JPS61235215A - Immediately effectual heating apparatus for vehicles - Google Patents

Immediately effectual heating apparatus for vehicles

Info

Publication number
JPS61235215A
JPS61235215A JP7893685A JP7893685A JPS61235215A JP S61235215 A JPS61235215 A JP S61235215A JP 7893685 A JP7893685 A JP 7893685A JP 7893685 A JP7893685 A JP 7893685A JP S61235215 A JPS61235215 A JP S61235215A
Authority
JP
Japan
Prior art keywords
heat
tank
exhaust gas
engine
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7893685A
Other languages
Japanese (ja)
Inventor
Toshio Hirata
平田 敏夫
Hiroaki Arai
宏昭 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP7893685A priority Critical patent/JPS61235215A/en
Publication of JPS61235215A publication Critical patent/JPS61235215A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/025Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from both the cooling liquid and the exhaust gases of the propulsion plant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To secure a efficient immediately heating effect, by constituting a device in transmitting heat of exhaust gas to a heat insulating tank timely via a heat pipe, in case of the device which utilizes the heat of hot water inside the heat insulating tank storing a part of engine cooling water and performs immediately effectual heating at the time of engine cold. CONSTITUTION:At the time of engine starting, whether cooling water temperature inside a heat insulating tank 7 is more than the specified value (about 90 deg.C) or not is judged from output of a water temperature sensor 25 at a control circuit 16, and when YES is the case, a valve 10 is closed but valves 11-13 are closed, making a water pump 14 operate. In addition, a solenoid 23 installed in a heat supplying chamber 18 is energized with a continuous rating current, opening a shutter 21, and exhaust gas inside an exhaust pipe 15 is led into the heat supplying chamber 18, whereby heat of the exhaust gas is fed to the inside of a pretank 9 via a heat pipe 17, thus an immediate heating effect is yet more heightened. Afterward, with the progress of warming up, the valve 10 is opened and the valve 12 is closed instead, and when temperature inside the heat insulating tank 7 becomes more than the setting one (about 120 deg.C), the solenoid 23 is unenergized, having the shutter 21 closed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エンジンの冷却水を熱源とする車室内暖房装
置のエンジン始動時における応急的暖房用熱源として、
保温タンク内に貯溜されているエンジン冷却水を使用す
る方式の即効暖房装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a heat source for emergency heating at the time of starting the engine of a vehicle interior heating system that uses engine cooling water as a heat source.
The present invention relates to an instant heating device that uses engine cooling water stored in a heat retention tank.

〔従来の技術〕[Conventional technology]

