JPS59226257A - Engine-driven hot-water supplying apparatus - Google Patents
Engine-driven hot-water supplying apparatusInfo
- Publication number
- JPS59226257A JPS59226257A JP58102075A JP10207583A JPS59226257A JP S59226257 A JPS59226257 A JP S59226257A JP 58102075 A JP58102075 A JP 58102075A JP 10207583 A JP10207583 A JP 10207583A JP S59226257 A JPS59226257 A JP S59226257A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat exchanger
- engine
- hot water
- heating medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 238000001816 cooling Methods 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 abstract description 10
- 238000009833 condensation Methods 0.000 abstract description 4
- 230000005494 condensation Effects 0.000 abstract description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract 1
- 239000007789 gas Substances 0.000 abstract 1
- 239000002918 waste heat Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
- F02G5/04—Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、エンジンなどの熱機関を利用して高効率の給
湯を行なう給湯装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a water heater that supplies hot water with high efficiency using a heat engine such as an engine.
従来例の構成とその問題点
エンジンなどの内燃機関を用いて動力を取シ出し、その
動力を用いて圧縮機を駆動し、冷暖房するとともに、エ
ンジンからの7リングヘツド冷却熱と排熱を給湯に利用
するシステムの開発が行なわれている。第1図はこの種
システムの給湯装置を示す図であり、エンジン1によっ
て動力を取り出すとともにその排気熱を熱交換する排気
ガス熱交換器2があり、シリンダヘッド3の冷却熱と排
気ガス熱交換器2で回収された熱は熱媒体に伝えられ、
熱媒体ポンプ4によって貯湯槽5に運ばれ、貯湯槽内熱
交換器6で給湯水7と熱交換し、給水8を加熱し、出湯
9するものである。貯湯槽の最下部に位置する熱交換器
10はエンジン動力によって圧縮機を駆動し、冷凍ザイ
クルを構成してヒ ゛−トポンプの凝縮熱を給湯に利用
するための熱交換器である。Conventional configuration and its problems An internal combustion engine such as an engine is used to extract power, and that power is used to drive a compressor for heating and cooling, while the 7-ring head cooling heat and exhaust heat from the engine are used to heat hot water. A system to use it is currently being developed. FIG. 1 is a diagram showing a hot water supply device of this type of system, and includes an exhaust gas heat exchanger 2 that extracts power from an engine 1 and exchanges heat from the exhaust gas, and exchanges heat for cooling the cylinder head 3 with exhaust gas heat. The heat recovered in vessel 2 is transferred to the heat medium,
The hot water is transported to a hot water storage tank 5 by a heat medium pump 4, and exchanges heat with hot water 7 in a heat exchanger 6 in the hot water storage tank to heat the supplied water 8 and discharge hot water 9. The heat exchanger 10 located at the bottom of the hot water storage tank is a heat exchanger that drives a compressor using engine power, forms a refrigerating cycle, and uses condensation heat from the heat pump for hot water supply.
