JP2005016477A - Exhaust heat recovery device for internal combustion engine - Google Patents

Exhaust heat recovery device for internal combustion engine Download PDF

Info

Publication number
JP2005016477A
JP2005016477A JP2003185169A JP2003185169A JP2005016477A JP 2005016477 A JP2005016477 A JP 2005016477A JP 2003185169 A JP2003185169 A JP 2003185169A JP 2003185169 A JP2003185169 A JP 2003185169A JP 2005016477 A JP2005016477 A JP 2005016477A
Authority
JP
Japan
Prior art keywords
air
cooling medium
exhaust
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003185169A
Other languages
Japanese (ja)
Inventor
Katsufumi Inoue
勝文 井上
Toshiyuki Hayashi
季之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2003185169A priority Critical patent/JP2005016477A/en
Publication of JP2005016477A publication Critical patent/JP2005016477A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heart recovery device for recovering reaction heat of a catalyst for exhaust gas purification to heat cooling medium of an internal combustion engine, and efficiently improving heating ability of an air-conditioner by the cooling medium. <P>SOLUTION: A cooling medium exhaust heat exchanger 18 is disposed to introduce exhaust gas passing through a catalytic converter 5 therein and heat-exchange between the exhaust gas and the cooling medium in a medium circulation passage 4. At least, when a temperature of the cooling medium is lower than a predetermined value, or when increase in heating ability of the air-conditioner is requested, a control device 3 performs a catalyst heat generation amount increase control to increase a calorific value of a catalytic converter 5, so that the cooling medium is heated with the reaction heat of a catalyst. Since the cooling medium recovers more reaction heat of the catalyst, and the reaction heat heats the cooling medium, insufficient heating ability is efficiently compensated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和装置の熱源となる内燃機関の冷却媒体に排気ガスの熱を取り込むようにした内燃機関の排気熱回収装置に関する。
【0002】
【従来の技術】
内燃機関の排気熱を利用した従来の暖房装置としては、エンジン必要出力、室温、暖房必要温度およびエンジン冷却水温のそれぞれの条件に応じて、エンジン排気を気液間熱交換器へ導く切換弁と、この熱交換器を通るエンジン排気の通路に設けた絞り弁と、をそれぞれ開閉制御することにより暖房制御するようになっている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平1−132415号公報(第6頁、第1図)
【0004】
【発明が解決しようとする課題】
しかしながら、かかる従来の内燃機関の排気熱回収装置は、エンジンの排気熱が十分にあるときは冷却媒体である冷却水によって熱を回収し、これを暖房などに供することは可能であるが、エンジンの排気熱が不足するときは、暖房補助として満足する熱量を得ることは難しくなってしまう。
【0005】
例えば、冬季のエンジンアイドル状態では、エンジンの負荷が小さくなって排気量が減少し、かつ、排気温度も低くなっており、また、エンジンや車両によっては、冷却水の温度が所定値以下(例えば、75゜C)となって低く、この冷却水の熱で空気調和装置を暖房しようとした場合に暖房能力が不足する恐れがある。
【0006】
そこで、本発明はかかる従来の課題に鑑みて、排気ガスの浄化用触媒の反応熱を回収して内燃機関の冷却媒体を温め、この冷却媒体によって空気調和装置の暖房能力を効率よく高めるようにした内燃機関の排気熱回収装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
かかる目的を達成するために本発明の内燃機関の排気熱回収装置にあっては、触媒コンバータを通過した排気ガスを導入して、前記冷却系の冷却媒体との間で熱交換する冷媒排熱交換器を設け、少なくとも、前記冷却媒体の温度が所定値よりも低い場合、若しくは、前記空気調和装置の暖房能力の増加要請が有る場合に、前記制御装置の制御により前記触媒コンバータの発熱量を増加させる触媒発熱量増加制御を実行し、触媒での反応熱をもって冷却媒体を温めて空気調和装置のヒータコアの熱源とすることを特徴としている。
【0008】
【発明の効果】
かかる構成になる本発明によれば、冷媒排熱交換器によって触媒コンバータを通過した排気ガスと冷却媒体との間で熱交換するようになっており、冷却媒体の温度が低い場合や暖房能力の増加が必要な場合に、触媒コンバータの発熱量を増加させる触媒発熱量増加制御を実行することにより、触媒の反応熱を冷却媒体によってより多く回収してその冷却媒体を温めることができるため、不足する暖房能力を効率良く補うことができ、また、冷却媒体の温度上昇を促進できるため燃費をも改善することができる。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面と共に詳述する。
