JPS591998A - Heat medium pressure control device for waste heat restrieving device - Google Patents
Heat medium pressure control device for waste heat restrieving deviceInfo
- Publication number
- JPS591998A JPS591998A JP10974882A JP10974882A JPS591998A JP S591998 A JPS591998 A JP S591998A JP 10974882 A JP10974882 A JP 10974882A JP 10974882 A JP10974882 A JP 10974882A JP S591998 A JPS591998 A JP S591998A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- pressure
- valve
- steam
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、エンジンの排気熱を熱媒体を充填した閉管路
を介して熱需要部に供給するようにした排熱回収装置の
改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an exhaust heat recovery device that supplies engine exhaust heat to a heat demand section through a closed pipe line filled with a heat medium.
従来のこの種の排熱回収装置を利用した自動車用暖房装
置として例えば第1図にしめずようなものがある(実開
昭56−140705号に開示)。An example of a conventional automotive heating system using this type of exhaust heat recovery device is shown in FIG. 1 (disclosed in Japanese Utility Model Application No. 56-140705).
図において、エンジンの排気通路1に介装した回収側熱
交換器2と、エンジン冷却水を図示しないヒータコアに
導く熱需要部3に介装した伝熱側熱交換器4とが閉管路
5で連結されている。該閉管路5内には熱媒体として例
えば過熱蒸気が封入され、モータ6で駆動されるファン
7により閉管路5内を循環する。In the figure, a recovery side heat exchanger 2 installed in an engine exhaust passage 1 and a heat transfer side heat exchanger 4 installed in a heat demand section 3 that leads engine cooling water to a heater core (not shown) are connected in a closed pipe line 5. connected. For example, superheated steam is sealed in the closed pipe line 5 as a heat medium, and is circulated within the closed pipe line 5 by a fan 7 driven by a motor 6.
閉管路5内を循環する蒸気は、回収側熱交換器2で回収
したエンジン排気熱を伝熱側熱交換器4から熱需要部3
を流れる冷却水(ヒータ水)に伝熱して供給する。こう
して熱需要部3からヒータコアに流れる上記冷却水に排
気熱を与えて加熱することによりヒータコアにて熱交換
して車室内に送風される温風温度を上昇させて暖房効率
を高めるようになっている。The steam circulating in the closed pipe line 5 transfers the engine exhaust heat recovered by the recovery side heat exchanger 2 from the heat transfer side heat exchanger 4 to the heat demand section 3.
heat is transferred to and supplied to the cooling water (heater water) flowing through the water. In this way, exhaust heat is applied to the cooling water flowing from the heat demand unit 3 to the heater core to heat it, thereby exchanging heat in the heater core, increasing the temperature of the hot air blown into the vehicle interior, and increasing heating efficiency. There is.
ここで、閉管路5内の熱媒体の圧力を制御する手段が次
のように構成されている。即ち、閉管路5には圧力スイ
ッチ8及び温度スイッチとしての熱電対9が設けられ、
これらスイッチがらの信号はコントローラ10に入力さ
れる。コントローラ1゜はこれらに基づいて閉管路5内
の蒸気圧力が異常上昇したことを検出した時は閉管路5
に介装されたパージ弁11を開弁駆動して熱媒体の一部
を排出して圧力を降下させ、又、該パージ弁11による
熱媒体の排出後に同じく閉管路5に装着された噴射弁1
2を駆動させて閉管路5内に熱媒体を補給し、熱媒体量
を調整するようになっている。Here, the means for controlling the pressure of the heat medium in the closed pipe line 5 is configured as follows. That is, the closed pipe line 5 is provided with a pressure switch 8 and a thermocouple 9 as a temperature switch.
Signals from these switches are input to the controller 10. Based on these, when the controller 1 detects that the steam pressure in the closed pipe line 5 has increased abnormally, it closes the closed pipe line 5.
The purge valve 11 installed in the closed pipe line 5 is driven open to discharge a part of the heat medium to lower the pressure, and after the heat medium is discharged by the purge valve 11, the injection valve installed in the closed pipe line 1
2 is driven to replenish the heat medium into the closed pipe line 5 and adjust the amount of heat medium.