従来、このようなシステムでは、立上り時にエンジンシ
リンダの冷却を防止し、エンジン効率を向上させる目的
で、シリンダヘッド3の出口にサーモパルプ等を用いて
、立上り時にはシリンダヘッド3での熱媒体の流れを止
めたり少なくしたシしていた。そのため、排気ガス熱交
換器2でその時でも熱回収しようとすれば、シリンダへ
ノド3と排気ガス熱交換器への熱媒体の流れを並列にし
ざるを得なかった。しかしながらこのような構成ではシ
リンダヘッド3と排気ガス熱交換器2を直列にして、同
一ポンプを用いた時よりも排気ガス熱交換器2の出口の
熱媒体温度が低く、それ散財湯槽内熱交換器で給湯水と
熱交換する時にその温度差が小さくなり、熱交換量が小
さくなり、システムの給湯効率が低くなる欠点を有して
いる。このようなエンジン駆動給湯装置は、冷暖房機と
してシステムを動かしその付加として給湯する場合が多
いが、このシステムを給湯専用機として用いた場合、シ
ステムの0N−OFFの制御は貯湯槽最下部のヒートポ
ンプ熱交換器1oの周囲の給湯水温度によって制御され
る場合が多い。このような場合、その周囲温度は大体5
0℃前後であり、それ故その上部に位置する貯湯槽内熱
交換器6の周囲温度はそれよりも高く、熱媒体のシリン
ダヘッド入口温度は50℃以上である事が多く、エンジ
ン効率にはほとんど影響を力えないと考えられる。まだ
実際に給湯負荷はお風呂への張水を除けば比較的短時間
の負荷変動があり、従来のような構成では短時間の運転
時間内で熱媒体の温度上昇が遅いだめ、それ散財湯槽内
で充分に熱交換される前に運転が停止してしまいシステ
ムの効率が悪くなる。Conventionally, in such a system, thermopulp or the like is used at the outlet of the cylinder head 3 to prevent cooling of the engine cylinder during startup and improve engine efficiency. I stopped or reduced it. Therefore, if heat was to be recovered in the exhaust gas heat exchanger 2 at that time, the flow of the heat medium to the cylinder throat 3 and the exhaust gas heat exchanger had to be parallel. However, in such a configuration, the cylinder head 3 and the exhaust gas heat exchanger 2 are connected in series, and the heat medium temperature at the outlet of the exhaust gas heat exchanger 2 is lower than when the same pump is used. When heat is exchanged with the hot water in the boiler, the temperature difference becomes small, the amount of heat exchanged becomes small, and the hot water supply efficiency of the system becomes low. Such engine-driven water heaters often run the system as an air-conditioner and also supply hot water, but when this system is used exclusively for hot water supply, the ON/OFF control of the system is controlled by the heat pump located at the bottom of the hot water storage tank. It is often controlled by the temperature of the hot water around the heat exchanger 1o. In such a case, the ambient temperature is approximately 5
The ambient temperature of the heat exchanger 6 in the hot water tank located above it is higher than that, and the cylinder head inlet temperature of the heat medium is often 50°C or higher, which has a negative effect on engine efficiency. It is thought that it has little influence. In reality, the hot water supply load fluctuates over a relatively short period of time, except for filling the bath with water, and in the conventional configuration, the temperature of the heating medium rises slowly within a short operating time, so it is difficult to waste water inside the hot water tank. If the system stops operating before sufficient heat exchange occurs, the efficiency of the system will deteriorate.
発明の目的
本発明は上記欠点に鑑み、排熱回収によって得られる熱
媒体の温度上昇を急速ならしめて、貯湯槽での熱交換量
を増加させ、高効率なシステム効率を確保するエンジン
駆動給湯装置を提供しようとするものである。Purpose of the Invention In view of the above-mentioned drawbacks, the present invention provides an engine-driven water heater that rapidly smooths out the temperature rise of the heat medium obtained by exhaust heat recovery, increases the amount of heat exchange in the hot water storage tank, and ensures high system efficiency. This is what we are trying to provide.
発明の構成
エンジン駆動給湯装置で、シリンダヘッドと排気ガス熱
交換器を通る熱媒体が並列あるいは直列に自在に流れる
ようにし、その切換えをシリンダヘッドに入る熱媒体温
度で制御し、さらに、その切換えはシリンダヘッド下流
に設けた二方向と四方向に切換え可能な回転電動弁によ
り行なうように構成している。Constituent structure of the invention In an engine-driven water heater, a heat medium is allowed to flow freely in parallel or in series through a cylinder head and an exhaust gas heat exchanger, and the switching is controlled by the temperature of the heat medium entering the cylinder head, and further, the switching is controlled by the temperature of the heat medium entering the cylinder head. This is performed by a rotary motor-operated valve that is provided downstream of the cylinder head and is switchable in two and four directions.