【0010】
図1〜図5は本発明にかかる内燃機関の排気熱回収装置の一実施形態を示し、図1は排気熱回収装置の全体構成図、図2は触媒発熱量増加制御を実行するためのフローチャートを示す説明図、図3は触媒反応性に及ぼす空燃比周波数制御の効果を制御無しと制御有りとで比較して示すグラフ、図4は二次空気量に対する回収熱量の変化を空燃比の違いによって示すグラフ、図5は点火進角と排気ガス温度の関係を示すグラフである。
【0011】
本実施形態の排気熱回収装置1は車両に搭載した内燃機関としてのエンジン2に適用し、このエンジン2の冷却媒体としての冷却水を暖房の熱源とする空気調和装置を備えている。
【0012】
即ち、前記車両は、エンジン2と、このエンジン2の空燃比、二次空気量、点火タイミング等を制御する制御装置としてのエンジンコントロールユニット3と、エンジン2を冷却水で冷却する媒体循環経路としての冷却水循環経路4と、エンジン2の排気を導入して浄化する触媒コンバータ5と、前記冷却水循環経路4の冷却水を導入して空調風との間で熱交換する前記空気調和装置のヒータコア6と、を備えている。
【0013】
前記エンジン2は、インテークマニホルド7で吸入した空気とインジェクタ8で霧化した燃料を導入し、排気ガスをエキゾーストマニホルド9からマフラー10に繋がる排気管11へと排出するようになっており、エキゾーストマニホルド9の下流部位に前記触媒コンバータ5を配置してある。
【0014】
勿論、インジェクタ8は前記エンジンコントロールユニット3から出力される指令信号により燃料噴射量を制御するようになっている。
【0015】
前記冷却水循環経路4は、冷却水を循環ポンプ12からエンジン2の図外の冷却水路に供給した後、冷却水通路4aを介してラジエータ13に導入した後に前記循環ポンプ12へと循環させる。
【0016】
また、前記ヒータコア6は、エンジン2の冷却水路を通過した冷却水を、前記冷却水通路4aから分岐した分岐通路4bを介して導入した後、戻し通路4cを介して前記循環ポンプ12に戻すようになっており、このヒータコア6は図外の空調ファンの送風と冷却水との間で熱交換して暖房風を作り出すようになっている。
【0017】
前記ヒータコア6を備えた空気調和装置は、空調コントロールユニット14により空調制御するようになっており、空気調和装置で設定した車室内温度目標値を空調コントロールユニット14から前記エンジンコントロールユニット3に出力するようになっている。
【0018】
前記エンジンコントロールユニット3には、インテークマニホルド7に設けた流量計15の検出信号、エキゾーストマニホルド9に設けた空燃比センサ16の検出信号、前記経路4bに設けた水温センサ17の検出信号が入力される。
【0019】
ここで、本実施形態の排気熱回収装置1は、前記排気管11に設けて触媒コンバータ5を通過した排気ガスを導入するとともに、前記冷却水循環経路4の分岐通路4bを接続して冷却水との間で熱交換する冷媒排熱交換器18を設け、少なくとも、前記冷却水の温度が所定値よりも低い場合、若しくは、前記空気調和装置の暖房能力の増加要請が有る場合に、前記エンジンコントロールユニット3の制御により前記触媒コンバータ5の発熱量を増加させる触媒発熱量増加制御を実行して、触媒コンバータ5の触媒での反応熱をもって冷却水を温めるようにしてある(請求項1)。
【0020】
また、前記触媒発熱量増加制御は、空燃比の周波数制御と空燃比の燃料リッチ制御とを併用して燃焼成分を増加させるとともに、図1に示すように、触媒コンバータ5の上流側にエアポンプ19を介して二次空気を導入するようになっている(請求項2)。
【0021】
このとき、エアポンプ19の二次空気導入量は前記エンジンコントロールユニット3から出力される指令信号により制御されるようになっている。
【0022】
更に、前記触媒発熱量増加制御は、上述した空燃比の周波数制御と空燃比の燃料リッチ制御とに加えて、点火タイミングを遅角させる制御を加える(請求項3)。
【0023】
更にまた、前記触媒発熱量増加制御は、空燃比の値を、予め設定した所定の冷却水温度と実際の冷却水温度との差分、若しくは、車室内温度目標値から求められる冷却水の目標温度と実際の冷却水温度との差分を元に設定するようになっており、かつ、触媒コンバータ5に導入する二次空気量は、前記空燃比の値を元に触媒コンバータ5に流入する排気ガスの量を制御して、触媒における空燃比が理論空燃比になるように設定してある(請求項4)。
【0024】
また、前記排気熱回収装置1には、図1に示すように、排気管11には触媒コンバータ5を通過した排気ガスを冷媒排熱交換器18に導入する排気導入経路11aと、冷媒排熱交換器18をバイパスして排気ガスを流すバイパス経路11bと、を設け、排気導入経路11aの触媒コンバータ5の上流側と下流側に第1開閉弁20と第2開閉弁21を設けるとともに、バイパス経路11bに第3開閉弁22を設け、これら第1〜第3開閉弁20,21,22によって排気導入経路11aとバイパス経路11bとを選択的に切換えるようになっている(請求項5)。
【0025】
前記第1〜第3開閉弁20,21,22は、前記エンジンコントロールユニット3から出力される指令信号によりそれぞれ開閉制御され、バイパス経路11bを介して冷媒排熱交換器18をバイパスする排気ガス量を制御する。
【0026】
このとき、前記第1,第2開閉弁20,21を排気導入経路11aに設け、かつ、第3開閉弁22をバイパス経路11bに設けたが、これら排気導入経路11aとバイパス経路11bの少なくとも一方に開閉弁を設けて、両経路11a,11bを選択的に切換えることもできる。
【0027】
更に、前記触媒発熱量増加制御は、車両が停止状態でエンジン2がアイドル状態にある場合に限定して行うことが好ましい(請求項6)。
【0028】
前記エンジンコントロールユニット3は、図2に示すフローチャートに従って排気熱回収制御を実行するようになっており、まず、図2に示すように、ステップS1では、車速、アクセル開度、エンジン2の作動可否、エンジン2の冷却水温、空調コントロールユニット14からの暖房能力増加要請、および車室内設定温度、室内温度、外気温度、日射センサーなどに基づいて演算した目標冷却水温度などの各種データを入力する。
【0029】
そして、ステップS2で車速はゼロかどうかを判定することにより、車両が停止状態がどうかを判断し、停止状態である場合(YES)はステップS3によってアクセル開度はゼロかどうかを判定し、アクセルを踏み込んでいない場合(YES)はステップS4によってエンジン2が作動状態かどうかを判定し、これらステップS3,S4によってエンジン2がアイドル状態にあるかどうかを判断する。
【0030】
次に、車両が停止状態かつアイドル状態にあるときは、ステップS5によって冷却水が所定温度(本実施形態では75゜Cに設定)以上かどうかを判定した後、ステップS6によって空気調和装置から暖房能力を増加要請する信号が出力されいるかどうかを判定し、前記ステップS5で冷却水が所定温度に達していない場合(NO)、およびステップS6で暖房能力の増加要請がある場合(YES)は、ステップS7によって点火進角を遅角方向にリタードするとともに、空燃比(A/F)を周波数制御し、そして、ステップS8によって目標とする冷却水温と実際の冷却水温との差分ΔTを求める。
【0031】