しかしながら、このような従来装置にあっては、閉管路
5内の圧力調整のためパージ弁及び噴射弁によって閉管
路内の熱媒体を出し入れして1llJ御しなければなら
ず、供給用の熱媒体を常時用意しておく必要があり、又
、外部に排出するため安全な熱媒体しか使用できないと
いう問題があった。However, in such a conventional device, in order to adjust the pressure in the closed pipe line 5, the heat medium in the closed pipe line 5 must be controlled by taking it in and out using a purge valve and an injection valve, and the heat medium for supply must be controlled by 1llJ. There is a problem in that it is necessary to always have the heat medium on hand, and that only a safe heat medium can be used because it is discharged to the outside.
本発明はこのような従来の問題点に鑑み為されたもので
、閉管路の圧力過昇時に伝熱側熱交換器が介装される熱
需要部を流れる流体の流量を一時的に増大させる流量制
御手段を設ける構成として、従来の問題点を解決した排
熱回収装置の熱媒体圧力制御装置を提供することを目的
とする。The present invention has been made in view of such conventional problems, and is a method of temporarily increasing the flow rate of fluid flowing through a heat demand section in which a heat transfer side heat exchanger is installed when the pressure in a closed pipe line increases excessively. It is an object of the present invention to provide a heat medium pressure control device for an exhaust heat recovery device that solves the conventional problems as a configuration in which a flow rate control means is provided.
但し、以下の図で従来と同一の構成要素には同一符号を
付して説明する。However, in the following figures, the same components as in the prior art are given the same reference numerals and explained.
以下に本発明を図示実施例に基いて説明する。The present invention will be explained below based on illustrated embodiments.
一実施例を示す第2図において、エンジン排気通路1に
回収側熱交換器2を、ヒータコアにエンジン冷却水を供
給する熱需要部3に伝熱側熱交換器4を介装し、これら
を閉管路5によって連結していることは従来と同様であ
る。該閉管路5内には熱媒体としての水を封入してあり
、回収側熱交換器2で排気熱を吸収して蒸気となって伝
熱側熱交換器4に供給され、ここで、エンジン冷却水に
熱を与えて凝縮水となった後回収側熱交換器2に戻され
る。即ち、該閉管路5はループ型熱サイフオン式ヒート
バイブとして機能し、自然循環するため、第1図に示し
た熱媒体循環用のモータ、ファンは不要となる。但し、
本発明はこのことは直接拘わりなく、過熱蒸気を封入し
た強制循環式の閉管路にも適用できる。In FIG. 2 showing one embodiment, a recovery side heat exchanger 2 is installed in the engine exhaust passage 1, and a heat transfer side heat exchanger 4 is installed in the heat demand section 3 that supplies engine cooling water to the heater core. The connection via the closed pipe line 5 is the same as in the conventional case. Water as a heat medium is sealed in the closed pipe line 5, and the exhaust heat is absorbed by the recovery side heat exchanger 2, turned into steam, and supplied to the heat transfer side heat exchanger 4, where it is heated to the engine. After giving heat to the cooling water and turning it into condensed water, it is returned to the recovery side heat exchanger 2. That is, the closed pipe line 5 functions as a loop-type thermosiphon type heat vibrator and circulates naturally, so that the motor and fan for circulating the heat medium shown in FIG. 1 are unnecessary. however,
The present invention is not directly concerned with this, but can also be applied to a forced circulation type closed pipe line in which superheated steam is sealed.
又、閉管路5には回収側熱交換器2の上流側部分に圧力
スイッチ8及び熱電対9を設けると共に回収側熱交換器
2の下流部分に電磁開閉弁13を設ける。Further, in the closed pipe line 5, a pressure switch 8 and a thermocouple 9 are provided at the upstream side of the recovery side heat exchanger 2, and an electromagnetic on-off valve 13 is provided at the downstream side of the recovery side heat exchanger 2.
ここに、本発明では閉管路5内の熱媒体圧力の過昇時に
熱需要部3への流体流量を一時的に増量させる手段を次
のようにして設ける。即ち、本実施例では、熱需要部3
上流側のエンジン冷却水通路21にモータ22で駆動さ
れるファン詔を介設する。Here, in the present invention, means for temporarily increasing the fluid flow rate to the heat demand section 3 when the heat medium pressure in the closed pipe line 5 rises excessively is provided as follows. That is, in this embodiment, the heat demand section 3
A fan blade driven by a motor 22 is interposed in the engine cooling water passage 21 on the upstream side.
但し、モータ22の代りにエンジンを動力源として用い
てもよi。However, an engine may be used as the power source instead of the motor 22.