内燃機関を駆動用動力源とする車両の車室内暖房は、一
般的にエンジン冷却水を特徴とする特許タコアによって
空気を加熱して暖房を行うものであるので、当然にエン
ジン始動後、エンジン冷却水温の低いときには直ちに車
内を温めることができず、しばらくの間は寒い思いをし
なければならない。そこで、特公昭59−26482号
公報に開示されている如く車の走行中に充分に加温され
たエンジン冷却水の一部を保温タンク内に蓄えておき、
この温水をエンジン冷却水温の低い時期にヒータコアに
提供する方法が案出されている。これに対して、本発明
者らはすでにパイプ材中にメタノール、ベンゼン、水等
の伝熱媒体を封入させた不可逆的伝熱性を有するヒート
パイプを用い、エンジン排気管から排気熱を保温タンク
内に供給して保温タンク内のエンジン冷却水の温度をさ
らに高めて即効暖房効果を高める方式を特願昭59−7
8838号において提案している。
In-vehicle heating for vehicles that use an internal combustion engine as a driving power source is generally done by heating the air using a patented tacoa that features engine cooling water, so it is natural that after the engine starts, engine cooling is performed. When the water temperature is low, it is not possible to warm up the inside of the car immediately, and you have to feel cold for a while. Therefore, as disclosed in Japanese Patent Publication No. 59-26482, a portion of the engine cooling water that has been sufficiently heated while the car is running is stored in a heat insulating tank.
A method has been devised to provide this hot water to the heater core during periods when the engine cooling water temperature is low. In response to this, the present inventors have already used a heat pipe with irreversible heat transfer properties in which a heat transfer medium such as methanol, benzene, water, etc. is sealed in the pipe material, and the exhaust heat is transferred from the engine exhaust pipe into a heat insulating tank. A patent application was filed in 1983 for a method to further raise the temperature of engine cooling water in the heat insulating tank and increase the immediate heating effect.
It is proposed in No. 8838.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記のようなヒートパイプを備えた即効暖
房装置においては、ヒートパイプの蒸発部側か常にエン
ジン排気ガスにさらされていると、エンジン冷却水温が
異常に高まって保温タンク内が異常に高温高圧になり保
温タンクが破損するという問題があり、これを避けるた
めに保温タンク内のエンジン冷却水を循環させるとエン
ジン冷却水温が上がりすぎエンジンにとって好ましくな
いとともに、ヒートパイプの放熱側である凝縮部での放
熱が充分でないのに排気ガスの熱が供給され続けるとヒ
ートパイプ内の圧力が高まりすぎる場合が発生する。一
般に薄肉円筒からなるヒートパイプの内圧によるパイプ
の外周壁にかかる引張応力fは第4図に示すように内圧
Pと、管壁の厚さt、管外径D1とを用いてf−P−D
/2tで求められる。通常はヒートパイプ容器材料の最
大引張強さにfuに対して4程度の安全係数を見込んで
最大許容応力f□、(f、/4)が決定され、使用限界
値としての蒸気圧力つまり蒸気温度が決定されている。
However, in the above-mentioned instant heating system equipped with a heat pipe, if the evaporator side of the heat pipe is constantly exposed to engine exhaust gas, the engine cooling water temperature will rise abnormally, causing the inside of the heat insulating tank to become abnormally high temperature and high pressure. If you circulate the engine cooling water in the insulation tank to avoid this, the engine cooling water temperature will rise too much, which is not good for the engine, and the condensation part on the heat dissipation side of the heat pipe will If exhaust gas heat continues to be supplied even though the heat dissipation is insufficient, the pressure inside the heat pipe may become too high. Generally, the tensile stress f applied to the outer peripheral wall of a heat pipe made of a thin cylinder due to the internal pressure is calculated using the internal pressure P, the thickness t of the pipe wall, and the outside diameter D1 of the pipe, as shown in Fig. 4. D
/2t. Normally, the maximum allowable stress f□, (f, /4) is determined by considering the safety factor of about 4 for fu in the maximum tensile strength of the heat pipe container material, and the steam pressure or steam temperature as the limit value for use. has been decided.

また、第5図に各種のヒートパイプ作動流体の蒸気温度
と蒸気圧の関係を示すが、図かられかるように蒸気温度
に対して蒸気圧力は急激に上昇するので、安全係数を見
込んであるとはいえヒートパイプへの熱の過供給は、ヒ
ートパイプの破損につながる可能性があるという新たな
問題点があることがわかった。
In addition, Figure 5 shows the relationship between the steam temperature and steam pressure of various heat pipe working fluids.As can be seen from the figure, the steam pressure increases rapidly with respect to the steam temperature, so a safety factor is taken into account. However, it has been discovered that there is a new problem in that oversupplying heat to the heat pipe can lead to damage to the heat pipe.

〔問題点を解決するための手段〕[Means for solving problems]

そこで上記のような問題点を解決するための本発明の手
段とは、保温タンク内のエンジン冷却水温が所定温度以
上になったときに、排ガスのバイパス路への排ガスの通
人を遮断する手段を設けるものである。
Therefore, the means of the present invention for solving the above-mentioned problems is a means for blocking the flow of exhaust gas to the exhaust gas bypass path when the temperature of the engine cooling water in the heat insulation tank reaches a predetermined temperature or higher. It is intended to provide

〔作用〕[Effect]

上記手段によれば、保温タンク内のエンジン冷却水温が
所定温度以上になると排ガスバイパス路への排ガスの供
給が断たれるために、ヒートパイプおよびエンジン冷却
水に必要以上の熱量が供給されることがなくなる。
According to the above means, the supply of exhaust gas to the exhaust gas bypass passage is cut off when the temperature of the engine cooling water in the heat insulating tank exceeds a predetermined temperature, so that more heat than necessary is supplied to the heat pipe and the engine cooling water. disappears.

〔発明の効果〕〔Effect of the invention〕

従って、本発明によれば、ヒートパイプによる熱の過剰
供給によるエンジン冷却水の過熱やヒートパイプの破損
を回避することができ、有効な蓄熱式即効暖房装置を提
供できるというすぐれた効果がある。
Therefore, according to the present invention, it is possible to avoid overheating of the engine cooling water and breakage of the heat pipe due to excessive supply of heat by the heat pipe, and there is an excellent effect that an effective regenerative type instant heating device can be provided.