このように差分ΔTを求めた後、ステップS9では予め設定した所定温度α,β,γ(゜C)(α>β>γ)に対してその差分ΔTがどのような条件の元にあるかを判定し、ΔT>α゜Cの場合は、ステップS10により条件1の元に空燃比(A/F)および二次空気量を制御し、α゜C≧ΔT>β゜Cの場合は、ステップS11により条件2の元に空燃比および二次空気量を制御する。
【0032】
また、β゜C≧ΔT>γ゜Cの場合は、ステップS12により条件3の元に空燃比および二次空気量を制御し、γ゜C≧ΔTの場合は、ステップS13により条件4の元に空燃比および二次空気量を制御する。
【0033】
そして、ステップS10〜13のいずれかによって空燃比および二次空気量を制御した後、ステップS14によって第1,第2開閉弁20,21を開放して排気導入経路11aを連通するとともに、第3開閉弁22を閉止してバイパス経路11bを遮断し、触媒コンバータ5を通過した排気ガスを冷媒排熱交換器18のみに通過させる。
【0034】
一方、前記ステップS2,S3,S4,S6でNOと判定された場合は、ステップS15によって第1,第2開閉弁20,21を閉止して排気導入経路11aを遮断するとともに、第3開閉弁22を開放してバイパス経路11bを連通し、触媒コンバータ5を通過した排気ガスをバイパス経路11bのみに通過させる。
以上の構成により本実施形態の排気熱回収装置1によれば、触媒コンバータ5を通過した排気ガスを、排気管11に設けた排気導入経路11aを介して前記冷媒排熱交換器18に導入し、この冷媒排熱交換器18によって触媒コンバータ5を通過した排気ガスと冷却媒体との間で熱交換できるようになっている。
【0035】
そして、冷却媒体の温度が低い場合や暖房能力の増加が必要な場合に、エンジンコントロールユニット3により触媒コンバータ5の発熱量を増加させる触媒発熱量増加制御を実行するようにしたので、触媒の反応熱を冷却水によってより多く回収してその冷却水を温めることができるため、ヒータコア6から空調風に熱交換する熱量を増大して不足する暖房能力を効率良く補うことができる。
【0036】
また、前記触媒発熱量増加制御を実行する場合は、通常はエンジン2が冷機状態にある場合であり、この冷機時に冷却水の温度上昇を促進できるためエンジン2をより早く暖機することができるため、燃費をも改善することができる。
【0037】
また、本実施形態の排気熱回収装置1では前記作用・効果に加えて、前記触媒発熱量増加制御は、空燃比の周波数制御と空燃比の燃料リッチ制御とを併用して燃焼成分を増加させるとともに、触媒コンバータ5の上流側にエアポンプ19を介して二次空気を導入するようにしたので、燃焼成分の増加と二次空気導入により触媒コンバータ5の触媒(三元触媒)反応を促進させることができるため、触媒コンバータ5の反応熱をエンジン始動後短時間でより多く回収できる。
【0038】
ここで、空燃比を周波数制御(空燃比幅:±1.3、周波数:1.0Hz)した場合、制御無しの場合と触媒の反応特性(反応温度)を比較すると、図3に示すように、制御有りの場合は制御無しに比べて触媒での反応性が向上し、温度差で約50゜Cの差を確認できた。尚、この場合、空燃比を14.7、点火進角を−5゜として実験した。
【0039】
また、触媒反応熱に及ぼす空燃比と二次空気量との関係は、図4に示すように、二次空気量の増加に伴い回収熱量は増加するが、この回収熱量のピークは空燃比が小さくなるほど大流量側にシフトし熱量も大きくなる。
【0040】
このとき、同じ二次空気量でも空燃比の値により回収熱量(触媒での反応熱量)が異なり、効率よく熱を回収するためには、目標とする熱量に対して空燃比が大きく二次空気量が少ない組み合わせを選ぶことが重要となってくる。
【0041】
更に、前記触媒発熱量増加制御は、空燃比の周波数制御と空燃比の燃料リッチ制御とに加えて、点火タイミングを遅角させたので、排ガス温度が高くなり、触媒反応が起こるまでの時間を短くすることができる。
【0042】
ここで、点火タイミングを遅角させることにより、図5に示すように、排気ガスの触媒コンバータ5に流入する入口ガス温度が上昇し、触媒反応に有利に働くことを確認した。
【0043】
更にまた、前記触媒発熱量増加制御は、空燃比の値を、目標とする冷却媒体温度および車室内温度目標値から求められる冷却媒体の目標温度と、実際の冷却媒体温度と、の差分ΔTを元に設定し、かつ、触媒コンバータ5に導入する二次空気量は、前記空燃比の値を元に触媒コンバータ5に流入する排気ガスの量を制御して、空燃比が理論空燃比になるように設定したので、冷却水温度に応じて効率よく冷却水を暖めることができる。
【0044】
尚、この場合、前記差分ΔTは、所定の冷却媒体温度もしくは車室内温度目標値から求められる冷却媒体の目標温度と、実際の冷却媒体温度と、から決定した。
【0045】
また、本実施形態では排気管11に排気導入経路11aとバイパス経路11bとを設けて、これら排気導入経路11aに第1開閉弁20と第2開閉弁21を設けるとともに、バイパス経路11bに第3回閉弁22を設け、これら第1〜第3開閉弁20,21,22によって排気導入経路11aとバイパス経路11bとを選択的に切換えるようにしたので、冷却水温度が所定の温度よりも高くなり排気ガスと冷却水の熱交換が不必要になった場合は、バイパス経路11bに排気ガスを逃がすことにより、不必要な熱が冷却水に取り込まれるのを防止して冷却水の必要以上の高温化を避け、エンジン冷却系の負担を軽減することができる。
【0046】
更に、前記触媒発熱量増加制御は、車両が停止状態でエンジン2がアイドル状態にある場合に限定して行うようにしたので、エンジン負荷が小さくなるアイドリング時に空気調和装置の暖房性能を確保しつつ、車両走行時にはエンジン2の制御を適正に行って運転性能への影響を避けることができる。
【0047】
ところで、本発明の内燃機関の排気熱回収装置は前記実施形態に例をとって説明したが、この実施形態に限ることなく本発明の要旨を逸脱しない範囲で他の実施形態を各種採ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における排気熱回収装置の全体構成図。
【図2】本発明の触媒発熱量増加制御を実行するためのフローチャートを示す説明図。
【図3】本発明の一実施形態における触媒反応性に及ぼす空燃比周波数制御の効果を制御無しと制御有りとで比較して示すグラフ。
【図4】本発明の一実施形態における二次空気量に対する回収熱量の変化を空燃比の違いによって示すグラフ。
【図5】本発明の一実施形態における点火進角と排気ガス温度の関係を示すグラフ。
【符号の説明】
1 排気熱回収装置
2 エンジン(内燃機関)
3 エンジンコントロールユニット(制御装置)
4 冷却水循環経路(媒体循環経路)
5 触媒コンバータ
6 ヒータコア
11 排気管
11a 排気導入経路
11b バイパス経路
18 冷媒排熱交換器
20 第1開閉弁
21 第2開閉弁
22 第3開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust heat recovery device for an internal combustion engine in which the heat of exhaust gas is taken into a cooling medium of the internal combustion engine that is a heat source of an air conditioner.