一方、熱需要部3下流側のエンジン冷却水通路を2本に
分岐させヒータコアを経由する主通路24と、ヒータコ
アをバイパスして冷却水を放熱させるバイパス通路25
とを設けると共に、バイパス通路25に開閉弁26を介
設する。On the other hand, the engine cooling water passage on the downstream side of the heat demand section 3 is branched into two, a main passage 24 that passes through the heater core, and a bypass passage 25 that bypasses the heater core and radiates heat from the cooling water.
In addition, an on-off valve 26 is provided in the bypass passage 25.
そして、前記圧力スイッチ8及び熱電対9からの信号を
入力するコントローラ27を設け、該コントローラ27
によりモータ22、開閉弁26及び電磁開閉弁13を次
のように制御する。即ち、今、回収側熱交換器2によっ
て排気から回収される熱量が大きく、閉管路5内の蒸気
圧力がある設・定値を越え、あるいは、過熱蒸気となっ
て所定温度以上に増大するとこれを圧力スイッチ8や熱
電対9により検出し、コントローラ27の出力によりモ
ータ22を駆動させてファン詔を回転させると共に、密
閉の開閉弁茂をアクチュエータ等を介して開き、常開の
電磁開閉弁13を閉じる。A controller 27 is provided to input signals from the pressure switch 8 and thermocouple 9, and the controller 27
The motor 22, the on-off valve 26, and the electromagnetic on-off valve 13 are controlled as follows. That is, if the amount of heat recovered from the exhaust gas by the recovery side heat exchanger 2 is large and the steam pressure in the closed pipe line 5 exceeds a certain set value, or if it becomes superheated steam and increases to a predetermined temperature or higher, The pressure is detected by the pressure switch 8 and thermocouple 9, and the output of the controller 27 drives the motor 22 to rotate the fan, and at the same time opens the closed on-off valve 13 via an actuator or the like, and opens the normally open solenoid on-off valve 13. close.
この結果ファン詔の回転により熱需要部3への冷却水流
量が増大して伝熱側熱交換器4からエンジン冷却水への
熱伝達率hwが大きくなるため、該熱交換器4内の蒸気
から冷却水への熱通過率Kが増大する。As a result, the flow rate of cooling water to the heat demand section 3 increases due to the rotation of the fan, and the heat transfer coefficient hw from the heat transfer side heat exchanger 4 to the engine cooling water increases, so that the steam in the heat exchanger 4 increases. The heat transfer rate K from the cooling water to the cooling water increases.
特に、この場合、熱通過率には熱需要部3側の熱伝達率
hwが支配的に作用するためhwの上昇によってKも大
きく増大する。In particular, in this case, since the heat transfer coefficient hw on the heat demand section 3 side acts dominantly on the heat transfer rate, K also increases significantly as hw increases.
したがって熱需要部3内の冷却水温度Twと伝熱側熱交
換器4内の蒸気温度TVの温度差が同一であれば熱需要
部3への移動熱量qは、q=K (Tv−Tw)
で示されるように熱通過率にの上昇分だけ移動熱量qが
増大し蒸気の凝縮量が増大するため蒸気圧力を下げるこ
とができるのである。Therefore, if the temperature difference between the cooling water temperature Tw in the heat demand section 3 and the steam temperature TV in the heat transfer side heat exchanger 4 is the same, the amount of heat q transferred to the heat demand section 3 is q = K (Tv - Tw ), the amount of transferred heat q increases by the increase in the heat transfer rate, and the amount of steam condensed increases, making it possible to lower the steam pressure.
又、ファン23の始動と同時に閉管路5の電磁開閉弁1
3が閉じ該電磁開閉弁13上流側に凝縮水を溜めること
により回収側熱交換器2への凝縮水の供給が停止するた
め、蒸気の発生が停止して閉管路5内の圧力が減少する
。詳細には、電磁開閉弁13を閉じ、伝熱側熱交換器4
で冷却された凝縮水の回収側熱交換器2への供給が停止
すると、当初はそれまで回収側熱交換器2内に残存する
水分が高温状態で充分に過熱さて飽和またはそれに近い
状態にまで蒸発が促進されるため一時的に蒸気圧力が上
昇する。しかしこの蒸気が伝熱側熱交換器4で冷却され
て凝縮水となれば前記した如く蒸気量が減少して蒸気圧
力が下げられる。Also, at the same time as the fan 23 starts, the electromagnetic on-off valve 1 of the closed pipe line 5
3 is closed and the condensed water is stored upstream of the electromagnetic on-off valve 13, and the supply of condensed water to the recovery side heat exchanger 2 is stopped, so the generation of steam is stopped and the pressure in the closed pipe line 5 is reduced. . Specifically, the electromagnetic on-off valve 13 is closed, and the heat transfer side heat exchanger 4 is closed.
