JP2019206261A - Vehicular air conditioner - Google Patents

Vehicular air conditioner Download PDF

Info

Publication number
JP2019206261A
JP2019206261A JP2018102543A JP2018102543A JP2019206261A JP 2019206261 A JP2019206261 A JP 2019206261A JP 2018102543 A JP2018102543 A JP 2018102543A JP 2018102543 A JP2018102543 A JP 2018102543A JP 2019206261 A JP2019206261 A JP 2019206261A
Authority
JP
Japan
Prior art keywords
heat
flow path
cooling water
engine
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018102543A
Other languages
Japanese (ja)
Other versions
JP7126752B2 (en
Inventor
智弘 丸山
Tomohiro Maruyama
智弘 丸山
達 川俣
Tatsu Kawamata
達 川俣
信之介 前多
Shinnosuke Maeta
信之介 前多
秀介 河井
Shusuke Kawai
秀介 河井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Marelli Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marelli Corp filed Critical Marelli Corp
Priority to JP2018102543A priority Critical patent/JP7126752B2/en
Publication of JP2019206261A publication Critical patent/JP2019206261A/en
Application granted granted Critical
Publication of JP7126752B2 publication Critical patent/JP7126752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To improve heating efficiency.SOLUTION: A vehicular air conditioner 1 includes: a heat pipe system 3 having a heat absorbing section 31 for absorbing heat of exhaust gas G discharged by an engine 2 and a heat release section 32 for releasing heat of the exhaust gas G absorbed by the heat absorbing section 31; a cooling water flow passage 4 in which cooling water W is caused to flow and which has the engine 2, a heater core 6 and the heat release section 32 of the heat pipe system 3 disposed on the flow passage; and a four-way valve 43 for switching the cooling water flow passage 4 from a single flow passage passing through the engine 2, the heater core 6 and the heat release section 32 to two flow passages which are a first flow passage 41 passing through an internal combustion engine and a second flow passage 42 passing through the heater core 6 and the heat release section 32. At a start of the engine 2, the cooling water flow passage 4 is switched to the two flow passages by the four-way valve 43.SELECTED DRAWING: Figure 2

Description

本発明は、車両用空調装置に関する。   The present invention relates to a vehicle air conditioner.

車両用空調装置は、エンジンの熱とエンジンが排出する排ガスの熱を利用して、車内の暖房を行う(例えば、特許文献1参照)。車両用空調装置は、エンジンの冷却水が循環する冷却水流路と、排ガスの熱を回収するヒートパイプシステムを備える。エンジンの排ガスを排出する排気管に配置したヒートパイプシステムの吸熱部が排ガスの熱を回収し、冷却水流路に配置した放熱部で排ガスの熱を放熱して冷却水を昇温させる。冷却水は、さらに、エンジンを通過する際にエンジンの熱により昇温する。冷却水流路にヒータコアを設置し、排ガスの熱とエンジンの熱によって昇温させた冷却水を、ヒータコアにおいてブロアファンにより車室内へ送風される空気と熱交換させることで、車室内の暖房を行う。   The vehicle air conditioner uses the heat of the engine and the heat of the exhaust gas discharged from the engine to heat the interior of the vehicle (see, for example, Patent Document 1). The vehicle air conditioner includes a cooling water passage through which engine cooling water circulates and a heat pipe system that recovers heat of exhaust gas. The heat absorption part of the heat pipe system arranged in the exhaust pipe that discharges the exhaust gas of the engine collects the heat of the exhaust gas, and the heat radiation part arranged in the cooling water flow path radiates the heat of the exhaust gas to raise the temperature of the cooling water. The cooling water is further heated by the heat of the engine when passing through the engine. A heater core is installed in the cooling water flow path, and the interior of the vehicle is heated by exchanging heat with the air blown into the vehicle interior by the blower fan in the heater core. .

特許第5381337号公報Japanese Patent No. 5381337

しかしながら、エンジンの始動時は、エンジンはまだ暖機されていない状態であるため、エンジンの熱による冷却水の昇温は十分ではない。さらに、冷却水流路は、エンジン、ヒータコアおよび放熱部を通過するように構成されているため、その流路を通る冷却水の容量も大きくなる。冷却水の熱容量が大きいと冷却水が昇温されにくく、車内の暖房効率が低下するおそれがある。   However, since the engine is not yet warmed up when the engine is started, the temperature of the cooling water due to the heat of the engine is not sufficient. Furthermore, since the cooling water flow path is configured to pass through the engine, the heater core, and the heat radiating portion, the capacity of the cooling water passing through the flow path is also increased. If the heat capacity of the cooling water is large, the temperature of the cooling water is difficult to increase, and the heating efficiency in the vehicle may be reduced.

車両用空調装置において、エンジンの始動時に、冷却水を速やかに昇温させ、暖房効率を向上させることが求められている。   In a vehicle air conditioner, it is required to quickly increase the temperature of cooling water at the time of starting an engine to improve heating efficiency.

本発明の車両用空調装置は、
内燃機関が排出する排ガスの熱を吸熱する吸熱部と前記吸熱部が吸熱した前記排ガスの熱を放出する放熱部とを備えた排熱回収部と、
熱媒体を流通させ、流路上に前記内燃機関と、ヒータコアと、前記排熱回収部の前記放熱部とを配置した熱媒体流路と、
前記熱媒体流路を、前記内燃機関、前記ヒータコアおよび前記放熱部を通過する単一の流路から、前記内燃機関を通過する第1の流路と、前記ヒータコアおよび前記放熱部を通過する第2の流路の2つの流路に切り替える切替部と、を備え、
前記内燃機関の始動時に、前記切替部により、前記熱媒体流路を前記2つの流路に切り替える。
The vehicle air conditioner of the present invention is
An exhaust heat recovery part comprising an endothermic part that absorbs the heat of the exhaust gas exhausted by the internal combustion engine and a heat dissipation part that releases the heat of the exhaust gas absorbed by the endothermic part;
A heat medium flow path in which a heat medium is circulated, and the internal combustion engine, the heater core, and the heat dissipation section of the exhaust heat recovery section are disposed on the flow path;
A first flow path that passes through the internal combustion engine, a first flow path that passes through the internal combustion engine, and a first flow path that passes through the heater core and the heat dissipation section from the single flow path that passes through the internal combustion engine, the heater core, and the heat dissipation section. A switching unit that switches between two channels of the two channels,
At the time of starting the internal combustion engine, the switching unit switches the heat medium flow path to the two flow paths.

本発明によれば、エンジンの始動時に、冷却水を速やかに昇温させ、暖房効率を向上させることができ、利便性が高い。   ADVANTAGE OF THE INVENTION According to this invention, at the time of engine start, a cooling water can be heated up rapidly, heating efficiency can be improved, and the convenience is high.

実施の形態に係る車両用空調装置の概略構成図であり、第1の流路および第2の流路を接続した状態を示す図である。It is a schematic block diagram of the vehicle air conditioner which concerns on embodiment, and is a figure which shows the state which connected the 1st flow path and the 2nd flow path. 第1の流路および第2の流路を分離した状態を示す図である。It is a figure which shows the state which isolate | separated the 1st flow path and the 2nd flow path. コントローラの構成を示すブロック図である。It is a block diagram which shows the structure of a controller. 変形例1に係る車両用空調装置の概略構成図である。It is a schematic block diagram of the vehicle air conditioner which concerns on the modification 1. FIG. 変形例2に係る車両用空調装置の概略構成図である。It is a schematic block diagram of the vehicle air conditioner which concerns on the modification 2.