実施例の説明
以下本発明の一実施例について図面を参照しながら説明
する。第2図は本発明のエンジン駆動給湯装置の一実施
例を示す図である。11は熱源機本体であるエンジン、
12はシリンダヘッド冷却熱回収用熱交換器、13はエ
ンジン排ガスからの排気ガス熱交換器、14は排気ガス
排出管、15は熱媒体の循環ポンプ、16は熱媒体のシ
リンダヘッド入口に設けた温度センサー、17は前記温
度センサーにより制御される回転電動弁士あり、シリン
ダヘッド冷却熱回収用熱交換器12の下流に設けられて
いる。18は貯湯槽内熱交換器で、その下部にはエンジ
ン動力により圧縮機を駆動してその凝縮熱を給湯水の加
熱に利用するヒートポンプ熱交換器19が設けられてい
る。20は貯湯槽本体であり下部に給水口21、最上部
に給湯口22が設けられている。また貯湯槽のヒートポ
ンプ熱交換器19の近傍給湯水温度を検出する温度セン
サー23が設けられている。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing an embodiment of the engine-driven water heater of the present invention. 11 is the engine which is the main body of the heat source machine;
12 is a heat exchanger for recovering cooling heat from the cylinder head, 13 is an exhaust gas heat exchanger from engine exhaust gas, 14 is an exhaust gas discharge pipe, 15 is a circulation pump for the heat medium, and 16 is provided at the inlet of the cylinder head for the heat medium. A temperature sensor 17 is a rotary electric valve controlled by the temperature sensor, and is provided downstream of the cylinder head cooling heat recovery heat exchanger 12. Reference numeral 18 denotes a hot water storage tank heat exchanger, and a heat pump heat exchanger 19 is provided below the hot water storage tank heat exchanger, which drives a compressor using engine power and uses its condensation heat to heat hot water. Reference numeral 20 denotes a hot water storage tank body, which has a water supply port 21 at the bottom and a hot water supply port 22 at the top. Further, a temperature sensor 23 is provided to detect the temperature of hot water near the heat pump heat exchanger 19 of the hot water storage tank.
第3図FA) 、 (B)は、第2図の回転電動弁17
の詳細を示す図であり、4箇所の熱媒体通路を構成する
枠体24の中に直進通路25とさらに円弧通路遼
26.27が直進通路26と45°の角度で開口した4
つの開口部を有した円形バルブ28が位置している。Figure 3FA) and (B) are the rotary electric valve 17 in Figure 2.
It is a diagram showing the details of 4, in which a straight passage 25 and further circular arc passages 26 and 27 are opened at an angle of 45° with the straight passage 26 in the frame 24 constituting the heat medium passages at four locations.
A circular valve 28 with two openings is located.
熱媒体通路はG29が第2図の30.H31が同じ〈3
2、I33が34.135が36といった熱媒体経路と
通じている。The heat medium passage G29 is 30. in Fig. 2. H31 is the same〈3
2. I33 communicates with heat medium paths such as 34 and 135 communicates with 36.
次にその動作を説明する。エンジン11を動かす事によ
り、シリンダヘッド冷却熱回収用熱交換器12と、排気
ガス熱交換器13により回収された熱は熱媒体に伝えら
れ、循環ポンプ15によって貯湯槽本体2Qにある貯湯
槽内熱交換器18によって給湯水と熱交換する。またエ
ンジン11によって取り出した動力で圧縮機を動かし、
その凝縮熱は貯湯槽本体20の下部に位置するヒートポ
ンプ熱交換器19で給湯水を加熱する。本システムでは
システムの運転は、ヒートポンプ熱交換器19近傍に設
けられた温度センサー23によりON、OFFが制御さ
れている。丑た熱媒体の循環経路のシリンダヘッド入口
に設けられた温度センサー16によって、シリンダヘッ
ド下流に設けられた回転電動弁17が第3図に示す如く
45°のし
正逆回転をl、熱媒体が7リンダヘノド冷却熱回収用熱
交換器と、排気ガス熱交換器を並列あるいは直列に流れ
るように自在にその通路を制御をし直列の場合は第3図
Aの如く直進通路25を通り、並列の場合は第3図Bの
如く円弧通路26.27を通るようにしである。また給
湯水は給水口21より給水され、出湯口22より出湯す
る。Next, its operation will be explained. By operating the engine 11, the heat recovered by the cylinder head cooling heat recovery heat exchanger 12 and the exhaust gas heat exchanger 13 is transferred to the heat medium, and is transferred to the hot water tank in the hot water tank main body 2Q by the circulation pump 15. The heat exchanger 18 exchanges heat with the hot water. In addition, the compressor is operated using the power extracted by the engine 11,
The heat of condensation heats hot water in a heat pump heat exchanger 19 located at the bottom of the hot water storage tank main body 20. In this system, the operation of the system is controlled on and off by a temperature sensor 23 provided near the heat pump heat exchanger 19. The temperature sensor 16 installed at the cylinder head inlet of the heat medium circulation path causes the rotary electric valve 17 installed downstream of the cylinder head to rotate forward and reverse by 45° as shown in FIG. The passages are freely controlled so that the water flows in parallel or in series through the 7 cylinder cylinder head cooling heat recovery heat exchanger and the exhaust gas heat exchanger, and in the case of series, it passes through the straight passage 25 as shown in Figure 3A, and the parallel In this case, it passes through arcuate passages 26 and 27 as shown in FIG. 3B. In addition, hot water is supplied from a water supply port 21 and hot water is discharged from a hot water outlet 22.