When the supply of the cooled condensed water to the recovery-side heat exchanger 2 is stopped, the water remaining in the recovery-side heat exchanger 2 is initially sufficiently overheated at a high temperature to reach or be close to saturation. As evaporation is promoted, vapor pressure temporarily increases. However, if this steam is cooled in the heat exchanger 4 on the heat transfer side and becomes condensed water, the amount of steam decreases and the steam pressure decreases as described above.
即ち、最終的には、電磁開閉弁13を閉じれば閉管路5
内の蒸気圧力を下げられるのであるが、一時的に圧力上
昇した蒸気が伝熱側熱交換器4の通常の熱交換能力では
、速やかに冷却されず圧力低下に時間がかかるため、耐
久性等の面で問題を生じる。That is, when the electromagnetic on-off valve 13 is closed, the pipe line 5 is closed.
However, with the normal heat exchange capacity of the heat transfer side heat exchanger 4, the steam whose pressure has temporarily increased will not be cooled down quickly and it will take time for the pressure to decrease, resulting in problems such as durability, etc. This causes problems in terms of
ところが、本発明では、熱需要部3への冷却水流量を増
大させることにより前記した如く、伝熱側熱交換器4の
熱交換能力を高めて前記圧力上昇した蒸気を速やかに冷
却して凝縮させることにより蒸気圧力を迅速に低下させ
ることができるのである。However, in the present invention, as described above, by increasing the flow rate of cooling water to the heat demand section 3, the heat exchange capacity of the heat transfer side heat exchanger 4 is increased, and the steam whose pressure has increased is quickly cooled and condensed. By doing so, the steam pressure can be quickly reduced.
一方、このように熱需要部3の冷却水流量を増大させる
ことにより、伝熱側熱交換器4から冷却水へ回収される
熱量は増大するが、開閉弁26も同時に開かれるため、
バイパス通路5が開通して熱回収した冷却水がヒータコ
アを経由する主通路24とバイパス通路部との双方に流
れるため主通路24への冷却水流量を通常と同程度とす
ることができ、これによりヒータコアへの熱供給過剰が
避けられ該ヒータコアと熱交換する温風の過熱を防止で
き、安定した快適暖房を維持できる。On the other hand, by increasing the cooling water flow rate of the heat demand section 3 in this way, the amount of heat recovered from the heat transfer side heat exchanger 4 to the cooling water increases, but since the on-off valve 26 is also opened at the same time,
When the bypass passage 5 is opened, the cooling water that has recovered heat flows through both the main passage 24 via the heater core and the bypass passage section, so the flow rate of the cooling water to the main passage 24 can be kept at the same level as normal. This prevents excessive heat supply to the heater core, prevents overheating of the hot air that exchanges heat with the heater core, and maintains stable and comfortable heating.
尚、伝熱側熱交換器をバイパスするバイパス通路及び該
バイパス通路を開閉する開閉弁を設け、冷却水増大時に
はバイパス通路も開通させて伝熱側熱交換器によって熱
回収した冷却水とバイパス通路で放熱冷却させた冷却水
を混合させてヒータコアに導くようにして温風の過熱を
防止する構成としてもよい。かかる制御より蒸気圧力、
温度がある程度以下に下がると、コントローラ27によ
りモータ23の駆動を停止すると共に電磁開閉弁13を
開、開閉弁26を閉として通常状態に戻して、蒸気圧力
、温度を上昇させる。このように閉管路5内の熱媒体圧
力を外部への熱媒体の出し入れなく調整制御できるため
、熱媒体を補給する必要なく、又、熱媒体として有機体
等外部へ排出できないものを使用することができる。In addition, a bypass passage that bypasses the heat exchanger on the heat transfer side and an on-off valve that opens and closes the bypass passage are provided, and when the amount of cooling water increases, the bypass passage is also opened, and the cooling water whose heat is recovered by the heat exchanger on the heat transfer side and the bypass passage are provided. A configuration may also be adopted in which overheating of the hot air is prevented by mixing the cooling water that has been cooled by heat dissipation and guiding the mixture to the heater core. Steam pressure from such control,
When the temperature drops below a certain level, the controller 27 stops driving the motor 23, opens the electromagnetic on-off valve 13, and closes the on-off valve 26 to return to the normal state and raise the steam pressure and temperature. In this way, the pressure of the heat medium in the closed pipe line 5 can be adjusted and controlled without introducing or removing the heat medium to the outside, so there is no need to replenish the heat medium, and it is possible to use a heat medium that cannot be discharged to the outside, such as an organic body. I can do it.