〔実施例〕〔Example〕

次に本発明の車両用即効暖房装置を図に示す実施例に基
づいて説明する。第1図は本発明の暖房装置の構成要素
とそれらの作動系統を説明した図であって、エンジンl
の冷却用ウォータジャケット2と車室内暖房ユニット3
に内臓されたヒータコア4とを結んでエンジン冷却水の
循環管路の往路5と帰路6が設けられており、この往路
5がら分岐し、帰路6に合流するエンジン冷却温水の貯
溜用保温タンク7を介在させた温水管路8が付設されて
いる。保温タンク7は真空ガラス容器等の断熱容器で構
成されており、この保温タンク7内のエンジン冷却水温
を検知するサーミスタ式水温センサーが25が配設され
ている。またこの温水管路8の保温タンク7と合流点6
aとの間には、断熱容器かまたは単なる容器からなるプ
リタンク9が設けられており、保温タンク7とプリタン
ク9とで蓄熱用保温タンクを形成している。またエンジ
ン冷却水の循環往路5の途中の、エンジン冷却用ウォー
タジャケット2と分岐点5aとの間にはバルブAIOが
設けられている。一方、保温タンク7とプリタンク9と
の間およびプリタンク9と前記分岐点6aとの間の温水
管路8の途中にはバルブBllおよびバルブC12が設
けられている。他方前記分岐点5aとヒータコア4との
間の循環往路5の途中にはバルブD13が配設されてい
る。保温タンク7と前記分岐点5aとの間の温水管路8
の途中にはウォータポンプ14が保温タンク7側にエン
ジン冷却水を送水する向きに取り付けられている。また
エンジン冷却水循環往路5のエンジン1に近い部位には
サーミスタ式水温センサ15が設けられている。そして
、保温タンク内の温度が即効暖房を行うための最低温度
すなわち90℃以上となっているときには制御回路16
の信号に基づいてバルブAIOが閉じられ、バルブBl
l、パルプC12,バルブD13が開かれさらにウォー
タポンプ14が作動されることによって即効暖房が行わ
れるよう構成されている。また、エンジン冷却水温が保
温タンク内の温度よりも高くなるとバルブAIOが開か
れ、バルブC12が閉じられ、ウォータポンプ14が停
止されることによって通常のエンジン冷却水の循環によ
る暖房が行われるよう構成されている。なお、ウォータ
ポンプ14は停止している時も少量のエンジン冷却水を
通過させることができる。またエンジン排気管15途中
には第2図(a)およびその人−A断面図である同図(
b)にその詳細な構造を説明するような排ガスバイパス
路を形成する給熱室18が設けられている。第2図にお
いて18aは排気管15の外周部に設けられた金属製容
器で、排気管15の外周面に溶接、ロー付は等により気
密的に接続され、給熱室18を形成している。19は排
気ガスを給熱室18に導入する導入口、20は導入され
た排気ガスを排気管15に戻す導出口で両者が開かれて
いるときは図中矢印のように排気ガスがバイパスする。
Next, an instant heating device for a vehicle according to the present invention will be explained based on an embodiment shown in the drawings. FIG. 1 is a diagram illustrating the components of the heating device of the present invention and their operating system, and shows the engine l
cooling water jacket 2 and vehicle interior heating unit 3
An outgoing path 5 and a return path 6 of the engine cooling water circulation pipe are connected to the heater core 4 built in the engine cooling water, and the outgoing path 5 branches off and joins the return path 6 to a heat insulating tank 7 for storing engine cooling hot water. A hot water pipe 8 is provided with a hot water pipe 8 interposed therebetween. The heat-retaining tank 7 is composed of a heat-insulating container such as a vacuum glass container, and a thermistor-type water temperature sensor 25 for detecting the temperature of engine cooling water in the heat-retaining tank 7 is disposed. In addition, this hot water pipe 8 has a heat insulating tank 7 and a confluence point 6.
A pre-tank 9 consisting of a heat insulating container or a simple container is provided between the pre-tank 7 and the pre-tank 9, and the heat retaining tank 7 and the pre-tank 9 form a heat retaining tank for heat storage. Further, a valve AIO is provided between the engine cooling water jacket 2 and the branch point 5a in the middle of the engine cooling water circulation path 5. On the other hand, a valve Bll and a valve C12 are provided in the middle of the hot water pipe 8 between the heat retention tank 7 and the pre-tank 9 and between the pre-tank 9 and the branch point 6a. On the other hand, a valve D13 is disposed in the middle of the circulation path 5 between the branch point 5a and the heater core 4. Hot water pipe 8 between the heat retention tank 7 and the branch point 5a
A water pump 14 is installed in the middle of the tank so as to feed engine cooling water to the heat insulating tank 7 side. Further, a thermistor type water temperature sensor 15 is provided in a portion of the engine coolant circulation outward path 5 near the engine 1. When the temperature inside the heat retention tank is the minimum temperature for immediate heating, that is, 90°C or higher, the control circuit 16
Valve AIO is closed based on the signal of valve Bl
1, the pulp C12, the valve D13 are opened, and the water pump 14 is operated to perform immediate heating. Further, when the engine cooling water temperature becomes higher than the temperature in the heat retention tank, the valve AIO is opened, the valve C12 is closed, and the water pump 14 is stopped, so that heating is performed by normal engine cooling water circulation. has been done. Note that even when the water pump 14 is stopped, a small amount of engine cooling water can pass through it. In addition, in the middle of the engine exhaust pipe 15, there is shown in FIG.
A heat supply chamber 18 is provided which forms an exhaust gas bypass path, the detailed structure of which will be explained in b). In FIG. 2, reference numeral 18a denotes a metal container provided on the outer periphery of the exhaust pipe 15, which is airtightly connected to the outer periphery of the exhaust pipe 15 by welding, brazing, etc., and forms the heat supply chamber 18. . 19 is an inlet for introducing exhaust gas into the heat supply chamber 18, and 20 is an outlet for returning the introduced exhaust gas to the exhaust pipe 15. When both are open, the exhaust gas is bypassed as shown by the arrow in the figure. .