[0002]
[Prior art]
As a conventional heating device using exhaust heat of an internal combustion engine, there is a switching valve that guides engine exhaust to a gas-liquid heat exchanger according to respective conditions of engine required output, room temperature, heating required temperature, and engine cooling water temperature. Heating control is performed by controlling opening and closing of a throttle valve provided in an engine exhaust passage that passes through the heat exchanger (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-1-132415 (page 6, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, such a conventional exhaust heat recovery device for an internal combustion engine can recover heat using cooling water as a cooling medium when the exhaust heat of the engine is sufficient, and can use it for heating or the like. When the exhaust heat is insufficient, it will be difficult to obtain a satisfactory amount of heat as heating assistance.
[0005]
For example, in an engine idling state in winter, the engine load is reduced, the displacement is reduced, and the exhaust temperature is also lowered. Depending on the engine and the vehicle, the temperature of the cooling water is not more than a predetermined value (for example, , 75 ° C.), and when the air conditioner is heated with the heat of the cooling water, the heating capacity may be insufficient.
[0006]
Therefore, in view of such conventional problems, the present invention recovers the reaction heat of the exhaust gas purification catalyst to warm the cooling medium of the internal combustion engine, and efficiently increases the heating capacity of the air conditioner by this cooling medium. An object of the present invention is to provide an exhaust heat recovery device for an internal combustion engine.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the exhaust heat recovery apparatus for an internal combustion engine according to the present invention introduces the exhaust gas that has passed through the catalytic converter and exchanges heat with the cooling medium of the cooling system. An exchanger is provided, and at least when the temperature of the cooling medium is lower than a predetermined value, or when there is a request to increase the heating capacity of the air conditioner, the amount of heat generated by the catalytic converter is controlled by the control device. It is characterized in that control for increasing the amount of heat generated by the catalyst is executed, and the cooling medium is warmed by the reaction heat in the catalyst to serve as a heat source for the heater core of the air conditioner.
[0008]
【The invention's effect】
According to the present invention configured as described above, heat is exchanged between the exhaust gas that has passed through the catalytic converter and the cooling medium by the refrigerant exhaust heat exchanger, and when the temperature of the cooling medium is low or the heating capacity is reduced. When an increase is required, the catalyst heat generation increase control that increases the heat generation amount of the catalytic converter is executed, so that the reaction heat of the catalyst can be recovered more by the cooling medium and the cooling medium can be warmed. Therefore, the heating capacity can be efficiently supplemented, and the temperature rise of the cooling medium can be promoted, so that the fuel consumption can be improved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
1 to 5 show an embodiment of an exhaust heat recovery apparatus for an internal combustion engine according to the present invention, FIG. 1 is an overall configuration diagram of the exhaust heat recovery apparatus, and FIG. 2 is a flowchart for executing catalyst heat generation increase control. FIG. 3 is a graph showing the effect of air-fuel ratio frequency control on catalyst reactivity in comparison with no control and with control, and FIG. 4 shows the change in recovered heat quantity with respect to the amount of secondary air. FIG. 5 is a graph showing the relationship between the ignition advance angle and the exhaust gas temperature.
[0011]
The exhaust heat recovery apparatus 1 of this embodiment is applied to an engine 2 as an internal combustion engine mounted on a vehicle, and includes an air conditioner that uses cooling water as a cooling medium for the engine 2 as a heat source for heating.
[0012]
That is, the vehicle has an engine 2, an engine control unit 3 as a control device for controlling the air-fuel ratio, secondary air amount, ignition timing, etc. of the engine 2, and a medium circulation path for cooling the engine 2 with cooling water. The cooling water circulation path 4, the catalytic converter 5 that introduces and purifies the exhaust gas of the engine 2, and the heater core 6 of the air conditioner that introduces cooling water from the cooling water circulation path 4 and exchanges heat with the conditioned air. And.
[0013]
The engine 2 introduces air sucked by the intake manifold 7 and fuel atomized by the injector 8 and discharges exhaust gas from the exhaust manifold 9 to the exhaust pipe 11 connected to the muffler 10. The catalytic converter 5 is disposed at a downstream portion of the motor 9.
[0014]
Of course, the injector 8 controls the fuel injection amount by a command signal output from the engine control unit 3.