第3図は本発明の別の実施例を示す。図において閉管路
5は前記第2図の実施例と同様に構成されており、圧力
スイッチ8、熱電対9及び電磁開閉弁13も同様に設け
られる。伝熱側熱交換器4が介装される熱需要部3上流
側のエンジン冷却水通路31にプランジャ32を備えて
アキュームレータ33及び該アキュームレータ33をバ
イパスするバイパス通路34を設ける。バイパス通路3
4には、開閉弁35を介設し、アキュームレータ33の
入口及び出口にも夫々開閉弁36.37を介設する。FIG. 3 shows another embodiment of the invention. In the figure, the closed pipe line 5 is constructed in the same manner as in the embodiment shown in FIG. An accumulator 33 and a bypass passage 34 that bypasses the accumulator 33 are provided with a plunger 32 in the engine cooling water passage 31 on the upstream side of the heat demand section 3 in which the heat transfer side heat exchanger 4 is interposed. Bypass passage 3
4 is provided with an on-off valve 35, and on-off valves 36 and 37 are also provided at the inlet and outlet of the accumulator 33, respectively.
そして、これら開閉弁35.36.37、前記電磁開閉
弁13及び熱需要部3下流側のヒータコアのバイパス通
路器に介装される開閉弁26並びにプランジャ32を、
圧力スイッチ8、熱電対9からの信号に基づき、コント
ローラ38により次のように制御する。通常時は、開閉
弁36.37は閉、開閉弁35を開とし、一方、電磁開
閉弁13を開、開閉弁26を閉とする。又、プランジャ
32はアキュームレータ33から押し上げられた位置に
保持しておく。従って、冷却水は専ら、通路34を通っ
て熱需要部3へ供給され、その全量が主通路24を介し
てヒータコアに供給されることにより通常の暖房制御が
行なわれる。一方、閉管路5内の蒸気圧力又は温度が、
各設定値より高くなると、圧力スイッチ8又は熱電対9
の信号に基づいてコントローラ3日が開閉弁36を閉、
開閉弁37を開とすると共に、プランジャ32を図示し
ないアクチェエータを介して駆動させて押し下げ、アキ
ュームレータ33内に貯えられた冷却水を出口から押し
出す。一方、通路34の開閉弁35は開に保持され、通
路34には通常通り冷却水が流れるため、熱需要部3の
冷却水流量は、アキュ、−ムレータ33から押し出され
た分だけ増量する。Then, these on-off valves 35, 36, 37, the electromagnetic on-off valve 13, the on-off valve 26 and the plunger 32 which are interposed in the bypass passage device of the heater core on the downstream side of the heat demand section 3,
Based on the signals from the pressure switch 8 and thermocouple 9, the controller 38 controls as follows. Normally, the on-off valves 36 and 37 are closed and the on-off valve 35 is open, while the electromagnetic on-off valve 13 is open and the on-off valve 26 is closed. Further, the plunger 32 is held at a position pushed up from the accumulator 33. Therefore, the cooling water is exclusively supplied to the heat demand section 3 through the passage 34, and the entire amount is supplied to the heater core through the main passage 24, thereby performing normal heating control. On the other hand, the steam pressure or temperature in the closed pipe line 5 is
If it becomes higher than each set value, pressure switch 8 or thermocouple 9
Based on the signal, the controller 3 closes the on-off valve 36,
The on-off valve 37 is opened, and the plunger 32 is driven and pushed down via an actuator (not shown) to push out the cooling water stored in the accumulator 33 from the outlet. On the other hand, the on-off valve 35 of the passage 34 is held open and the cooling water flows through the passage 34 as usual, so the flow rate of the cooling water in the heat demand section 3 increases by the amount pushed out from the accu-mulator 33.
このため、前記実施例同様伝熱側熱交換器4の凝縮能力
が増大して閉管路5内の蒸気量が減少し圧力を下げるこ
とができる。Therefore, as in the previous embodiment, the condensing capacity of the heat transfer side heat exchanger 4 increases, the amount of steam in the closed pipe line 5 decreases, and the pressure can be lowered.