17は保温タンクを形成するプリタンク9の内部にその
一端である凝縮部17aが収納され他端である蒸発部1
7bが前記給熱室18内に収納されたヒートパイプで、
給熱室18内の排ガスの熱をプリタンク9内に供給し、
蓄熱用エンジン冷却水の温度を高めるものである。なお
給熱室18は排気管に取り付けられているためにエンジ
ンの振動が伝わり、もしヒートパイプ17が保温タンク
7に直接接続されていると断熱容器からなる保温タンク
7が破損する可能性がある。従ってプリタンク9にヒー
トパイプ17の凝縮部17aを接続し、プリタンク9の
2つの通水口9a、9bと温水管路8とを弾性を有する
ゴムホース8a、8bで接続して振動を吸収できるよう
構成しである。なお、24はウォータジャケット2の入
口部に配設されエンジンによって駆動されるウォータポ
ンプである。ここで上記の不可逆的伝熱特性を有するヒ
ートパイプ17の望ましい形態としては、伝熱媒体とし
てメタノール、ベンゼン、水などを封入し、スクリーン
状、溝形あるいはフオーム・フェルト製のウィックを組
み込んだもので、パイプ材質としてはステンレススチー
ルを銅でコーティングしたタイプのものが推貰される。
17 is a pre-tank 9 which forms a heat retention tank, and a condensing part 17a at one end thereof is housed inside the pre-tank 9, and an evaporating part 1 at the other end thereof.
7b is a heat pipe housed in the heat supply chamber 18;
Supplying the heat of the exhaust gas in the heat supply chamber 18 into the pre-tank 9,
This increases the temperature of engine cooling water for heat storage. Note that since the heat supply chamber 18 is attached to the exhaust pipe, engine vibrations are transmitted to it, and if the heat pipe 17 is directly connected to the heat insulation tank 7, there is a possibility that the heat insulation tank 7, which is an insulated container, will be damaged. . Therefore, the condensing part 17a of the heat pipe 17 is connected to the pre-tank 9, and the two water inlets 9a, 9b of the pre-tank 9 and the hot water pipe line 8 are connected with elastic rubber hoses 8a, 8b, so that vibrations can be absorbed. It is. Note that 24 is a water pump disposed at the inlet of the water jacket 2 and driven by the engine. Here, a desirable form of the heat pipe 17 having the above-mentioned irreversible heat transfer characteristics is one in which methanol, benzene, water, etc. is sealed as a heat transfer medium, and a screen-shaped, groove-shaped, or foam felt wick is incorporated. The recommended pipe material is stainless steel coated with copper.