[0015]
The cooling water circulation path 4 supplies the cooling water from the circulation pump 12 to a cooling water path (not shown) of the engine 2, then introduces it into the radiator 13 through the cooling water passage 4 a and then circulates it to the circulation pump 12.
[0016]
The heater core 6 introduces the cooling water that has passed through the cooling water passage of the engine 2 through the branch passage 4b branched from the cooling water passage 4a, and then returns it to the circulation pump 12 through the return passage 4c. The heater core 6 is configured to produce heating air by exchanging heat between air blown from an air conditioning fan (not shown) and cooling water.
[0017]
The air conditioner provided with the heater core 6 is controlled by the air conditioning control unit 14 and outputs the vehicle interior temperature target value set by the air conditioning apparatus from the air conditioning control unit 14 to the engine control unit 3. It is like that.
[0018]
The engine control unit 3 receives a detection signal from a flow meter 15 provided in the intake manifold 7, a detection signal from an air-fuel ratio sensor 16 provided in the exhaust manifold 9, and a detection signal from a water temperature sensor 17 provided in the path 4b. The
[0019]
Here, the exhaust heat recovery apparatus 1 of the present embodiment introduces the exhaust gas that is provided in the exhaust pipe 11 and passes through the catalytic converter 5, and connects the branch passage 4b of the cooling water circulation path 4 to the cooling water. A refrigerant exhaust heat exchanger 18 for exchanging heat between them, and at least when the temperature of the cooling water is lower than a predetermined value or when there is a request to increase the heating capacity of the air conditioner, the engine control The control of the unit 3 performs the catalyst heat generation amount increase control for increasing the heat generation amount of the catalytic converter 5 so as to warm the cooling water with the reaction heat in the catalyst of the catalytic converter 5 (Claim 1).
[0020]
In addition, the catalyst heat generation amount increase control uses a combination of air-fuel ratio frequency control and air-fuel ratio fuel-rich control to increase the combustion component, and as shown in FIG. The secondary air is introduced through the (Claim 2).
[0021]
At this time, the amount of secondary air introduced into the air pump 19 is controlled by a command signal output from the engine control unit 3.
[0022]
Further, the catalyst heat generation amount increase control includes control for retarding the ignition timing in addition to the above-described air-fuel ratio frequency control and air-fuel ratio fuel-rich control (claim 3).
[0023]
Furthermore, the catalyst heat generation amount increase control is performed such that the air-fuel ratio value is set to a difference between a predetermined cooling water temperature set in advance and an actual cooling water temperature, or a cooling water target temperature obtained from a vehicle interior temperature target value. The amount of secondary air introduced into the catalytic converter 5 is the exhaust gas flowing into the catalytic converter 5 based on the value of the air-fuel ratio. Is controlled so that the air-fuel ratio of the catalyst becomes the stoichiometric air-fuel ratio.
[0024]
As shown in FIG. 1, the exhaust heat recovery apparatus 1 includes an exhaust introduction path 11 a for introducing exhaust gas that has passed through the catalytic converter 5 into the refrigerant exhaust heat exchanger 18, and refrigerant exhaust heat. A bypass passage 11b for bypassing the exchanger 18 and flowing exhaust gas, and a first on-off valve 20 and a second on-off valve 21 on the upstream and downstream sides of the catalytic converter 5 in the exhaust introduction passage 11a. A third on-off valve 22 is provided in the path 11b, and the exhaust introduction path 11a and the bypass path 11b are selectively switched by the first to third on-off valves 20, 21, 22 (Claim 5).
[0025]
The first to third on-off valves 20, 21, and 22 are controlled to open and close by command signals output from the engine control unit 3, respectively, and exhaust gas amounts that bypass the refrigerant exhaust heat exchanger 18 via the bypass path 11b. To control.
[0026]
At this time, the first and second on-off valves 20 and 21 are provided in the exhaust introduction path 11a, and the third on-off valve 22 is provided in the bypass path 11b. At least one of the exhaust introduction path 11a and the bypass path 11b is provided. It is also possible to selectively switch between the two paths 11a and 11b by providing an open / close valve in.
[0027]
Further, the catalyst heat generation amount increase control is preferably performed only when the vehicle is stopped and the engine 2 is in an idle state (Claim 6).
[0028]
The engine control unit 3 executes exhaust heat recovery control according to the flowchart shown in FIG. 2. First, as shown in FIG. 2, in step S 1, the vehicle speed, the accelerator opening degree, and whether or not the engine 2 can be operated. Then, various data such as a cooling water temperature of the engine 2, a heating capacity increase request from the air conditioning control unit 14, and a target cooling water temperature calculated based on the vehicle interior set temperature, the room temperature, the outside air temperature, the solar radiation sensor, and the like are input.
[0029]
In step S2, it is determined whether or not the vehicle speed is zero, and it is determined whether or not the vehicle is in a stopped state. If the vehicle is in a stopped state (YES), it is determined in step S3 whether or not the accelerator opening is zero. If YES in step S4, it is determined in step S4 whether or not the engine 2 is in an operating state, and whether or not the engine 2 is in an idle state is determined in steps S3 and S4.
[0030]
Next, when the vehicle is in a stopped state and in an idle state, it is determined in step S5 whether or not the cooling water is equal to or higher than a predetermined temperature (in this embodiment, set to 75 ° C.), and then in step S6, the air conditioner is heated. It is determined whether or not a signal for requesting an increase in capacity is output. If the cooling water has not reached the predetermined temperature in step S5 (NO) and if there is a request for increase in heating capacity in step S6 (YES), In step S7, the ignition advance is retarded in the retard direction, the air-fuel ratio (A / F) is frequency controlled, and in step S8, a difference ΔT between the target cooling water temperature and the actual cooling water temperature is obtained.