又、これと同時に閉管路5内に介装した開閉弁13が閉
とされることにより前記実施例同様、一時的な蒸気圧力
の上昇を前記アキュームレータ33がらの冷却水流量増
量制御により速やかに低下させることができると共にそ
の後は、蒸気発注量の減少により圧力を下げることがで
きる。At the same time, the on-off valve 13 installed in the closed pipe line 5 is closed, so that, as in the previous embodiment, the temporary rise in steam pressure is quickly reduced by controlling the increase in the flow rate of cooling water from the accumulator 33. After that, the pressure can be lowered by reducing the amount of steam ordered.
次に、かかる制御により蒸気圧力、温度がある程度以下
に低下した時はこれを検出する圧力スイフチ8、熱電対
9からの信号に基づいてコントローラ38は開閉弁35
.37を閉、開閉弁36を開とすると同時にプランジャ
32を図示上方に駆動させ、もってアキュームレータ3
3に入口から冷却水を吸引導入して貯える。Next, when the steam pressure and temperature drop below a certain level due to such control, the controller 38 controls the on-off valve 35 based on signals from the pressure switch 8 and thermocouple 9, which detect this.
.. 37 is closed and the on-off valve 36 is opened, the plunger 32 is simultaneously driven upward in the figure, thereby causing the accumulator 3 to open.
3. Cooling water is sucked in from the inlet and stored.
尚、第4図に示すように、アキュームレータ33のバイ
パス通路を省略し、通常時はアキュームレータ33の入
口及び出口に設けられる開閉弁41.42を開とし、蒸
気圧力、温度の過昇時に開閉弁41を閉、開閉弁42を
開としてプランジャ32を押し下げ、アキュームレータ
33に冷却水を貯える時は開閉弁41を開、開閉弁42
を閉としてプランジャ32にを押し下げる構成としても
よい。As shown in FIG. 4, the bypass passage of the accumulator 33 is omitted, and the on-off valves 41 and 42 provided at the inlet and outlet of the accumulator 33 are opened during normal times, and the on-off valves 41 and 42 provided at the inlet and outlet of the accumulator 33 are opened when steam pressure and temperature rise excessively. 41 and open the on-off valve 42 to push down the plunger 32. When storing cooling water in the accumulator 33, open the on-off valve 41 and open the on-off valve 42.
It may be configured to close and push down the plunger 32.
そして、これらプランジャ或いはダイアフラム等を用い
たポンプ式の流量増量手段を設ければモータ等の立ち上
り時間による応答遅れが解消され、熱媒体流量をステッ
プ的に増大させて特に緊急時においても迅速に蒸気圧力
を低下させることができる。If a pump-type flow rate increasing means using a plunger or diaphragm is provided, the response delay caused by the start-up time of the motor, etc. can be eliminated, and the heat medium flow rate can be increased in steps to quickly generate steam, especially in an emergency. Pressure can be reduced.
以上説明したように、本発明によれば熱需要部流体の流
れを一時的に増大させることにより、伝熱側熱交換器と
熱需要部流体との熱交換率を増大させ、もって閉管路内
の熱媒体圧力の過昇を抑制する構成としたため閉管路内
の熱媒体圧力を熱媒体の出入れなしに制御することがで
き、熱媒体の補給が不要となり、又、熱媒体として有機
流体のように外部に漏洩できない物質を用いることもで
きる。As explained above, according to the present invention, by temporarily increasing the flow of the heat demand section fluid, the heat exchange rate between the heat transfer side heat exchanger and the heat demand section fluid is increased. Because the structure suppresses excessive rise in the heating medium pressure, the heating medium pressure in the closed pipe can be controlled without introducing or removing the heating medium, eliminating the need for replenishment of the heating medium, and using an organic fluid as the heating medium. It is also possible to use a substance that cannot be leaked to the outside.