以下、本発明の実施の形態について、図面を参照して説明する。
図1は、実施の形態に係る車両用空調装置1の概略構成図であり、第1の流路41および第2の流路42を接続した状態を示す図である。
図2は、第1の流路41および第2の流路42を分離した状態を示す図である。
実施の形態の車両用空調装置1は、車両駆動用のエンジン2を備えた車両に設置し、エンジン2の熱とエンジン2の排ガスGの熱を利用して、車室内の暖房を行うものである。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a vehicle air conditioner 1 according to an embodiment, and shows a state in which a first flow path 41 and a second flow path 42 are connected.
FIG. 2 is a diagram illustrating a state where the first flow path 41 and the second flow path 42 are separated.
The vehicle air conditioner 1 according to the embodiment is installed in a vehicle having an engine 2 for driving a vehicle, and uses the heat of the engine 2 and the heat of the exhaust gas G of the engine 2 to heat the vehicle interior. is there.

図1に示すように、車両用空調装置1は、排ガスGの熱を回収するヒートパイプシステム3と、エンジン2の冷却水Wを流通させる冷却水流路4とを備える。
ヒートパイプシステム3は、排ガスGの熱を吸熱する吸熱部31、排ガスGの熱を放出する放熱部32、および吸熱部31と放熱部32の間で作動媒体Mを循環させるループ型のヒートパイプ33を備えている。
ヒートパイプ33は、熱伝導率の高い銅やアルミ合金や耐熱性に優れたステンレス等の金属材料で構成することができる。ヒートパイプ33の内部に作動媒体Mを注入し、減圧して封止する。作動媒体Mは、例えば、フロン、水等を用いることができる。
As shown in FIG. 1, the vehicle air conditioner 1 includes a heat pipe system 3 that recovers the heat of the exhaust gas G, and a cooling water passage 4 that distributes the cooling water W of the engine 2.
The heat pipe system 3 includes a heat absorption part 31 that absorbs heat of the exhaust gas G, a heat dissipation part 32 that releases heat of the exhaust gas G, and a loop heat pipe that circulates the working medium M between the heat absorption part 31 and the heat dissipation part 32. 33 is provided.
The heat pipe 33 can be made of a metal material such as copper or aluminum alloy having high thermal conductivity or stainless steel having excellent heat resistance. The working medium M is injected into the heat pipe 33, and the pressure is reduced and sealed. As the working medium M, for example, chlorofluorocarbon, water or the like can be used.

吸熱部31は、エンジン2が排出する排ガスGが流通する排気管5に設置する。吸熱部31は、排気管5を流通する排ガスGの熱との熱交換により、作動媒体Mを気化させる蒸発器等で構成する。吸熱部31で気化した作動媒体Mはヒートパイプ33を通って放熱部32に導かれる。   The heat absorption part 31 is installed in the exhaust pipe 5 through which the exhaust gas G discharged from the engine 2 flows. The heat absorption part 31 is configured by an evaporator or the like that vaporizes the working medium M by heat exchange with the heat of the exhaust gas G flowing through the exhaust pipe 5. The working medium M vaporized in the heat absorbing part 31 is guided to the heat radiating part 32 through the heat pipe 33.

放熱部32は、冷却水流路4上に配置する。放熱部32は、気化した作動媒体Mを、冷却水流路4を流れる冷却水Wとの熱交換により凝縮させることで、作動媒体Mが回収した排ガスGの熱を放出する。凝縮して液化した作動媒体Mは、ヒートパイプ33を通って吸熱部31に戻る。   The heat radiating part 32 is disposed on the cooling water flow path 4. The heat radiating unit 32 condenses the vaporized working medium M by heat exchange with the cooling water W flowing through the cooling water flow path 4 to release the heat of the exhaust gas G collected by the working medium M. The working medium M condensed and liquefied returns to the heat absorption part 31 through the heat pipe 33.

なお、図1の例では、ループ型のヒートパイプ33を用いた例を説明しているが、ヒートパイプ33は両端を封止した管状のパイプを用いても良い。   In addition, although the example using the loop type heat pipe 33 has been described in the example of FIG. 1, the heat pipe 33 may be a tubular pipe sealed at both ends.

冷却水流路4は、その流路上に、エンジン2、ヒータコア6、およびヒートパイプシステム3の放熱部32を配置する。
ヒータコア6は、冷却水Wとの熱交換によって空気Aを暖める。ヒータコア6に隣接してブロアファン7が設置され、ヒータコア6が暖めた空気Aを、ブロアファン7によって車室内に導入することで、車室内を暖房する。
In the cooling water flow path 4, the engine 2, the heater core 6, and the heat radiating unit 32 of the heat pipe system 3 are arranged on the flow path.
The heater core 6 warms the air A by heat exchange with the cooling water W. A blower fan 7 is installed adjacent to the heater core 6, and the vehicle interior is heated by introducing the air A warmed by the heater core 6 into the vehicle interior by the blower fan 7.

冷却水流路4は、エンジン2を通過する第1の流路41と、ヒータコア6および放熱部32を通過する第2の流路42が、四方弁43によって分離可能に接続された構成である。不図示のアクチュエータによって、四方弁43を図1に示す第1の位置と図2に示す第2の位置との間で移動させる。   The cooling water flow path 4 has a configuration in which a first flow path 41 that passes through the engine 2 and a second flow path 42 that passes through the heater core 6 and the heat radiating unit 32 are separably connected by a four-way valve 43. The four-way valve 43 is moved between a first position shown in FIG. 1 and a second position shown in FIG. 2 by an actuator (not shown).

図1に示すように、四方弁43は第1の位置において第1の流路41および第2の流路42を接続する。これによって、冷却水流路4は、エンジン2、ヒータコア6および放熱部32を通過する単一の流路となる。   As shown in FIG. 1, the four-way valve 43 connects the first flow path 41 and the second flow path 42 at the first position. Thus, the cooling water flow path 4 becomes a single flow path that passes through the engine 2, the heater core 6, and the heat radiating portion 32.

図2に示すように、四方弁43は第2の位置において第1の流路41と第2の流路42を分離し、第1の流路41と第2の流路42を、それぞれ独立した冷却水Wの循環経路とする。   As shown in FIG. 2, the four-way valve 43 separates the first flow path 41 and the second flow path 42 at the second position, and separates the first flow path 41 and the second flow path 42 from each other. The cooling water W circulation path is used.

冷却水流路4は、第1の流路41に設けられたポンプ44と、第2の流路42に設けられたポンプ45を備える。ポンプ44は、第1の流路41と第2の流路42の接続時および分離時の双方で動作し、ポンプ45は第1の流路41と第2の流路42の分離時のみ動作する。   The cooling water channel 4 includes a pump 44 provided in the first channel 41 and a pump 45 provided in the second channel 42. The pump 44 operates both when the first channel 41 and the second channel 42 are connected and separated, and the pump 45 operates only when the first channel 41 and the second channel 42 are separated. To do.