[0031]
After obtaining the difference ΔT in this way, in step S9, under what conditions the difference ΔT is based on a predetermined temperature α, β, γ (° C) (α>β> γ) set in advance. If ΔT> α ° C, the air-fuel ratio (A / F) and the secondary air amount are controlled under the condition 1 in step S10. If α ° C ≧ ΔT> β ° C, In step S11, the air-fuel ratio and the secondary air amount are controlled under condition 2.
[0032]
If β ° C ≧ ΔT> γ ° C, the air-fuel ratio and the secondary air amount are controlled under condition 3 in step S12. If γ ° C ≧ ΔT, the condition 4 element is controlled in step S13. In addition, the air-fuel ratio and the amount of secondary air are controlled.
[0033]
Then, after controlling the air-fuel ratio and the secondary air amount in any one of steps S10 to 13, the first and second on-off valves 20 and 21 are opened in step S14 to connect the exhaust introduction path 11a, and the third The on-off valve 22 is closed to shut off the bypass path 11b, and the exhaust gas that has passed through the catalytic converter 5 is allowed to pass only through the refrigerant exhaust heat exchanger 18.
[0034]
On the other hand, if NO is determined in steps S2, S3, S4, and S6, the first and second on-off valves 20 and 21 are closed by step S15 to shut off the exhaust introduction path 11a and the third on-off valve. 22 is opened, the bypass path 11b is communicated, and the exhaust gas that has passed through the catalytic converter 5 is allowed to pass only through the bypass path 11b.
With the above configuration, according to the exhaust heat recovery apparatus 1 of the present embodiment, the exhaust gas that has passed through the catalytic converter 5 is introduced into the refrigerant exhaust heat exchanger 18 through the exhaust introduction path 11 a provided in the exhaust pipe 11. The refrigerant exhaust heat exchanger 18 can exchange heat between the exhaust gas that has passed through the catalytic converter 5 and the cooling medium.
[0035]
Then, when the temperature of the cooling medium is low or when the heating capacity needs to be increased, the catalyst heat generation amount increase control for increasing the heat generation amount of the catalytic converter 5 is executed by the engine control unit 3, so that the reaction of the catalyst Since more heat can be recovered by the cooling water and the cooling water can be warmed, the amount of heat exchanged from the heater core 6 to the conditioned air can be increased to efficiently compensate for the insufficient heating capacity.
[0036]
Further, when the catalyst heat generation amount increase control is executed, the engine 2 is usually in a cold state, and since the temperature rise of the cooling water can be promoted during the cold state, the engine 2 can be warmed up earlier. Therefore, fuel consumption can be improved.
[0037]
Further, in the exhaust heat recovery apparatus 1 of the present embodiment, in addition to the operations and effects, the catalyst heating value increase control increases the combustion component by using both the air-fuel ratio frequency control and the air-fuel ratio fuel rich control. At the same time, since secondary air is introduced to the upstream side of the catalytic converter 5 via the air pump 19, the catalyst (three-way catalyst) reaction of the catalytic converter 5 is promoted by increasing the combustion components and introducing the secondary air. Therefore, more reaction heat of the catalytic converter 5 can be recovered in a short time after the engine is started.
[0038]
Here, when the air-fuel ratio is frequency-controlled (air-fuel ratio width: ± 1.3, frequency: 1.0 Hz), the comparison between the case without control and the reaction characteristics (reaction temperature) of the catalyst is as shown in FIG. In the case of control, the reactivity with the catalyst was improved compared to the case of no control, and a difference of about 50 ° C. was confirmed in the temperature difference. In this case, the experiment was conducted with the air-fuel ratio set to 14.7 and the ignition advance angle set to -5 °.
[0039]
In addition, as shown in FIG. 4, the relationship between the air-fuel ratio and the amount of secondary air affecting the catalytic reaction heat increases as the amount of recovered air increases as the amount of secondary air increases. The smaller the value, the larger the flow rate and the greater the amount of heat.
[0040]
At this time, even if the amount of secondary air is the same, the amount of heat recovered (the amount of heat of reaction at the catalyst) differs depending on the value of the air-fuel ratio. In order to efficiently recover heat, the air-fuel ratio is larger than the target amount of heat and the secondary air Choosing a combination with a small amount is important.
[0041]
Furthermore, in the catalyst heat generation increase control, in addition to the air-fuel ratio frequency control and the air-fuel ratio fuel-rich control, the ignition timing is retarded, so the time until the exhaust gas temperature rises and the catalytic reaction occurs is increased. Can be shortened.
[0042]
Here, it was confirmed that by retarding the ignition timing, the temperature of the inlet gas of the exhaust gas flowing into the catalytic converter 5 increases as shown in FIG.
[0043]
Furthermore, the catalyst heat generation amount increase control is performed by calculating the difference ΔT between the target temperature of the cooling medium obtained from the target cooling medium temperature and the vehicle interior temperature target value, and the actual cooling medium temperature. The amount of secondary air that is originally set and introduced into the catalytic converter 5 is controlled by controlling the amount of exhaust gas flowing into the catalytic converter 5 based on the value of the air-fuel ratio, so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. Thus, the cooling water can be efficiently warmed according to the cooling water temperature.
[0044]
In this case, the difference ΔT is determined from a target temperature of the cooling medium obtained from a predetermined cooling medium temperature or a vehicle interior temperature target value and an actual cooling medium temperature.
[0045]
In the present embodiment, the exhaust pipe 11 is provided with an exhaust introduction path 11a and a bypass path 11b, the exhaust introduction path 11a is provided with a first on-off valve 20 and a second on-off valve 21, and a third on the bypass path 11b. Since the rotary closing valve 22 is provided and the exhaust introduction path 11a and the bypass path 11b are selectively switched by the first to third on-off valves 20, 21, and 22, the cooling water temperature is higher than a predetermined temperature. If the exhaust gas and cooling water heat exchange becomes unnecessary, the exhaust gas is allowed to escape to the bypass passage 11b, thereby preventing unnecessary heat from being taken into the cooling water and exceeding the necessity of the cooling water. High temperature can be avoided and the burden on the engine cooling system can be reduced.