本発明では、上述のようにシリンダヘッド冷却熱回収用
熱交換器12と、排気ガス熱交換器13への熱媒体の流
れが並列あるいは、直列に自在に流れるように回転電動
弁で制御できるようにしであるので、立上りの貯湯槽給
湯水温度が低い時には、エンジン効率を上げるために、
シリンダヘッドに流れる熱媒体流量を少なくして温度上
昇を早めるように並列に流す事ができるし、貯湯槽内温
度が高くなってきた時には、直列に流してシリンダヘッ
ド冷却熱回収用熱交換器12で加熱された熱媒体を排気
ガス熱交換器13でさらに昇温させる事ができる。それ
故、貯湯槽内熱交換器18での熱媒体と給湯水との温度
差が大きくとれ、交換熱量が増加するものであり、シス
テムの効率が増加する。In the present invention, as described above, the flow of the heat medium to the cylinder head cooling heat recovery heat exchanger 12 and the exhaust gas heat exchanger 13 can be controlled by the rotary electric valve so that it freely flows in parallel or in series. In order to increase engine efficiency, when the temperature of the hot water supply water in the hot water storage tank is low at startup,
The heat medium can be flowed in parallel to reduce the flow rate of the heat medium flowing into the cylinder head and accelerate the temperature rise, and when the temperature inside the hot water storage tank becomes high, it can be flowed in series to the cylinder head cooling heat recovery heat exchanger 12. The heated heat medium can be further heated in the exhaust gas heat exchanger 13. Therefore, the temperature difference between the heat medium and the hot water in the hot water storage tank heat exchanger 18 can be increased, the amount of heat exchanged is increased, and the efficiency of the system is increased.
また本発明では、並列あるいは直列の熱媒体流れの切換
えを、熱媒体がシリンダヘッドに入る前の温度センサー
16で回転電動弁17を動作させて行っている。一般に
、このようなシステムを給湯専用機とした場合、システ
ムの0N−OFFは貯湯槽内に設けた温度センサーB“
23での感温によシ行ない、ヒートポンプ運転が可能か
どうかで判断する。この場合このセンサーでの設定温度
は冷凍サイクル中の冷媒にもよるが領えばR−22の場
合so’c前後である。それ故、ON時の貯湯槽内熱交
換器18周囲の温度は50℃以上であり、シリンダヘッ
ドに入る熱媒体温度は比較的高く、エンジン効率にはほ
とんど影響なく、シリンダヘッド入口の熱媒体温度で制
御する事はシステム運転にとって最良である。またこの
ようにすると実際の給湯負荷、つ1す○N−0FFの大
きい場合には循環経路内熱媒体の温度上昇が早く、短時
間の運転時間内でも貯湯槽内で充分に熱交換されるもの
である。Further, in the present invention, switching between parallel and serial heat medium flows is performed by operating the rotary electric valve 17 using the temperature sensor 16 before the heat medium enters the cylinder head. Generally, when such a system is used as a hot water supply only machine, the ON/OFF of the system is determined by the temperature sensor B installed in the hot water tank.