図1に示すように、ポンプ44は、第1の流路41と第2の流路42を接続した単一の流路において、冷却水Wを二点鎖線矢印方向に流通させる。冷却水Wは、放熱部32を通過する際に、排ガスGの熱を回収したヒートパイプシステム3の作動媒体Mとの熱交換により昇温され、更にエンジン2を通過する際に、エンジン2の熱によって昇温される。昇温された冷却水Wはヒータコア6に導かれ、車室内に導入される空気Aを熱交換により暖房する。   As shown in FIG. 1, the pump 44 circulates the cooling water W in the direction of the two-dot chain arrow in a single channel connecting the first channel 41 and the second channel 42. The cooling water W is heated by heat exchange with the working medium M of the heat pipe system 3 that has recovered the heat of the exhaust gas G when passing through the heat radiating portion 32, and further when passing through the engine 2, The temperature is raised by heat. The heated cooling water W is guided to the heater core 6 to heat the air A introduced into the passenger compartment by heat exchange.

図2に示すように、第1の流路41と第2の流路42の分離時、ポンプ44は第1の流路41の冷却水Wを一点鎖線矢印方向に流れさせる。第1の流路41の冷却水Wはエンジン2を通過するのみであるため、熱交換は行われない。   As shown in FIG. 2, when separating the first flow path 41 and the second flow path 42, the pump 44 causes the cooling water W of the first flow path 41 to flow in the direction of the dashed line arrow. Since the cooling water W in the first flow path 41 only passes through the engine 2, heat exchange is not performed.

第1の流路41と第2の流路42の分離時にはポンプ45が動作し、第2の流路42の冷却水Wを図中破線矢印方向に流れさせる。冷却水Wは、放熱部32とヒータコア6との間を循環し、ヒートパイプシステム3の作動媒体Mとの熱交換による昇温と、車室内に送風される空気Aとの熱交換による冷却を繰り返す。   At the time of separation of the first flow path 41 and the second flow path 42, the pump 45 operates to cause the cooling water W of the second flow path 42 to flow in the direction of the broken line arrow in the figure. The cooling water W circulates between the heat radiating section 32 and the heater core 6, and performs cooling by heat exchange with the working medium M of the heat pipe system 3 and cooling by heat exchange with the air A blown into the vehicle interior. repeat.

第2の流路42のヒータコア6の近傍に、冷却水Wの温度を測定する温度センサ46を設置する。温度センサ46は、第1の流路41と第2の流路42の分離時の、第2の流路42の冷却水Wの流路方向(破線矢印方向)におけるヒータコア6の出口側に設置する。   A temperature sensor 46 that measures the temperature of the cooling water W is installed in the vicinity of the heater core 6 in the second flow path 42. The temperature sensor 46 is installed on the outlet side of the heater core 6 in the flow path direction of the cooling water W in the second flow path 42 (in the direction of the broken line arrow) when the first flow path 41 and the second flow path 42 are separated. To do.

車両には、エンジン2の冷却水Wを外気との熱交換で冷却させるラジエータ8を設置する。ラジエータ8とエンジン2は、エンジン2内部を通過する冷却水Wを取り出す冷却水取り出し路81と、ラジエータ8で冷却した冷却水Wをエンジン2内部に還流させる冷却水還流路82によって接続する。冷却水取り出し路81にはサーモスタット83を設置し、冷却水Wの温度が所定温度になると冷却水取り出し路81を開くように設定する。所定温度は、例えば80℃〜90℃の範囲で適宜設定することができる。詳細な説明および図示は省略するが、エンジン2内部には冷却水Wの分岐路が設けられている。   A radiator 8 that cools the cooling water W of the engine 2 by heat exchange with outside air is installed in the vehicle. The radiator 8 and the engine 2 are connected by a cooling water extraction path 81 that extracts cooling water W that passes through the engine 2 and a cooling water recirculation path 82 that recirculates the cooling water W cooled by the radiator 8 to the inside of the engine 2. A thermostat 83 is installed in the cooling water take-out path 81, and is set so that the cooling water take-out path 81 is opened when the temperature of the cooling water W reaches a predetermined temperature. The predetermined temperature can be appropriately set within a range of 80 ° C. to 90 ° C., for example. Although detailed description and illustration are omitted, a branch path for the cooling water W is provided inside the engine 2.

サーモスタット83が開くと、冷却水流路4を流れる冷却水Wの一部がエンジン2内部の分岐路を通って冷却水取り出し路81から取り出され、ラジエータ8によって冷却される。冷却された冷却水Wは冷却水還流路82を通ってエンジン2内部に導かれ、冷却水流路4に再度導入される。サーモスタット83の開度によって、冷却水取り出し路81からラジエータ8に導入する冷却水Wの流量を調整する。   When the thermostat 83 is opened, a part of the cooling water W flowing through the cooling water flow path 4 is taken out from the cooling water take-out path 81 through the branch path inside the engine 2 and cooled by the radiator 8. The cooled cooling water W is guided to the inside of the engine 2 through the cooling water recirculation path 82 and introduced again into the cooling water flow path 4. The flow rate of the cooling water W introduced into the radiator 8 from the cooling water take-out path 81 is adjusted by the opening degree of the thermostat 83.

車両用空調装置1は、車両用空調装置1の動作を制御するコントローラ9を備える。
コントローラ9は、CPU、ROM、RAMなどによって構成され、ROMに記憶されたプログラムをCPUによって読み出すことで、車両用空調装置1に各種機能の制御を行う。
The vehicle air conditioner 1 includes a controller 9 that controls the operation of the vehicle air conditioner 1.
The controller 9 includes a CPU, a ROM, a RAM, and the like, and controls various functions of the vehicle air conditioner 1 by reading out a program stored in the ROM.

図3は、コントローラの構成を示すブロック図である。
コントローラ9は、図3に示すように、温度センサ46が測定する冷却水Wの温度に基づいて、四方弁43の位置の移動とポンプ44、45の動作を制御し、冷却水流路4の第1の流路41と第2の流路42の接続および分離を切り替える。
FIG. 3 is a block diagram showing the configuration of the controller.
As shown in FIG. 3, the controller 9 controls the movement of the position of the four-way valve 43 and the operation of the pumps 44, 45 based on the temperature of the cooling water W measured by the temperature sensor 46. The connection and separation between the first channel 41 and the second channel 42 are switched.

コントローラ9は、エンジン2の始動時には、図2に示すように、四方弁43を第2の位置に移動させて、冷却水流路4の第1の流路41と第2の流路42を分離する。   When starting the engine 2, the controller 9 moves the four-way valve 43 to the second position to separate the first flow path 41 and the second flow path 42 of the cooling water flow path 4 as shown in FIG. To do.