重力型ヒートパイプを用いる場合には、ヒートパイプの
両 端のそれぞれの取付位置の高低差はウィックとして
銅フェルト、作動液として水を使用した場合には、少な
くとも6.3cmを要し、走行中の車体の傾斜を考えれ
ばヒートパイプ17の凝縮部17aを収納するプリタン
ク9を取付ける位置はなるべく上部にすることが望まし
い。また給熱室18の導入口19には、この導入口19
を開閉できるように設けられた金属板等からなるシャッ
ター21が作動棒22を介して電磁ソレノイド23に連
結されている。24は作動棒22に一体的に形成された
つば部22aと作動部である電磁ソレノイド23のケー
ス下面23aとの間に固定され、シャッター21を導出
口19に押し付ける向きにそのバネ力が付勢されたコイ
ルスプリングであり、電磁ソレノイド23のコイルに通
電されると作動部22が引き上げられシャッター21は
導入口19から離れ排ガスが給熱室18に導入される。
When using a gravity type heat pipe, the difference in height between the installation positions at both ends of the heat pipe must be at least 6.3 cm when copper felt is used as the wick and water is used as the working fluid. Considering the inclination of the vehicle body, it is desirable that the pre-tank 9, which accommodates the condensing part 17a of the heat pipe 17, be installed at the upper part of the vehicle. In addition, the introduction port 19 of the heat supply chamber 18 has a
A shutter 21 made of a metal plate or the like and provided so as to be able to open and close is connected to an electromagnetic solenoid 23 via an operating rod 22. 24 is fixed between a collar portion 22a integrally formed on the actuating rod 22 and a case lower surface 23a of an electromagnetic solenoid 23 which is an actuating portion, and its spring force is biased in a direction to press the shutter 21 against the outlet 19. When the coil of the electromagnetic solenoid 23 is energized, the operating part 22 is pulled up, the shutter 21 is separated from the inlet 19, and the exhaust gas is introduced into the heat supply chamber 18.

また保温タンク7に設けられた水温センサー25の信号
は制御回路16に入力されており、この水温が120℃
以上になったとき制御回路16の信号に基づいて電磁ソ
レノイド23のコイルへの通電がOFFされると、シャ
ッター21が導入口19を閉じるように構成されている
。第3図は、以上のように構成された即効暖房装置を自
動的に作動させる制御回路16の作動を説明するフロー
チャートである。次に本発明の即効暖房システムの作動
について第1図および第2図に基づいて説明する。エン
ジン始動時の水温センサー25により検知された保温タ
ンク7内のエンジン冷却水温が90℃以上となっている
時には、制御回路16の信号に基づいて、バルブAIO
を閉、 バルブBll、ノS>tzプC12,バルブD
13を開としウォータポ ンプ14を作動させる。この
ときウォータポンプ24の送水は、図示しないラジェー
タ回路のバイパス路を経由して循環させている。また給
熱室18に設けられた電磁ソレノイド23のコイルに通
 電されシャッタ21が導入口19から離れて排ガスの
バイパス路が形成される。このときエンジン作動中に蓄
えられ停止後も高温のままに保たれていた保温タンク7
内のエンジン冷却水がヒータコア4内に循環通人され即
効暖房を行う(第1図実線矢印)、同時にエンジン1の
排気熱がヒートパイプ17によってプリタンク9内に供
給されより一層即効暖房能力の向上に寄与する。エンジ
ン冷却水温(水温センサー15で検知)が保温タンク7
内の温度(水温センサー15で検知)より高まってきた
ら、制御回路16の信号に基づいてバルブAIOを、ウ
ォータポンプ14を停止することによって、通常暖房状
態をもたらすとともに、ウォータポンプ14を通過して
エンジン冷却水の一部が保温タンク7内に供給されるの
で保温タンク7およびブリタンク9内の水温が上昇する
(第1図破線矢印)。
Further, the signal from the water temperature sensor 25 provided in the heat retention tank 7 is input to the control circuit 16, and the water temperature is 120°C.
In this case, when the coil of the electromagnetic solenoid 23 is de-energized based on a signal from the control circuit 16, the shutter 21 closes the introduction port 19. FIG. 3 is a flowchart illustrating the operation of the control circuit 16 that automatically operates the instant heating device configured as described above. Next, the operation of the instant heating system of the present invention will be explained based on FIGS. 1 and 2. When the engine cooling water temperature in the heat insulation tank 7 detected by the water temperature sensor 25 at the time of engine startup is 90°C or higher, the valve AIO
Close, Valve Bll, No S>tz C12, Valve D
13 to operate the water pump 14. At this time, the water supplied by the water pump 24 is circulated via a bypass path of a radiator circuit (not shown). Also, the coil of the electromagnetic solenoid 23 provided in the heat supply chamber 18 is energized, the shutter 21 is moved away from the inlet 19, and a bypass path for the exhaust gas is formed. At this time, the heat insulating tank 7 was stored while the engine was running and remained at high temperature even after the engine stopped.
The engine cooling water inside the heater core 4 is circulated through the heater core 4 to provide immediate heating (solid line arrow in Figure 1), and at the same time, the exhaust heat from the engine 1 is supplied to the pre-tank 9 through the heat pipe 17, further improving the immediate heating capacity. Contribute to The engine cooling water temperature (detected by the water temperature sensor 15) is in the heat retention tank 7.
When the water temperature rises above the water temperature (detected by the water temperature sensor 15), the valve AIO is turned off based on the signal from the control circuit 16, and the water pump 14 is stopped to bring about the normal heating state. Since a portion of the engine cooling water is supplied into the heat retention tank 7, the water temperature in the heat retention tank 7 and the water tank 9 rises (as indicated by the broken line arrow in FIG. 1).