[0046]
Further, the catalyst heat generation amount increase control is performed only when the vehicle is stopped and the engine 2 is in an idle state, so that the heating performance of the air conditioner is ensured during idling when the engine load is reduced. When the vehicle is traveling, the engine 2 can be appropriately controlled to avoid the influence on the driving performance.
[0047]
The exhaust heat recovery device for an internal combustion engine of the present invention has been described by taking the above embodiment as an example. However, the present invention is not limited to this embodiment, and various other embodiments can be adopted without departing from the gist of the present invention. it can.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an exhaust heat recovery apparatus according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a flowchart for executing catalyst heat generation increase control according to the present invention.
FIG. 3 is a graph showing the effect of air-fuel ratio frequency control on catalyst reactivity in one embodiment of the present invention compared with no control and with control.
FIG. 4 is a graph showing a change in the recovered heat quantity with respect to the secondary air quantity according to an embodiment of the present invention by a difference in air-fuel ratio.
FIG. 5 is a graph showing the relationship between the ignition advance angle and the exhaust gas temperature in one embodiment of the present invention.
[Explanation of symbols]
1 Exhaust heat recovery device 2 Engine (internal combustion engine)
3 Engine control unit (control device)
4 Cooling water circulation path (medium circulation path)
5 catalytic converter 6 heater core 11 exhaust pipe 11a exhaust introduction path 11b bypass path 18 refrigerant exhaust heat exchanger 20 first on-off valve 21 second on-off valve 22 third on-off valve

Claims (6)

内燃機関(2)と、内燃機関(2)の空燃比、二次空気量、点火タイミング等を制御する制御装置(3)と、内燃機関(2)を冷却媒体で冷却する媒体循環経路(4)と、内燃機関(2)の排気を導入して浄化する触媒コンバータ(5)と、前記媒体循環経路(4)の冷却媒体を導入して空調風との間で熱交換するヒータコア(6)を有する空気調和装置と、を備えた車両において、
触媒コンバータ(5)を通過した排気ガスを導入して、前記媒体循環経路(4)の冷却媒体との間で熱交換する冷媒排熱交換器(18)を設け、少なくとも、前記冷却媒体の温度が所定値よりも低い場合、若しくは、前記空気調和装置の暖房能力の増加要請が有る場合に、前記制御装置(3)の制御により前記触媒コンバータ(5)の発熱量を増加させる触媒発熱量増加制御を実行し、触媒での反応熱をもって冷却媒体を温めることを特徴とする内燃機関の排気熱回収装置。
An internal combustion engine (2), a control device (3) for controlling the air-fuel ratio, secondary air amount, ignition timing, etc. of the internal combustion engine (2), and a medium circulation path (4) for cooling the internal combustion engine (2) with a cooling medium. ), A catalytic converter (5) that introduces and purifies exhaust gas from the internal combustion engine (2), and a heater core (6) that introduces a cooling medium of the medium circulation path (4) and exchanges heat with the conditioned air. An air conditioner having
A refrigerant exhaust heat exchanger (18) that introduces exhaust gas that has passed through the catalytic converter (5) and exchanges heat with the cooling medium of the medium circulation path (4) is provided, and at least the temperature of the cooling medium Is lower than a predetermined value, or when there is a request to increase the heating capacity of the air conditioner, the heat generation amount of the catalyst is increased to increase the heat generation amount of the catalytic converter (5) under the control of the control device (3). An exhaust heat recovery apparatus for an internal combustion engine, characterized in that the control is executed and the cooling medium is warmed by heat of reaction at the catalyst.
前記触媒発熱量増加制御は、空燃比の周波数制御と空燃比の燃料リッチ制御とを併用して燃焼成分を増加させるとともに、触媒コンバータ(5)の上流側に二次空気を導入することを特徴とする請求項1に記載の内燃機関の排気熱回収装置。The catalyst heat generation amount increase control uses both air-fuel ratio frequency control and air-fuel ratio fuel-rich control to increase combustion components and introduces secondary air upstream of the catalytic converter (5). The exhaust heat recovery device for an internal combustion engine according to claim 1. 前記触媒発熱量増加制御は、空燃比の周波数制御と空燃比の燃料リッチ制御とに加えて、点火タイミングを遅角させることを特徴とする請求項2に記載の内燃機関の排気熱回収装置。The exhaust heat recovery apparatus for an internal combustion engine according to claim 2, wherein the catalyst heat generation amount increase control retards the ignition timing in addition to air-fuel ratio frequency control and air-fuel ratio fuel-rich control. 前記触媒発熱量増加制御は、空燃比の値を、所定の冷却媒体温度と実際の冷却媒体温度との差分、若しくは、車室内温度目標値から求められる冷却媒体の目標温度と実際の冷却媒体温度との差分を元に設定し、かつ、触媒コンバータ(5)に導入する二次空気量は、前記空燃比と吸入空気量の値を元に触媒コンバータ(5)に流入する排気ガスの量を制御して、触媒における空燃比が理論空燃比になるように設定したことを特徴とする請求項1〜3のいずれかに記載の内燃機関の排気熱回収装置。The catalyst heat generation amount increase control is performed by changing the air-fuel ratio value from a difference between a predetermined cooling medium temperature and an actual cooling medium temperature, or a cooling medium target temperature and an actual cooling medium temperature obtained from a vehicle interior temperature target value. The amount of secondary air introduced into the catalytic converter (5) is determined based on the amount of exhaust gas flowing into the catalytic converter (5) based on the values of the air-fuel ratio and the intake air amount. The exhaust heat recovery device for an internal combustion engine according to any one of claims 1 to 3, wherein the air-fuel ratio in the catalyst is set so as to be the stoichiometric air-fuel ratio. 触媒コンバータ(5)を通過した排気ガスを冷媒排熱交換器(18)に導入する排気導入経路(11a)と、冷媒排熱交換器(18)をバイパスして排気ガスを流すバイパス経路(11b)と、を設け、これら排気導入経路(11a)とバイパス経路(11b)の少なくとも一方に、これら両経路(11a,11b)を選択的に切換える開閉弁(20,21,22)を設けたことを特徴とする請求項1〜4のいずれかに記載の内燃機関の排気熱回収装置。An exhaust introduction path (11a) for introducing the exhaust gas that has passed through the catalytic converter (5) into the refrigerant exhaust heat exchanger (18), and a bypass path (11b) for bypassing the refrigerant exhaust heat exchanger (18) and flowing the exhaust gas ), And on / off valves (20, 21, 22) for selectively switching the two paths (11a, 11b) are provided in at least one of the exhaust introduction path (11a) and the bypass path (11b). An exhaust heat recovery device for an internal combustion engine according to any one of claims 1 to 4, wherein 前記触媒発熱量増加制御は、車両が停止状態で内燃機関(2)がアイドル状態にある場合に限定して行うことを特徴とする請求項1〜5のいずれかに記載の内燃機関の排気熱回収装置。The exhaust heat of the internal combustion engine according to any one of claims 1 to 5, wherein the catalyst heat generation increase control is performed only when the vehicle is stopped and the internal combustion engine (2) is in an idle state. Recovery device.