前記したように、車両用空調装置1は、エンジン2の熱と排ガスGの熱を利用して車室内の暖房を行うものであるが、エンジン2の始動時は、エンジン2はまだ暖機されていない状態であり、エンジン2の熱からは冷却水Wの昇温効果は得られにくい。また、冷却水流路4が、第1の流路41と第2の流路42を接続した単一の流路の場合、流路を通る冷却水Wの熱容量も大きくなる。冷却水Wの熱容量が大きいと冷却水Wが昇温されにくく、車内の暖房効率が低下するおそれがある。さらに、エンジン2の始動時にエンジン2の熱を冷却水Wの昇温に用いることで、エンジン2の暖機が妨げられるおそれもある。   As described above, the vehicle air conditioner 1 uses the heat of the engine 2 and the heat of the exhaust gas G to heat the passenger compartment, but when the engine 2 is started, the engine 2 is still warmed up. The temperature rise effect of the cooling water W is difficult to obtain from the heat of the engine 2. Moreover, when the cooling water flow path 4 is a single flow path in which the first flow path 41 and the second flow path 42 are connected, the heat capacity of the cooling water W passing through the flow path is also increased. If the heat capacity of the cooling water W is large, the temperature of the cooling water W is difficult to increase, and the heating efficiency inside the vehicle may be reduced. Furthermore, when the engine 2 is started, the heat of the engine 2 is used to raise the temperature of the cooling water W, so that the engine 2 may be prevented from warming up.

そのため、エンジン2の始動時には、コントローラ9は第1の流路41と第2の流路42を分離し、さらにポンプ44、45を動作させて、第1の流路41および第2の流路42のそれぞれで独立して冷却水Wを循環させる。   Therefore, when the engine 2 is started, the controller 9 separates the first flow path 41 and the second flow path 42 and further operates the pumps 44 and 45 so that the first flow path 41 and the second flow path are operated. The cooling water W is circulated independently in each of 42.

第1の流路41において、冷却水Wはエンジン2を通過するのみであるため、エンジン2の暖機が妨げられることがない。
第2の流路42において、冷却水Wは、ヒートパイプシステム3の放熱部32とヒータコア6とを通過する。ヒートパイプシステム3の放熱部32には、吸熱部31において排ガスGとの熱交換により気化した作動媒体Mが導かれる。冷却水Wは、作動媒体Mとの熱交換により昇温される。昇温された冷却水Wはエンジン2を通らず直接ヒータコア6に導かれる。ヒータコア6において、冷却水Wは、ブロアファン7によって車室内に送風される空気Aを、熱交換により昇温させる。このように、車両用空調装置1は、エンジン2の始動時には、ヒートパイプシステム3が回収する排ガスGの熱のみを利用して、車室内の暖房を行う。
Since the cooling water W only passes through the engine 2 in the first flow path 41, warming up of the engine 2 is not hindered.
In the second flow path 42, the cooling water W passes through the heat radiating unit 32 and the heater core 6 of the heat pipe system 3. The working medium M vaporized by heat exchange with the exhaust gas G in the heat absorbing part 31 is guided to the heat radiating part 32 of the heat pipe system 3. The temperature of the cooling water W is raised by heat exchange with the working medium M. The heated cooling water W is directly guided to the heater core 6 without passing through the engine 2. In the heater core 6, the cooling water W raises the temperature of the air A blown into the vehicle interior by the blower fan 7 by heat exchange. Thus, the vehicle air conditioner 1 heats the passenger compartment by using only the heat of the exhaust gas G collected by the heat pipe system 3 when the engine 2 is started.

第2の流路42は、第1の流路41と第2の流路42を接続した単一の流路よりも冷却水Wの容量が小さい。冷却水Wの容量が小さくなることにより、冷却水Wを昇温させるのに必要な熱容量も小さくなる。これによって、排ガスGの熱との熱交換のみでも冷却水Wを速やかに昇温させることができる。   The capacity of the cooling water W is smaller in the second flow path 42 than in the single flow path connecting the first flow path 41 and the second flow path 42. As the capacity of the cooling water W is reduced, the heat capacity necessary for raising the temperature of the cooling water W is also reduced. Thereby, the temperature of the cooling water W can be quickly raised only by heat exchange with the heat of the exhaust gas G.

車室内の暖房が進んで車室内の温度が上昇すると、ヒータコア6における冷却水Wとの熱交換量が小さくなるため、ヒータコア6の出口側の冷却水Wの温度は上昇する。車室内の温度が十分に上昇していれば、冷却水Wの容量が大きくなっても、暖房効率に影響を与えるおそれがない。そこで、コントローラ9は、温度センサ46が測定する冷却水Wの温度が所定値以上になったとき、四方弁43を第1の位置に移動させて、冷却水流路4を第1の流路41と第2の流路42を接続した単一の流路に切り替える。所定値は、例えば60℃〜80℃の範囲で適宜決定することができる。   When the heating of the passenger compartment progresses and the temperature of the passenger compartment increases, the amount of heat exchange with the cooling water W in the heater core 6 decreases, so the temperature of the cooling water W on the outlet side of the heater core 6 increases. If the temperature in the passenger compartment is sufficiently increased, there is no possibility of affecting the heating efficiency even if the capacity of the cooling water W is increased. Therefore, the controller 9 moves the four-way valve 43 to the first position when the temperature of the cooling water W measured by the temperature sensor 46 is equal to or higher than a predetermined value, and moves the cooling water flow path 4 to the first flow path 41. And the second flow path 42 is switched to a single flow path. The predetermined value can be appropriately determined within a range of 60 ° C. to 80 ° C., for example.

コントローラ9は、さらにポンプ45の動作を停止させ、ポンプ44のみを動作させることで、図1の矢印方向に示すように、冷却水Wは、ヒートパイプシステム3の放熱部32とエンジン2を通過した後に、ヒータコア6に導かれる。これによって、ヒータコア6は、排ガスGの熱とエンジン2の熱の双方を使用して暖房を行うことができる。また、エンジン2の暖機が必要な状態であれば、放熱部32において排ガスGの熱により昇温された冷却水Wをエンジン2の暖機に用いることもできる。   The controller 9 further stops the operation of the pump 45 and operates only the pump 44, so that the cooling water W passes through the heat radiating portion 32 and the engine 2 of the heat pipe system 3 as shown in the arrow direction of FIG. After that, it is guided to the heater core 6. Thereby, the heater core 6 can perform heating using both the heat of the exhaust gas G and the heat of the engine 2. Further, if the engine 2 needs to be warmed up, the cooling water W heated by the heat of the exhaust gas G in the heat radiating portion 32 can be used for warming up the engine 2.

また、車両が登坂走行等することによって、エンジン2が排出する排ガスGの熱も急激に上昇することがある。排ガスGの熱が上昇すると、排ガスGの熱を回収するヒートパイプシステム3の作動媒体Mの温度も上昇することがある。作動媒体Mの温度が上昇すると、作動媒体Mが分解したり、作動媒体Mの圧力が上昇し過ぎるおそれがある。第1の流路41と第2の流路42を接続して冷却水Wの熱容量を大きくすることによって、放熱部32において排ガスGの熱を効率良く回収することができ、作動媒体Mの温度上昇を抑制しやすい。   In addition, when the vehicle travels uphill, the heat of the exhaust gas G discharged from the engine 2 may also increase rapidly. When the heat of the exhaust gas G rises, the temperature of the working medium M of the heat pipe system 3 that recovers the heat of the exhaust gas G may also rise. When the temperature of the working medium M rises, the working medium M may be decomposed or the pressure of the working medium M may increase too much. By connecting the first flow path 41 and the second flow path 42 and increasing the heat capacity of the cooling water W, the heat of the exhaust gas G can be efficiently recovered in the heat radiating section 32, and the temperature of the working medium M is increased. It is easy to suppress the rise.