そして、エンジン冷却水温度が、さらに上昇して90℃
以上になったところで、バルブC12を閉しることによ
って、プリタンク9を介して保温タンク7内への排熱の
回収を開始する。このまま、ヒートパイプ17による熱
回収を進めていくと保温タンク7内圧力またヒートパイ
プ17内蒸気圧力が異常に高まり破損する恐れがあるの
で、保温タンク7内温度が上昇し、ある設定温度例えば
120℃以上となったことを水温センサ25が検知する
と、制御回路16によって電磁ソレノイド23への通電
をOFFすることで、シャッター21を導入口19に押
し付けることによって排ガスの給熱室18へのバイパス
が遮断され、排気熱回収を中断する。さらにシャッター
21で十分遮閉できない熱量は、シャッタ21の作動と
同時に、バルブBllを閉、バルブC12を開状態にす
ることでエンジン冷却水へ放出し、保温タンク7内圧力
、ヒートパイプ17内の蒸気圧力の暴走を防ぐように作
動させてもよい。以上のように作動させることによって
エンジン排気ガスの熱量の、ヒートパイプ17による過
供給で保温タンク7内、おヨヒヒートパイプ17内に異
常高圧をおこすことなく、保温タンク7内の保温水の温
度を高めることによって有効な即効暖房効果を発揮する
ことができる。
Then, the engine coolant temperature rose further to 90℃.
At this point, by closing the valve C12, recovery of exhaust heat into the heat-retaining tank 7 via the pre-tank 9 is started. If heat recovery by the heat pipe 17 continues as it is, the internal pressure of the heat insulating tank 7 and the steam pressure in the heat pipe 17 will abnormally increase and there is a risk of damage. When the water temperature sensor 25 detects that the temperature has exceeded ℃, the control circuit 16 turns off the power to the electromagnetic solenoid 23 and presses the shutter 21 against the inlet 19, thereby preventing the exhaust gas from bypassing the heat supply chamber 18. shut off, interrupting exhaust heat recovery. Furthermore, the amount of heat that cannot be sufficiently shut off by the shutter 21 is released into the engine cooling water by closing the valve Bll and opening the valve C12 at the same time as the shutter 21 operates, increasing the pressure inside the heat insulating tank 7 and the heat pipe 17. It may be operated to prevent steam pressure from running out of control. By operating as described above, the temperature of the warm water in the heat retaining tank 7 can be maintained without causing an abnormally high pressure in the heat retaining tank 7 and the Oyohi heat pipe 17 due to excessive supply of heat from the engine exhaust gas by the heat pipe 17. By increasing the temperature, an effective immediate heating effect can be achieved.