JP2003185169A 2003-06-27 2003-06-27 Exhaust heat recovery device for internal combustion engine Pending JP2005016477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003185169A JP2005016477A (en) 2003-06-27 2003-06-27 Exhaust heat recovery device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003185169A JP2005016477A (en) 2003-06-27 2003-06-27 Exhaust heat recovery device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005016477A true JP2005016477A (en) 2005-01-20

Family

ID=34184725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003185169A Pending JP2005016477A (en) 2003-06-27 2003-06-27 Exhaust heat recovery device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005016477A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018353A1 (en) * 2006-08-09 2008-02-14 Calsonic Kansei Corporation Method of controlling system for quickly warming up engine
JP2008169809A (en) * 2007-01-15 2008-07-24 Toyota Motor Corp Vehicle and its control method
JP2009138558A (en) * 2007-12-04 2009-06-25 Toyota Motor Corp Internal combustion engine
KR101056977B1 (en) 2006-04-28 2011-08-16 도요타 지도샤(주) Vehicle structure with exhaust heat recovery device
US8327634B2 (en) 2006-12-06 2012-12-11 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery system
JP2015227631A (en) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 Internal combustion engine control unit
JP2020063690A (en) * 2018-10-17 2020-04-23 ボッシュ株式会社 Injection system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056977B1 (en) 2006-04-28 2011-08-16 도요타 지도샤(주) Vehicle structure with exhaust heat recovery device
US8448988B2 (en) 2006-04-28 2013-05-28 Toyota Jidosha Kabushiki Kaisha Vehicle system including a structure in which exhaust heat recovery apparatus is installed
US8746785B2 (en) 2006-04-28 2014-06-10 Toyota Jidosha Kabushiki Kaisha Vehicle structure in which exhaust heat recovery apparatus is installed
WO2008018353A1 (en) * 2006-08-09 2008-02-14 Calsonic Kansei Corporation Method of controlling system for quickly warming up engine
US8327634B2 (en) 2006-12-06 2012-12-11 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery system
JP2008169809A (en) * 2007-01-15 2008-07-24 Toyota Motor Corp Vehicle and its control method
JP4631853B2 (en) * 2007-01-15 2011-02-16 トヨタ自動車株式会社 Vehicle and control method thereof
JP2009138558A (en) * 2007-12-04 2009-06-25 Toyota Motor Corp Internal combustion engine
JP4561817B2 (en) * 2007-12-04 2010-10-13 トヨタ自動車株式会社 Internal combustion engine
US8429895B2 (en) 2007-12-04 2013-04-30 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2015227631A (en) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 Internal combustion engine control unit
JP2020063690A (en) * 2018-10-17 2020-04-23 ボッシュ株式会社 Injection system

Similar Documents

Publication Publication Date Title
JP4157752B2 (en) Engine exhaust heat recovery device
JP4436361B2 (en) Method and apparatus for heating an automobile cabin
JP5403171B2 (en) Engine cooling system
US20090183697A1 (en) Exhaust heat recovery system
US20110083426A1 (en) Emission control system with heat recovery device
GB2429763A (en) Cooling system comprising heat exchangers for motor vehicle cold start operation
JPH11200955A (en) Exhaust gas reflux device
JP2003239742A (en) Cooling device for internal combustion engine
GB2501304A (en) Engine system comprising coolant system having switchable coolant routes
JP2004332596A (en) Thermoelectric generating set
US5377486A (en) Catalytic converter system
US20190009643A1 (en) Control apparatus of heat exchanging system
US20080257526A1 (en) Device for Thermal Control of Recirculated Gases in an Internal Combustion Engine
JP2005016477A (en) Exhaust heat recovery device for internal combustion engine
US20090194602A1 (en) Additional heating device for a motor vehicle
JP3729994B2 (en) Exhaust gas recirculation device
JP2007046599A (en) Exhaust manifold assembly body for internal combustion engine and exhaust gas controller and control method for internal combustion engine equipped with assembly body
JP2002030930A (en) Internal combustion engine having combustion heater
JP2012082723A (en) Cooling device of internal combustion engine
JP2010275999A (en) Exhaust structure for internal combustion engine
JP7438035B2 (en) vehicle
JP2001248489A (en) Method for controlling engine heat pump
JP2005273582A (en) Exhaust heat recovery system
JP2004132189A (en) Thermal storage system for vehicle
JPH10325368A (en) Egr gas cooling device