第1図は従来の排熱回収装置の一例を示す構成図、第2
図は本発明の一実施例を示す構成図、第3図は本発明の
第二の実施例を示す構成図、第4図は該第二実施例の一
部を変更した第三実施例の要部を示す構成図である。
■・・・排気通路 2・・・回収側熱交換器 3・
・・熱需要部 4・・・伝熱側熱交換器 5・・・
閉管路8・・・圧力スイッチ 9・・・熱電対 2
1.31・・・エンジン冷却水通路 22・・・モー
タ 詔・・・ファン27.38・・・コントローラ
32・・・プランジャ33・・・アキュームレータ
34・・・通路 35.36゜37、41.42・
・・開閉弁
特許出願人 日産自動車株式会社
代理人 弁理士 笹 島 富二雄Figure 1 is a configuration diagram showing an example of a conventional exhaust heat recovery device;
The figure is a block diagram showing one embodiment of the present invention, FIG. 3 is a block diagram showing a second embodiment of the present invention, and FIG. 4 is a block diagram of a third embodiment in which a part of the second embodiment is modified. FIG. 3 is a configuration diagram showing main parts. ■...Exhaust passage 2...Recovery side heat exchanger 3.
... Heat demand section 4 ... Heat transfer side heat exchanger 5 ...
Closed pipe line 8...Pressure switch 9...Thermocouple 2
1.31...Engine cooling water passage 22...Motor Rule...Fan 27.38...Controller
32...Plunger 33...Accumulator
34...Aisle 35.36°37, 41.42.
...On-off valve patent applicant Nissan Motor Co., Ltd. Patent attorney Fujio Sasashima
Claims (1)
被加熱流体が流通する熱需要部に介装される伝熱側熱交
換器とを連結して閉管路を形成し、該閉管路に封入した
熱媒体を循環させることにより回収側熱交換器から回収
した排気熱を伝熱側熱交換器から熱需要部に供給して被
加熱流体を加熱するようにした排熱回収装置において、
閉管路内の熱媒体圧力を検出する手段と、該検出手段か
らの信号に基づき、熱媒体圧力の過昇時に熱需要部を流
れる被加熱流体の流量を一時的に増大させる流量制御手
段とを設けて構成したことを特徴とする排熱回収装置の
熱媒体圧力制御装置。a recovery side heat exchanger installed in the exhaust passage of the engine;
A closed pipe is formed by connecting a heat transfer side heat exchanger installed in a heat demand section through which the fluid to be heated flows, and a heat medium sealed in the closed pipe is circulated to transfer heat from the recovery side heat exchanger. In an exhaust heat recovery device that heats a fluid to be heated by supplying the recovered exhaust heat from a heat transfer side heat exchanger to a heat demand unit,
A means for detecting the heat medium pressure in the closed pipe line; and a flow rate control means for temporarily increasing the flow rate of the heated fluid flowing through the heat demand part when the heat medium pressure rises excessively based on the signal from the detecting means. 1. A heat medium pressure control device for an exhaust heat recovery device, characterized in that the device is configured by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10974882A JPS591998A (en) | 1982-06-28 | 1982-06-28 | Heat medium pressure control device for waste heat restrieving device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10974882A JPS591998A (en) | 1982-06-28 | 1982-06-28 | Heat medium pressure control device for waste heat restrieving device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS591998A true JPS591998A (en) | 1984-01-07 |
JPH031600B2 JPH031600B2 (en) | 1991-01-10 |
Family
ID=14518247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10974882A Granted JPS591998A (en) | 1982-06-28 | 1982-06-28 | Heat medium pressure control device for waste heat restrieving device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS591998A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6233288A (en) * | 1985-08-02 | 1987-02-13 | Showa Alum Corp | Heat exchanger in automobile cooling and heating unit |
JPS62157608U (en) * | 1986-03-31 | 1987-10-06 | ||
US4730511A (en) * | 1984-08-10 | 1988-03-15 | Osaka Kikiseizo Kabushiki Kaisha | Valve actuating mechanism |
JPH01103411U (en) * | 1987-12-28 | 1989-07-12 | ||
US5695004A (en) * | 1992-07-10 | 1997-12-09 | Beckwith; William R. | Air conditioning waste heat/reheat method and apparatus |
WO2005057087A1 (en) * | 2003-12-09 | 2005-06-23 | Earthship K.K. | Air conditioning system |
JP2008051479A (en) * | 2005-12-20 | 2008-03-06 | Denso Corp | Exhaust heat recovery device |
JP2013103632A (en) * | 2011-11-15 | 2013-05-30 | Furukawa Electric Co Ltd:The | Heating system and heat transport system for vehicle |