さらに、第1の流路41と第2の流路42が接続していれば、冷却水Wをエンジン2内部の分岐路(不図示)から冷却水取り出し路81に導き、ラジエータ8で冷却することもできる。ラジエータ8での冷却後、冷却水Wを冷却水流路4に再度導入し、放熱部32において作動媒体Mとの熱交換を行うことで、排ガスGの熱の回収効率をさらに向上させ、作動媒体Mの温度上昇を抑制することができる。   Further, if the first flow path 41 and the second flow path 42 are connected, the cooling water W is guided from the branch path (not shown) inside the engine 2 to the cooling water take-out path 81 and cooled by the radiator 8. You can also. After cooling with the radiator 8, the cooling water W is reintroduced into the cooling water flow path 4, and heat exchange with the working medium M is performed in the heat radiating unit 32, thereby further improving the heat recovery efficiency of the exhaust gas G. The temperature rise of M can be suppressed.

以上述べたように、実施の形態の車両用空調装置1は、
(1)エンジン2(内燃機関)が排出する排ガスGの熱を吸熱する吸熱部31と、吸熱部31が吸熱した排ガスGの熱を放出する放熱部32とを備えたヒートパイプシステム3(排熱回収部)と、
冷却水W(熱媒体)を流通させ、流路上にエンジン2と、ヒータコア6と、ヒートパイプシステム3の放熱部32とを配置した冷却水流路4(熱媒体流路)と、
冷却水流路4を、エンジン2、ヒータコア6および放熱部32を通過する単一の流路から、内燃機関を通過する第1の流路41と、ヒータコア6と放熱部32とを通過する第2の流路42の2つの流路に切り替える四方弁43(切替部)と、を備え、
エンジン2の始動時に、四方弁43により、冷却水流路4を2つの流路に切り替える。
As described above, the vehicle air conditioner 1 of the embodiment is
(1) A heat pipe system 3 (exhaust gas) having an endothermic portion 31 that absorbs heat of exhaust gas G exhausted by the engine 2 (internal combustion engine) and a heat radiating portion 32 that releases heat of exhaust gas G absorbed by the endothermic portion 31 Heat recovery section),
Cooling water flow path 4 (heat medium flow path) in which cooling water W (heat medium) is circulated and engine 2, heater core 6, and heat radiating portion 32 of heat pipe system 3 are arranged on the flow path,
A first flow path 41 that passes through the internal combustion engine, a second flow path that passes through the heater core 6 and the heat dissipation section 32, from a single flow path that passes through the cooling water flow path 4 through the engine 2, the heater core 6, and the heat dissipation section 32. A four-way valve 43 (switching unit) that switches to two channels of the channel 42,
When the engine 2 is started, the cooling water flow path 4 is switched to two flow paths by the four-way valve 43.

ヒータコア6は、エンジン2の熱とエンジン2が排出する排ガスGの熱を利用して昇温した冷却水Wとの熱交換により、車内の暖房を行う。しかしながら、エンジン2の始動時は、エンジン2はまだ暖機されていない状態であるため、エンジン2の熱による冷却水Wの昇温は十分ではない。そのため、エンジン2の始動時には、冷却水流路4を2つの流路に切り替えて、ヒータコア6と放熱部32を通過する第2の流路42で冷却水Wを流通させることで、冷却水Wの熱容量が小さくなるため、冷却水Wをエンジン2の排ガスGの熱で速やかに昇温させることができ、暖房効率を向上させることができる。   The heater core 6 heats the interior of the vehicle by heat exchange between the heat of the engine 2 and the cooling water W that has been heated using the heat of the exhaust gas G discharged from the engine 2. However, since the engine 2 is not yet warmed up when the engine 2 is started, the temperature of the cooling water W due to the heat of the engine 2 is not sufficient. Therefore, when the engine 2 is started, the cooling water flow path 4 is switched to two flow paths, and the cooling water W is circulated through the second flow path 42 that passes through the heater core 6 and the heat radiating unit 32, thereby Since the heat capacity is reduced, the temperature of the cooling water W can be quickly raised by the heat of the exhaust gas G of the engine 2, and the heating efficiency can be improved.

(2)四方弁43は、エンジン2を通過する第1の流路41と、ヒータコア6および放熱部32を通過する第2の流路42を、分離可能に接続する。 (2) The four-way valve 43 detachably connects the first flow path 41 that passes through the engine 2 and the second flow path 42 that passes through the heater core 6 and the heat dissipation part 32.

四方弁43により第1の流路41と第2の流路42を分離可能に接続することで、四方弁43の位置の移動により冷却水流路4を単一の流路と2つの流路との間で容易に切り替えることができる。   By connecting the first flow path 41 and the second flow path 42 so as to be separable by the four-way valve 43, the position of the four-way valve 43 is moved so that the cooling water flow path 4 can Can be easily switched between.

(3)ヒータコア6の出力側に設けられ、冷却水Wの温度を測定する温度センサ46を備え、冷却水Wの温度が所定値以上となったとき、冷却水流路4を2つの流路から単一の流路に切り替える。 (3) A temperature sensor 46 is provided on the output side of the heater core 6 and measures the temperature of the cooling water W. When the temperature of the cooling water W becomes equal to or higher than a predetermined value, the cooling water channel 4 is separated from the two channels. Switch to a single flow path.

車内の暖房が進んで冷却水Wが昇温したところで冷却水流路4を単一の流路に切り替えることで、冷却水Wの容量が大きくなっても暖房効率に影響を与えにくい。さらに、エンジン2、ヒータコア6および放熱部32を接続することによって、ヒータコア6は排ガスGの熱に加えてエンジン2の熱も暖房に利用することができるため、暖房効率を向上させることができる。   By switching the cooling water flow path 4 to a single flow path when the interior of the vehicle is heated and the temperature of the cooling water W rises, it is difficult to affect the heating efficiency even if the capacity of the cooling water W increases. Furthermore, by connecting the engine 2, the heater core 6, and the heat radiating portion 32, the heater core 6 can use the heat of the engine 2 in addition to the heat of the exhaust gas G for heating, so that the heating efficiency can be improved.

(4)ヒートパイプシステム3は、作動媒体Mを循環させ、吸熱部31は作動媒体Mを排ガスGとの熱交換により気化させ、放熱部32は気化した作動媒体Mを冷却水Wとの熱交換により凝縮させるものであり、
外気との熱交換で冷却水Wを冷却させるラジエータ8と、
エンジン2を通過する冷却水Wを取り出してラジエータ8に導き、冷却された冷却水Wをエンジン2に還流させる、冷却水取り出し路81および冷却水還流路82(熱媒体冷却流路)と、を備える。
(4) The heat pipe system 3 circulates the working medium M, the heat absorbing unit 31 vaporizes the working medium M by heat exchange with the exhaust gas G, and the heat radiating unit 32 heats the vaporized working medium M with the cooling water W. It is condensed by exchange,
A radiator 8 that cools the cooling water W by heat exchange with outside air;
A cooling water take-out path 81 and a cooling water recirculation path 82 (heat medium cooling flow path) for taking out the cooling water W passing through the engine 2 and guiding it to the radiator 8 and returning the cooled cooling water W to the engine 2 are provided. Prepare.

