invention, a damper is provided in the exhaust gas flow path to close the exhaust gas flow path for a certain period of time when the internal combustion engine starts operating, and the damper is installed between the heat recovery flow path and the cooling flow path. When the exhaust gas flow path is closed, the cooling liquid after cooling the internal combustion engine is passed through the heat recovery flow path by the engine jacket cooling water pump, and when a fluidized bed heat exchanger is used, the heat recovery flow path is closed. Since the switch valve is installed to cut off the flow between the fluidized bed heat exchanger and the cooling flow path, unlike conventional methods, the sand filled in the fluidized bed heat exchanger is heated at the start of engine operation to reduce the amount of sand contained in the exhaust gas. There is no need to install equipment for warm-up operations such as hot water boilers and heaters, which were used to prevent sand from solidifying due to condensation of water vapor and making it impossible to form a fluidized bed. It has the excellent effect of not only being able to reduce the heat energy but also efficiently recovering the thermal energy contained in the exhaust gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の流動層熱交換器を示す斜視図、
第2図は本考案の一実施例を示す配管図である。 3,4……熱回収用ヘツダ(管寄せ)、5……
伝熱体、6……熱交換器排気入口、7……熱交換
器排気出口、10……流動層熱交換器、13……
第1切換弁、16……配管、18……流入配管、
20……流入配管、22……配管、23……ジヤ
ケツト冷却水ポンプ、24……配管、27……第
2切換弁、31……第1ダンパ、33……第3ダ
ンパ。
FIG. 1 is a perspective view showing a conventional fluidized bed heat exchanger;
FIG. 2 is a piping diagram showing an embodiment of the present invention. 3, 4... Heat recovery header (header), 5...
Heat transfer body, 6... Heat exchanger exhaust inlet, 7... Heat exchanger exhaust outlet, 10... Fluidized bed heat exchanger, 13...
First switching valve, 16...piping, 18...inflow piping,
20... Inflow piping, 22... Piping, 23... Jacket cooling water pump, 24... Piping, 27... Second switching valve, 31... First damper, 33... Third damper.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内燃機関の排気ガス流路に熱回収用の液体を通
す熱回収用流路が接続されて成る流動層熱交換器
が設けられ、該流動層熱交換器により上記排気ガ
スの廃熱を回収する排気ガスの熱回収装置におい
て、上記排気ガス流路に設けられ、上記内燃機関
運転開始時に一定時間上記排気ガス流路を閉鎖す
るダンパと、上記熱回収流路における流動層熱交
換器の入口側と、上記内燃機関の冷却用液体を流
通させる冷却用流路における内燃機関の出口側を
結ぶ流入配管との間に設けられ上記ダンパによる
上記排気ガス流路閉鎖時には、上記熱回収用流路
と冷却用流路とを連通させて上記内燃機関の冷却
後の冷却用液体を上記熱回収用流路に流通させる
第1切換弁と、上記熱回収用流路における流動層
熱交換器の出口側と上記冷却用液体流路における
内燃機関の入口側とを結ぶ還流配管に設けられ上
記ダンパによる上記排気ガス流路閉鎖時には、上
記配管を連通させ、かつ上記流動層熱交換器使用
時には上記熱回収流路と冷却用流路との流通を遮
断する第2切換弁が設けられたことを特徴とする
排気ガスの熱回収装置。
A fluidized bed heat exchanger is provided in which a heat recovery flow path for passing a heat recovery liquid is connected to an exhaust gas flow path of an internal combustion engine, and the waste heat of the exhaust gas is recovered by the fluidized bed heat exchanger. In the exhaust gas heat recovery device, a damper is provided in the exhaust gas flow path and closes the exhaust gas flow path for a certain period of time when the internal combustion engine starts operating, and a damper is provided on the inlet side of the fluidized bed heat exchanger in the heat recovery flow path. and an inflow pipe connecting the outlet side of the internal combustion engine in the cooling flow path through which the cooling liquid of the internal combustion engine flows, and when the exhaust gas flow path is closed by the damper, the heat recovery flow path and a first switching valve that communicates with a cooling flow path to allow the cooling liquid after cooling the internal combustion engine to flow through the heat recovery flow path; and an outlet side of the fluidized bed heat exchanger in the heat recovery flow path. and the inlet side of the internal combustion engine in the cooling liquid flow path, and when the exhaust gas flow path is closed by the damper, the piping is communicated with the exhaust gas flow path, and when the fluidized bed heat exchanger is used, the heat recovery is performed. An exhaust gas heat recovery device characterized by being provided with a second switching valve that blocks communication between the flow path and the cooling flow path.
JP1983146280U 1983-09-21 1983-09-21 Exhaust gas heat recovery device Granted JPS6054754U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983146280U JPS6054754U (en) 1983-09-21 1983-09-21 Exhaust gas heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983146280U JPS6054754U (en) 1983-09-21 1983-09-21 Exhaust gas heat recovery device

Publications (2)

Publication Number Publication Date
JPS6054754U JPS6054754U (en) 1985-04-17
JPS6347612Y2 true JPS6347612Y2 (en) 1988-12-08

Family

ID=30325651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983146280U Granted JPS6054754U (en) 1983-09-21 1983-09-21 Exhaust gas heat recovery device

Country Status (1)

Country Link
JP (1) JPS6054754U (en)

Also Published As

Publication number Publication date
JPS6054754U (en) 1985-04-17

Similar Documents

Publication Publication Date Title
JPS6347612Y2 (en)
JPS591998A (en) Heat medium pressure control device for waste heat restrieving device
JP2005016477A (en) Exhaust heat recovery device for internal combustion engine
JPS6133465Y2 (en)
JPS6016818Y2 (en) Boiler make-up water heating device
JPS6145316Y2 (en)
JPS5917262B2 (en) Hot water device that uses engine waste heat
JPS597139Y2 (en) Vehicle engine cooling mechanism
JP2557358Y2 (en) Marine hot water boiler
JPH0426820Y2 (en)
JPS6158658B2 (en)
JPH0621742B2 (en) Absorption heat pump device
JPS59146203U (en) Vehicle thermal storage heating system
JPS6436646U (en)
JPH11107754A (en) Cooling system of internal combustion engine
JPS6139605Y2 (en)
JPS613107U (en) Vehicle heating system
SU1184962A1 (en) Cooling system of i.c.engine
JPS6032518Y2 (en) Circulating heating bath pot
JPS59226257A (en) Engine-driven hot-water supplying apparatus
JPS5926009U (en) Vehicle exhaust heat utilization type heating device
JPH05195772A (en) Engine cooling structure
JPS60114006U (en) Vehicle hot water heating system
JPS5828242U (en) water heater
JPS6196220U (en)