JP2013103633A (en) * | 2011-11-15 | 2013-05-30 | Furukawa Electric Co Ltd:The | Air conditioning system for vehicle, control method of air conditioning system for vehicle, and heat transporting system |
JP2019206261A (en) * | 2018-05-29 | 2019-12-05 | マレリ株式会社 | Vehicular air conditioner |
JP2020044898A (en) * | 2018-09-17 | 2020-03-26 | マツダ株式会社 | Air conditioner for vehicle |
CN113465178A (en) * | 2020-07-23 | 2021-10-01 | 中北大学 | Communication waste heat utilization heat pipe system |
-
1982
- 1982-06-28 JP JP10974882A patent/JPS591998A/en active Granted
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4730511A (en) * | 1984-08-10 | 1988-03-15 | Osaka Kikiseizo Kabushiki Kaisha | Valve actuating mechanism |
JPS6233288A (en) * | 1985-08-02 | 1987-02-13 | Showa Alum Corp | Heat exchanger in automobile cooling and heating unit |
JPS62157608U (en) * | 1986-03-31 | 1987-10-06 | ||
JPH0339285Y2 (en) * | 1986-03-31 | 1991-08-19 | ||
JPH01103411U (en) * | 1987-12-28 | 1989-07-12 | ||
JPH0415525Y2 (en) * | 1987-12-28 | 1992-04-08 | ||
US5695004A (en) * | 1992-07-10 | 1997-12-09 | Beckwith; William R. | Air conditioning waste heat/reheat method and apparatus |
WO2005057087A1 (en) * | 2003-12-09 | 2005-06-23 | Earthship K.K. | Air conditioning system |
JP2008051479A (en) * | 2005-12-20 | 2008-03-06 | Denso Corp | Exhaust heat recovery device |
JP2013103632A (en) * | 2011-11-15 | 2013-05-30 | Furukawa Electric Co Ltd:The | Heating system and heat transport system for vehicle |
JP2013103633A (en) * | 2011-11-15 | 2013-05-30 | Furukawa Electric Co Ltd:The | Air conditioning system for vehicle, control method of air conditioning system for vehicle, and heat transporting system |
JP2019206261A (en) * | 2018-05-29 | 2019-12-05 | マレリ株式会社 | Vehicular air conditioner |
JP2020044898A (en) * | 2018-09-17 | 2020-03-26 | マツダ株式会社 | Air conditioner for vehicle |
CN113465178A (en) * | 2020-07-23 | 2021-10-01 | 中北大学 | Communication waste heat utilization heat pipe system |
CN113465178B (en) * | 2020-07-23 | 2022-04-15 | 中北大学 | Communication waste heat utilization heat pipe system |
Also Published As
Publication number | Publication date |
---|---|
JPH031600B2 (en) | 1991-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000335230A (en) | Heating device for vehicle | |
US8132422B2 (en) | Cogeneration system | |
JPS591998A (en) | Heat medium pressure control device for waste heat restrieving device | |
US5249742A (en) | Coolant circulation system for engine heat pump | |
JPH0629035A (en) | Co-operative control device of fuel cell power-generation plant and waste heat collection system | |
US11616242B2 (en) | Method for controlling fuel cell | |
JP2004278522A (en) | Cooling device of hybrid vehicle | |
US5363673A (en) | Simplified engine coolant system for gas engine heat pump | |
JP3976999B2 (en) | Hot water supply and heating system using heat pump | |
JP3319662B2 (en) | Heat storage type cooling / heating device and control method thereof | |
JP2001271644A (en) | Method and device for adjusting engine oil temperature | |
JPH05157006A (en) | Engine exhaust heat recovery device | |
JPH0157269B2 (en) | ||
JP4034010B2 (en) | Vehicle heat storage system | |
JPS63255507A (en) | Exhaust air temperature control device for internal combustion engine | |
JP2019031923A (en) | Engine temperature adjusting device | |
JPH01155020A (en) | Exhaust heat recovering device for engine | |
JPS60236A (en) | Room cooling, heating and hot-water supplying device utilizing internal-combustion engine | |
JP2002195663A (en) | Heat storage system utilizing solar heat | |
JP3735745B2 (en) | Cooling operation control method for absorption air conditioner | |
JPH0742856B2 (en) | Exhaust heat recovery device for water-cooled engine | |
JPH0768891B2 (en) | Cogeneration system | |
JPH11107754A (en) | Cooling system of internal combustion engine | |
JPS60248944A (en) | Hot water supplying device | |
JPS63263327A (en) | Hot-water supplier used both for hot-water room heater |