排ガスGの熱の上昇によってヒートパイプシステム3の作動媒体Mの温度が上昇すると、作動媒体Mが分解したり、作動媒体Mの圧力が上昇し過ぎるおそれがある。エンジン2を通過する冷却水Wを取り出してラジエータ8で冷却することによって、冷却水Wの放熱部32における排ガスGの熱回収効率が高まるため、作動媒体Mの温度上昇を抑制しやすくなる。   When the temperature of the working medium M of the heat pipe system 3 rises due to an increase in the heat of the exhaust gas G, the working medium M may be decomposed or the pressure of the working medium M may increase excessively. By taking out the cooling water W passing through the engine 2 and cooling it with the radiator 8, the heat recovery efficiency of the exhaust gas G in the heat radiating section 32 of the cooling water W is increased, so that the temperature rise of the working medium M is easily suppressed.

以下、実施の形態の変形例を説明する。なお、変形例において、実施の形態と同じ構成については同じ符号を付し、詳細な説明は省略する。   Hereinafter, modifications of the embodiment will be described. In addition, in a modification, the same code | symbol is attached | subjected about the same structure as embodiment, and detailed description is abbreviate | omitted.

[変形例1]
前記した実施の形態では、第1の流路41と第2の流路42の分離時のヒータコア6の出力側に温度センサ46を設置し、温度センサ46が測定する冷却水Wの温度に基づいて、第1の流路41と第2の流路42の分離と接続を切り替えたが、これに限られない。
[Modification 1]
In the above-described embodiment, the temperature sensor 46 is installed on the output side of the heater core 6 when the first flow path 41 and the second flow path 42 are separated, and based on the temperature of the cooling water W measured by the temperature sensor 46. Thus, the separation and connection of the first flow path 41 and the second flow path 42 are switched, but the present invention is not limited to this.

図4は、変形例1に係る車両用空調装置1の概略構成図である。
図4に示すように、変形例1に係る車両用空調装置1は、ヒートパイプ33の吸熱部31の出力側に設置した圧力センサ34を備える。圧力センサ34は、吸熱部31で気化された作動媒体Mの圧力を測定する。
FIG. 4 is a schematic configuration diagram of the vehicle air conditioner 1 according to the first modification.
As shown in FIG. 4, the vehicle air conditioner 1 according to Modification 1 includes a pressure sensor 34 installed on the output side of the heat absorbing portion 31 of the heat pipe 33. The pressure sensor 34 measures the pressure of the working medium M vaporized by the heat absorbing unit 31.

実施の形態と同様に、コントローラ9は、エンジン2の始動時は、四方弁43を第2の位置に移動させて、冷却水流路4を第1の流路41と第2の流路42に分離する。   Similarly to the embodiment, when the engine 2 is started, the controller 9 moves the four-way valve 43 to the second position so that the cooling water channel 4 is changed to the first channel 41 and the second channel 42. To separate.

コントローラ9は、圧力センサ34の出力値を参照し、作動媒体Mの内部の圧力が所定値以上になったとき、四方弁43を第1の位置に移動させて、第1の流路41と第2の流路42を接続し、冷却水流路4を単一の流路とする。所定値は、作動媒体Mの圧力の異常上昇の傾向を示す値とすることができ、例えば、3Mpaとすることができる。   The controller 9 refers to the output value of the pressure sensor 34, and moves the four-way valve 43 to the first position when the internal pressure of the working medium M becomes a predetermined value or more, The 2nd flow path 42 is connected and the cooling water flow path 4 is made into a single flow path. The predetermined value can be a value indicating a tendency of an abnormal increase in the pressure of the working medium M, and can be, for example, 3 Mpa.

実施の形態で説明したように、排ガスGの熱の上昇によって作動媒体Mの温度が上昇すると、作動媒体Mの圧力が上昇する。そこで、作動媒体Mの圧力が所定値を超えたところで、第1の流路41と第2の流路42を接続して冷却水流路4を単一の流路とする。これによって、実施の形態と同様に、冷却水Wの熱容量が大きくして、放熱部32における冷却水Wと作動媒体Mの熱交換が促進し、作動媒体Mの温度上昇を抑制することができる。   As described in the embodiment, when the temperature of the working medium M increases due to the increase in the heat of the exhaust gas G, the pressure of the working medium M increases. Therefore, when the pressure of the working medium M exceeds a predetermined value, the first flow path 41 and the second flow path 42 are connected to make the cooling water flow path 4 a single flow path. As a result, similarly to the embodiment, the heat capacity of the cooling water W is increased, the heat exchange between the cooling water W and the working medium M in the heat radiating unit 32 is promoted, and the temperature rise of the working medium M can be suppressed. .

以上述べたように、変形例1の車両用空調装置1において、
(5)ヒートパイプシステム3は、作動媒体Mを循環させ、吸熱部31は作動媒体Mを排ガスGとの熱交換により気化させ、放熱部32は気化した作動媒体Mを冷却水Wとの熱交換により凝縮させるものであり、
ヒートパイプ33の吸熱部31の出力側に設けられ、気化した作動媒体Mの圧力を測定する圧力センサ34を備え、
作動媒体Mの圧力が所定値以上となったとき、冷却水流路4を2つの流路から単一の流路に切り替える。
As described above, in the vehicle air conditioner 1 of the first modification,
(5) The heat pipe system 3 circulates the working medium M, the heat absorbing unit 31 vaporizes the working medium M by heat exchange with the exhaust gas G, and the heat radiating unit 32 heats the vaporized working medium M with the cooling water W. It is condensed by exchange,
A pressure sensor 34 that is provided on the output side of the heat absorption part 31 of the heat pipe 33 and measures the pressure of the vaporized working medium M;
When the pressure of the working medium M becomes a predetermined value or more, the cooling water channel 4 is switched from two channels to a single channel.

ヒートパイプシステム3の作動媒体Mの圧力が所定値を超えたときに、冷却水流路4を2つの流路から単一の流路に切り替えることによって、冷却水Wの容量を大きくして作動媒体Mと冷却水Wの熱交換を促進し、作動媒体Mの圧力の異常上昇を抑制してヒートパイプシステム3を保護することができる。   When the pressure of the working medium M of the heat pipe system 3 exceeds a predetermined value, the capacity of the cooling water W is increased by switching the cooling water flow path 4 from two flow paths to a single flow path. Heat exchange between M and the cooling water W can be promoted, and an abnormal increase in the pressure of the working medium M can be suppressed to protect the heat pipe system 3.

なお、変形例1を、実施の形態における温度センサ46の測定値に基づく第1の流路41と第2の流路42の分離と接続の切り替えと組み合わせても良い。すなわち、温度センサ46が測定する冷却水Wの温度が所定値を超えた場合、または圧力センサ34が測定する作動媒体Mの圧力が所定値を超えた場合に、第1の流路41と第2の流路42を接続するようにしても良い。   Note that the first modification may be combined with the separation of the first flow path 41 and the second flow path 42 based on the measurement value of the temperature sensor 46 in the embodiment and the switching of the connection. That is, when the temperature of the cooling water W measured by the temperature sensor 46 exceeds a predetermined value, or when the pressure of the working medium M measured by the pressure sensor 34 exceeds a predetermined value, the first flow path 41 and the first flow path 41 are changed. Two flow paths 42 may be connected.