本発明は上記実施例に限定されず以下の如く変形可能で
ある。本発明におけるシャッター21の作動部は電磁ソ
レノイド23の他にエンジン吸気負圧を利用したバキュ
ームモータ等で構成されてもよい。また上記実施例にお
いてはシャッター21は導入口19に設けられていたが
導出口20側であってもよく、あるいは導入口19.導
出口20の両者を同時に開閉できるように構成してもよ
い。また上記実施例において給熱室18は、排気管15
途中に設けられていたが、さらに高温のエンジン排気部
に設けられてもよい。排気管15には排気浄化触媒装置
が設けられており、その上流、下流いずれの側にも配設
できるが、下流側のほうが排気浄化触媒装置へ流入する
排ガスの温度を下げることがないためより好ましい。上
記実施例においてはヒートパイプ17の凝縮部17aは
ブリタンク9の内部に収納されていたが、伝熱板等を用
いることにより、プリタンクの側壁に当接させる構造で
あってもかまわない。
The present invention is not limited to the above embodiments, but can be modified as follows. In addition to the electromagnetic solenoid 23, the actuating section of the shutter 21 in the present invention may include a vacuum motor or the like that utilizes engine intake negative pressure. Further, in the above embodiment, the shutter 21 was provided at the inlet 19, but it may be provided at the outlet 20 side, or the shutter 21 may be provided at the inlet 19. It may be configured such that both of the outlet ports 20 can be opened and closed at the same time. Further, in the above embodiment, the heat supply chamber 18 includes the exhaust pipe 15
Although it was provided in the middle, it may also be provided in the engine exhaust section, which has a higher temperature. The exhaust pipe 15 is provided with an exhaust purification catalyst device, and although it can be installed on either the upstream or downstream side, it is better to install it on the downstream side because it does not lower the temperature of the exhaust gas flowing into the exhaust gas purification catalyst device. preferable. In the above embodiment, the condensing part 17a of the heat pipe 17 is housed inside the pre-tank 9, but it may be in contact with the side wall of the pre-tank by using a heat transfer plate or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の車両用即効暖房装置の構成要素とそれ
らの作動系統の説明図、第2図(a)。 (b)は、第1図の要部を拡大したヒートパイプの蒸発
部を収納している給熱室18の断面図およびそのA−A
断面図、第3図は第1図における暖房システムの構成要
素の働きを電気的に制御するための制御回路16のフロ
ーチャート、第4図は、薄肉円筒のヒートパイプ内に蒸
気圧が作用しているときの圧力と内部応力のつり合いを
説明する断面図、第5図は、各種作動流体の蒸気圧力と
温度との関係を説明する特性図である。1・・・エンジ
ン。 7・・・保温タンク、9・・・ブリタンク、15・・・
排気管。
FIG. 1 is an explanatory diagram of the components and their operating system of the instant heating device for a vehicle according to the present invention, and FIG. 2(a). (b) is a cross-sectional view of the heat supply chamber 18 housing the evaporation part of the heat pipe, which is an enlarged view of the main part of FIG. 1, and its A-A.
A cross-sectional view, FIG. 3 is a flowchart of the control circuit 16 for electrically controlling the functions of the heating system components shown in FIG. 1, and FIG. FIG. 5 is a cross-sectional view illustrating the balance between pressure and internal stress when the fluid is present, and FIG. 5 is a characteristic diagram illustrating the relationship between vapor pressure and temperature of various working fluids. 1...Engine. 7... Heat retention tank, 9... Buri tank, 15...
Exhaust pipe.

Claims (1)

【特許請求の範囲】  エンジン冷却水の一部を保温タンク内に蓄え、エンジ
ン冷却水温の低いときに前記保温タンク内の温水の熱を
利用して即効暖房を行う車両用蓄熱式即効暖房装置にお
いて、 前記エンジンの排気部に設けられ前記エンジンの排ガス
を流通させる排ガスバイパス路と、前記保温タンクに凝
縮側が接続され、前記バイパス路に蒸発側が接続され、
前記排ガスバイパス路から前記保温タンクに排ガスの熱
を移動させるヒートパイプと、 前記保温タンク内のエンジン冷却水温を検知する温度セ
ンサーと、 前記温度センサーの検知した温度に基づいて信号を発す
る制御回路と、 前記バイパス路内に設けられ、制御回路の信号を受けて
前記バイパス路を開閉するものであって、前記水温セン
サーによって保温タンク内の温度が所定温度以上になっ
たことを検知したとき、前記制御回路からの信号を受け
て前記バイパス路を遮断する手段とを備えたことを特徴
とする車両用即効暖房装置。
[Claims] In a thermal storage type instant heating device for a vehicle that stores a portion of engine cooling water in a heat retention tank and uses the heat of the hot water in the heat retention tank to provide immediate heating when the engine cooling water temperature is low. , an exhaust gas bypass path provided in the exhaust part of the engine and through which the exhaust gas of the engine flows, a condensing side connected to the heat insulating tank, and an evaporating side connected to the bypass path,
a heat pipe that transfers exhaust gas heat from the exhaust gas bypass path to the heat insulation tank; a temperature sensor that detects the engine cooling water temperature in the heat insulation tank; and a control circuit that issues a signal based on the temperature detected by the temperature sensor. , which is provided in the bypass path and opens and closes the bypass path in response to a signal from a control circuit, and when the water temperature sensor detects that the temperature in the heat retention tank has exceeded a predetermined temperature, An instant heating device for a vehicle, comprising means for receiving a signal from a control circuit and cutting off the bypass path.
JP7893685A 1985-04-12 1985-04-12 Immediately effectual heating apparatus for vehicles Pending JPS61235215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7893685A JPS61235215A (en) 1985-04-12 1985-04-12 Immediately effectual heating apparatus for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7893685A JPS61235215A (en) 1985-04-12 1985-04-12 Immediately effectual heating apparatus for vehicles

Publications (1)

Publication Number Publication Date
JPS61235215A true JPS61235215A (en) 1986-10-20