[変形例2]
前記した実施の形態では、第1の流路41と第2の流路42を四方弁43によって接続または分離させることで、冷却水流路4を単一の流路と2つの流路の間で切り替えたが、これに限られない。
図5は、変形例2に係る車両用空調装置1の概略構成図である。
図5に示すように、変形例2では、単一の冷却水流路400上に、エンジン2、ヒータコア6および放熱部32を配置した。そして、冷却水流路4のエンジン2とヒータコア6の間と、エンジン2と放熱部32の間にそれぞれ接続する2つの並列なバイパス流路401、402を設けた。各バイパス流路401、402には流路の開閉弁403、404を設けた。また、冷却水流路400の、2つのバイパス流路401、402の接続点の間にも開閉弁405、406を設けた。
[Modification 2]
In the above-described embodiment, the first flow path 41 and the second flow path 42 are connected or separated by the four-way valve 43, so that the cooling water flow path 4 is between the single flow path and the two flow paths. Although it switched, it is not restricted to this.
FIG. 5 is a schematic configuration diagram of the vehicle air conditioner 1 according to the second modification.
As shown in FIG. 5, in the second modification, the engine 2, the heater core 6, and the heat radiating unit 32 are arranged on a single cooling water flow path 400. Then, two parallel bypass passages 401 and 402 connected between the engine 2 and the heater core 6 in the cooling water passage 4 and between the engine 2 and the heat radiating portion 32 are provided. The bypass flow paths 401 and 402 are provided with flow path opening / closing valves 403 and 404, respectively. Further, on-off valves 405 and 406 are provided between the connection points of the two bypass channels 401 and 402 in the cooling water channel 400.

エンジン2の始動時には、バイパス流路401、402の開閉弁403、404を開き、冷却水流路400の開閉弁405、406を閉じる。これによって、エンジン2のみを通過する第1の流路と、ヒータコア6および放熱部32を通過する第2の流路が形成される。実施形態と同様に、ポンプ44、45の双方を動作させることによって、冷却水Wは、図中一点鎖線の矢印で示すように、第1の流路と第2の流路のそれぞれを独立して流通する。これによって、実施の形態と同様に、冷却水Wの熱容量が小さくして、冷却水Wをエンジン2の排ガスGの熱で速やかに昇温させることができ、暖房効率を向上させることができる。   When the engine 2 is started, the on-off valves 403 and 404 of the bypass passages 401 and 402 are opened, and the on-off valves 405 and 406 of the cooling water passage 400 are closed. Thus, a first flow path that passes only through the engine 2 and a second flow path that passes through the heater core 6 and the heat radiating portion 32 are formed. As in the embodiment, by operating both the pumps 44 and 45, the cooling water W can be made independent of each of the first flow path and the second flow path as indicated by the dashed-dotted arrows in the figure. Circulate. Thereby, similarly to the embodiment, the heat capacity of the cooling water W can be reduced, and the temperature of the cooling water W can be quickly raised by the heat of the exhaust gas G of the engine 2, thereby improving the heating efficiency.

実施の形態と同様に、ヒータコア6の出力側に設置した温度センサ46の測定する冷却水Wの温度が所定値を超えた場合には、バイパス流路401、402の開閉弁403、404を閉じ、冷却水流路400の開閉弁405、406を開き、ポンプ45の動作を停止させる。これによって、図中破線の矢印で示すように、冷却水Wは単一の冷却水流路4上を流通する。   Similarly to the embodiment, when the temperature of the cooling water W measured by the temperature sensor 46 installed on the output side of the heater core 6 exceeds a predetermined value, the on-off valves 403 and 404 of the bypass flow paths 401 and 402 are closed. Then, the on-off valves 405 and 406 of the cooling water channel 400 are opened, and the operation of the pump 45 is stopped. As a result, the cooling water W flows through the single cooling water flow path 4 as indicated by the dashed arrows in the figure.

変形例2は、変形例1に適用しても良く、ヒートパイプ33の吸熱部31の出力側に設けた圧力センサ34の測定値に基づいて、単一の流路と2つの流路の切り替えを行っても良い。   Modification 2 may be applied to Modification 1, and switches between a single flow path and two flow paths based on a measurement value of a pressure sensor 34 provided on the output side of the heat absorbing portion 31 of the heat pipe 33. May be performed.

1 車両用空調装置
2 エンジン
3 ヒートパイプシステム
4 冷却水流路
5 排気管
6 ヒータコア
7 ブロアファン
8 ラジエータ
9 コントローラ
31 吸熱部
32 放熱部
33 ヒートパイプ
41 第1の流路
42 第2の流路
43 四方弁
44 ポンプ
45 ポンプ
46 温度センサ
81 冷却水取り出し路
82 冷却水還流路
83 サーモスタット
34 圧力センサ
400 冷却水流路
401、402 バイパス流路
403、404 開閉弁
405、406 開閉弁
A 空気
G 排ガス
W 冷却水
M 作動媒体
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Engine 3 Heat pipe system 4 Cooling water flow path 5 Exhaust pipe 6 Heater core 7 Blower fan 8 Radiator 9 Controller 31 Heat absorption part 32 Heat radiation part 33 Heat pipe 41 First flow path 42 Second flow path 43 Four-way Valve 44 Pump 45 Pump 46 Temperature sensor 81 Cooling water extraction path 82 Cooling water recirculation path 83 Thermostat 34 Pressure sensor 400 Cooling water path 401, 402 Bypass path 403, 404 On-off valve 405, 406 On-off valve A Air G Exhaust gas W Cooling water M Working medium

Claims (5)

内燃機関が排出する排ガスの熱を吸熱する吸熱部と前記吸熱部が吸熱した前記排ガスの熱を放出する放熱部とを備えた排熱回収部と、
熱媒体を流通させ、流路上に前記内燃機関と、ヒータコアと、前記排熱回収部の前記放熱部とを配置した熱媒体流路と、
前記熱媒体流路を、前記内燃機関、前記ヒータコアおよび前記放熱部を通過する単一の流路から、前記内燃機関を通過する第1の流路と、前記ヒータコアおよび前記放熱部を通過する第2の流路の2つの流路に切り替える切替部と、を備え、
前記内燃機関の始動時に、前記切替部により、前記熱媒体流路を前記2つの流路に切り替えることを特徴とする車両用空調装置。
An exhaust heat recovery part comprising an endothermic part that absorbs the heat of the exhaust gas exhausted by the internal combustion engine and a heat dissipation part that releases the heat of the exhaust gas absorbed by the endothermic part;
A heat medium flow path in which a heat medium is circulated, and the internal combustion engine, the heater core, and the heat dissipation section of the exhaust heat recovery section are disposed on the flow path;
A first flow path that passes through the internal combustion engine, a first flow path that passes through the internal combustion engine, and a first flow path that passes through the heater core and the heat dissipation section from a single flow path that passes through the internal combustion engine, the heater core, and the heat dissipation section. A switching unit for switching to two channels of the two channels,
An air conditioner for a vehicle, wherein the heat medium flow path is switched to the two flow paths by the switching unit when the internal combustion engine is started.
前記切替部は、前記内燃機関を通過する第1の流路と、前記ヒータコアおよび前記放熱部を通過する第2の流路を、分離可能に接続する四方弁であることを特徴とする請求項1記載の車両用空調装置。   The switching unit is a four-way valve that detachably connects a first flow path that passes through the internal combustion engine and a second flow path that passes through the heater core and the heat dissipation part. The vehicle air conditioner according to 1. 前記ヒータコアの出力側に設けられ、前記熱媒体の温度を測定する温度センサを備え、
前記熱媒体の温度が所定値以上となったとき、前記熱媒体流路を前記2つの流路から前記単一の流路に切り替える請求項1記載の車両用空調装置。
A temperature sensor provided on the output side of the heater core for measuring the temperature of the heat medium;
The vehicle air conditioner according to claim 1, wherein when the temperature of the heat medium becomes equal to or higher than a predetermined value, the heat medium flow path is switched from the two flow paths to the single flow path.
前記排熱回収部は、作動媒体を循環させるヒートパイプであり、前記吸熱部は前記作動媒体を前記排ガスとの熱交換により気化させ、前記放熱部は気化した前記作動媒体を前記熱媒体との熱交換により凝縮させるものであり、
前記ヒートパイプの前記吸熱部の出力側に設けられ、気化した前記作動媒体の圧力を測定する圧力センサを備え、
前記作動媒体の圧力が所定値以上となったとき、前記熱媒体流路を前記2つの流路から前記単一の流路に切り替えることを特徴とする請求項1記載の車両用空調装置。
The exhaust heat recovery unit is a heat pipe that circulates a working medium, the heat absorption unit vaporizes the working medium by heat exchange with the exhaust gas, and the heat radiating unit exchanges the vaporized working medium with the heat medium. It is condensed by heat exchange,
A pressure sensor that is provided on the output side of the heat absorption part of the heat pipe and measures the pressure of the vaporized working medium;
The vehicle air conditioner according to claim 1, wherein when the pressure of the working medium becomes a predetermined value or more, the heat medium flow path is switched from the two flow paths to the single flow path.
前記排熱回収部は、作動媒体を循環させるヒートパイプシステムであり、前記吸熱部は前記作動媒体を前記排ガスとの熱交換により気化させ、前記放熱部は気化した前記作動媒体を前記熱媒体との熱交換により凝縮させるものであり、
外気との熱交換で前記熱媒体を冷却させるラジエータと、
前記内燃機関を通過する前記熱媒体を取り出して前記ラジエータに導き、冷却された前記熱媒体を前記内燃機関に還流させる熱媒体冷却流路と、を備えることを特徴とする請求項1記載の車両用空調装置。
The exhaust heat recovery unit is a heat pipe system that circulates a working medium, the heat absorption unit vaporizes the working medium by heat exchange with the exhaust gas, and the heat dissipation unit converts the vaporized working medium to the heat medium. It is condensed by heat exchange of
A radiator that cools the heat medium by heat exchange with outside air;
The vehicle according to claim 1, further comprising: a heat medium cooling flow path that takes out the heat medium passing through the internal combustion engine, guides the heat medium to the radiator, and returns the cooled heat medium to the internal combustion engine. Air conditioner.
JP2018102543A 2018-05-29 2018-05-29 vehicle air conditioner Active JP7126752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018102543A JP7126752B2 (en) 2018-05-29 2018-05-29 vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018102543A JP7126752B2 (en) 2018-05-29 2018-05-29 vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2019206261A true JP2019206261A (en) 2019-12-05
JP7126752B2 JP7126752B2 (en) 2022-08-29

Family

ID=68767354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018102543A Active JP7126752B2 (en) 2018-05-29 2018-05-29 vehicle air conditioner

Country Status (1)

Country Link
JP (1) JP7126752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112248760A (en) * 2020-10-28 2021-01-22 重庆长安汽车股份有限公司 Automobile heating and ventilation loop structure and control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591998A (en) * 1982-06-28 1984-01-07 Nissan Motor Co Ltd Heat medium pressure control device for waste heat restrieving device
JPS5916211U (en) * 1982-07-23 1984-01-31 日産自動車株式会社 Vehicle heating system
JPS61235215A (en) * 1985-04-12 1986-10-20 Nippon Denso Co Ltd Immediately effectual heating apparatus for vehicles
JP2005219603A (en) * 2004-02-05 2005-08-18 Denso Corp Vehicular air-conditioner
US20130199751A1 (en) * 2012-02-03 2013-08-08 Ford Global Technologies, Llc Heat storage device for an engine
WO2013128618A1 (en) * 2012-03-01 2013-09-06 トヨタ自動車株式会社 Structure for front section of vehicle
US20150121847A1 (en) * 2013-11-05 2015-05-07 Ford Global Technologies, Llc Exhaust throttling for cabin heating
JP2018012463A (en) * 2016-07-22 2018-01-25 株式会社デンソー Vehicular air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591998A (en) * 1982-06-28 1984-01-07 Nissan Motor Co Ltd Heat medium pressure control device for waste heat restrieving device
JPS5916211U (en) * 1982-07-23 1984-01-31 日産自動車株式会社 Vehicle heating system
JPS61235215A (en) * 1985-04-12 1986-10-20 Nippon Denso Co Ltd Immediately effectual heating apparatus for vehicles
JP2005219603A (en) * 2004-02-05 2005-08-18 Denso Corp Vehicular air-conditioner
US20130199751A1 (en) * 2012-02-03 2013-08-08 Ford Global Technologies, Llc Heat storage device for an engine
WO2013128618A1 (en) * 2012-03-01 2013-09-06 トヨタ自動車株式会社 Structure for front section of vehicle
US20150121847A1 (en) * 2013-11-05 2015-05-07 Ford Global Technologies, Llc Exhaust throttling for cabin heating
JP2018012463A (en) * 2016-07-22 2018-01-25 株式会社デンソー Vehicular air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112248760A (en) * 2020-10-28 2021-01-22 重庆长安汽车股份有限公司 Automobile heating and ventilation loop structure and control method

Also Published As

Publication number Publication date
JP7126752B2 (en) 2022-08-29

Similar Documents

Publication Publication Date Title
JP4197005B2 (en) Exhaust heat recovery device
JP5018592B2 (en) Waste heat recovery device
JP4432979B2 (en) Exhaust heat recovery system
JP4985594B2 (en) Vehicle cooling system
JP4245063B2 (en) Waste heat recovery device
CN105874182B (en) Inlet gas cooling device
JP2010260449A (en) Air conditioner for vehicle
JP2007223418A (en) Vehicular heat utilization device
JP2009138558A (en) Internal combustion engine
JP2007247556A (en) Exhaust heat recovery device
JP2009113610A (en) Air conditioning system for vehicle
JPWO2016059791A1 (en) Air conditioner for vehicles
JP2011173543A (en) Battery cooling/heating device
JP2010065543A (en) Vehicular cooling system
JP2009190579A (en) Air conditioning system
JP2009257254A (en) Chemical thermal storage system for vehicle
JP2013170508A (en) Cooling device for vehicle
JP2009250147A (en) Liquid circulation circuit of liquid-cooled engine
JP2019206261A (en) Vehicular air conditioner
JP2018119423A (en) Engine cooling system
JP2011052662A (en) Waste heat recovery device for vehicle
JP4976222B2 (en) Waste heat recovery device
JP2008196424A (en) Cooling device for vehicle
JP2012197012A (en) Air conditioning system
JP2007137184A (en) Heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220816

R150 Certificate of patent or registration of utility model

Ref document number: 7126752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350