Family

ID=13675759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7893685A Pending JPS61235215A (en) 1985-04-12 1985-04-12 Immediately effectual heating apparatus for vehicles

Country Status (1)

Country Link
JP (1) JPS61235215A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120120A (en) * 1988-10-28 1990-05-08 Nippon Denso Co Ltd Air conditioner for automobile
JPH0451808U (en) * 1990-09-11 1992-04-30
EP1122104A2 (en) * 2000-02-02 2001-08-08 Visteon Global Technologies, Inc. Method of thermal management for a hybrid vehicle
JP2010064527A (en) * 2008-09-08 2010-03-25 Denso Corp Vehicular cooling system
US9567029B2 (en) 2002-06-25 2017-02-14 Fox Factory, Inc. Integrated and self-contained suspension assembly having an on-the-fly adjustable air spring
US9802670B2 (en) 2002-06-25 2017-10-31 Fox Factory, Inc. Gas spring curve control in an adjustable volume gas pressurized device
US10132379B2 (en) 2002-06-25 2018-11-20 Fox Factory, Inc. Gas spring with travel control
JP2019206261A (en) * 2018-05-29 2019-12-05 マレリ株式会社 Vehicular air conditioner
JP2019206260A (en) * 2018-05-29 2019-12-05 マレリ株式会社 Vehicle air conditioner
US10941828B2 (en) 2002-06-25 2021-03-09 Fox Factory, Inc. Gas spring with travel control

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120120A (en) * 1988-10-28 1990-05-08 Nippon Denso Co Ltd Air conditioner for automobile
JPH0451808U (en) * 1990-09-11 1992-04-30
EP1122104A2 (en) * 2000-02-02 2001-08-08 Visteon Global Technologies, Inc. Method of thermal management for a hybrid vehicle
US6464027B1 (en) * 2000-02-02 2002-10-15 Visteon Global Technologies, Inc. Method of thermal management for a hybrid vehicle
EP1122104A3 (en) * 2000-02-02 2003-12-10 Visteon Global Technologies, Inc. Method of thermal management for a hybrid vehicle
US9567029B2 (en) 2002-06-25 2017-02-14 Fox Factory, Inc. Integrated and self-contained suspension assembly having an on-the-fly adjustable air spring
US9802670B2 (en) 2002-06-25 2017-10-31 Fox Factory, Inc. Gas spring curve control in an adjustable volume gas pressurized device
US10132379B2 (en) 2002-06-25 2018-11-20 Fox Factory, Inc. Gas spring with travel control
US10202166B2 (en) 2002-06-25 2019-02-12 Fox Factory, Inc. Integrated and self-contained suspension assembly having an on-the-fly adjustable air spring
US10421518B2 (en) 2002-06-25 2019-09-24 Fox Factory, Inc. Gas spring curve control in an adjustable volume gas pressurized device
US10941828B2 (en) 2002-06-25 2021-03-09 Fox Factory, Inc. Gas spring with travel control
JP2010064527A (en) * 2008-09-08 2010-03-25 Denso Corp Vehicular cooling system
JP2019206261A (en) * 2018-05-29 2019-12-05 マレリ株式会社 Vehicular air conditioner
JP2019206260A (en) * 2018-05-29 2019-12-05 マレリ株式会社 Vehicle air conditioner

Similar Documents

Publication Publication Date Title
US6032869A (en) Heating apparatus for vehicle
JPS61235215A (en) Immediately effectual heating apparatus for vehicles
JP6627245B2 (en) Thermal storage system
US4982895A (en) Heating system for automotive vehicles
JPH04218424A (en) Car airconditioner
JPH0629551B2 (en) Exhaust heat recovery device for internal combustion engine
JPH10309933A (en) Heater device for vehicle
JP3767028B2 (en) Cooling system for internal combustion engine for vehicle
JPS5968545A (en) Accelerating device of warm-up for internal-combustion engine
JP2000329401A5 (en)
JPS61295118A (en) Instantaneous heating apparatus for vehicles
JP3690156B2 (en) Cold / hot water supply equipment
JPS61247856A (en) Heat accumulating system
JPH108955A (en) Heat insulating device for cooling liquid and lubricating oil
CN209163933U (en) Cooling water circulation structure for turbocharger
JPS60244613A (en) Immediate effecting regenerative heater for vehicle
JPS5810247B2 (en) Automotive heating system
JPS6340759Y2 (en)
JPH0343045Y2 (en)
JPH0157269B2 (en)
JPS6113869Y2 (en)
JPS6139605Y2 (en)
JPH03495Y2 (en)
JPH0541213Y2 (en)
JPS60248944A (en) Hot water supplying device