Based on the temperature sensing at 23, it is determined whether heat pump operation is possible. In this case, the temperature set by this sensor depends on the refrigerant in the refrigeration cycle, but in the case of R-22, it is around so'c. Therefore, the temperature around the heat exchanger 18 in the hot water storage tank when it is ON is 50°C or higher, and the temperature of the heat medium entering the cylinder head is relatively high, which has almost no effect on engine efficiency, and the temperature of the heat medium at the inlet of the cylinder head is relatively high. control is best for system operation. In addition, by doing this, when the actual hot water supply load, TS1○N-0FF, is large, the temperature of the heat medium in the circulation path rises quickly, and sufficient heat exchange within the hot water storage tank is achieved even during short operating hours. It is something.
さらに本発明では、並列、直列の切換えをシリンダヘッ
ド下流に設けた二方向、四方向切換え可能の電動弁によ
り行っているが、電動弁の動作は46°だけ正逆回転す
るだけでよく、ノ<ルブ構成とし極めて簡単に出来るも
のである。Furthermore, in the present invention, switching between parallel and series is performed by a two-way and four-way switchable electric valve installed downstream of the cylinder head. <It is extremely easy to make with a rub configuration.
発明の効果
熱媒体の温度上昇が大きく、それ散財湯桶内での熱交換
量が大きく、システム効率が大きい。また給湯専用機と
して使う場合の制御がしやすくエンジン効率を下げずに
システム効率が大きい。Effects of the invention: The temperature rise of the heating medium is large, the amount of heat exchanged within the hot water tank is large, and the system efficiency is high. In addition, when used as a dedicated water heater, it is easy to control and the system efficiency is high without reducing engine efficiency.
第1図は従来の一実施例のエンジン駆動給湯装置の回路
構成図、第2図は本発明の一実施例のエンジン駆動給湯
装置の回路構成図、第3図は本発明の一実施例における
回転電動弁の詳細断面図である。
12・・・・・・シリンダへノド冷却熱回収用熱交換著
量、13・・・・・・排気ガス熱交換器、15・・・・
・循環ポンフ゛、16・・・・・・温度センサー、17
・・・・・・回転電動弁、18・・・・・・貯湯槽内熱
交換器。
代理人の氏名 弁理士 中 尾 敏 男 は力・1名第
1図
q
第3図
rパノ
3
(B)FIG. 1 is a circuit diagram of an engine-driven water heater according to an embodiment of the conventional technology, FIG. 2 is a circuit diagram of an engine-driven water heater according to an embodiment of the present invention, and FIG. 3 is a circuit diagram of an engine-driven water heater according to an embodiment of the present invention. FIG. 3 is a detailed cross-sectional view of the rotary electric valve. 12... Significant amount of heat exchange for recovering throat cooling heat to cylinder, 13... Exhaust gas heat exchanger, 15...
・Circulation pump, 16...Temperature sensor, 17
...Rotary electric valve, 18...Hot water tank heat exchanger. Name of agent Patent attorney Toshio Nakao 1 person Figure 1 q Figure 3 r Pano 3 (B)
Claims (3)
と、前記エンジンの排気ガス排熱用熱交換器を具備し、
前記熱交換器を直列あるいは並列に移動する共通の熱媒
体を介して給湯用熱源を得ることを特徴とするエンジン
駆動給湯装置。(1) A heat exchanger for cooling a cylinder head of an engine and a heat exchanger for exhaust gas exhaust heat of the engine,
An engine-driven hot water supply apparatus characterized in that a heat source for hot water supply is obtained through a common heat medium that moves the heat exchanger in series or in parallel.
は、冷却用熱交換器と排熱用熱交換器を熱媒体に対して
並列接続し、シリンダヘッドに入る熱媒体温度が高い時
には前記熱媒体に対して前記熱交換器を直列接続するこ
とを特徴とする特許請求の範囲第1項記載のエンジン駆
動給湯装置。(2) When the temperature of the heat medium entering the cylinder head is low, the cooling heat exchanger and the exhaust heat heat exchanger are connected in parallel to the heat medium, and when the temperature of the heat medium entering the cylinder head is high, the cooling heat exchanger and the exhaust heat heat exchanger are connected in parallel to the heat medium. The engine-driven water heater according to claim 1, wherein the heat exchanger is connected in series with the heat exchanger.
けた二方向と四方向に切換え可能な回転電動弁により行
なうことを特徴とする特許請求の範囲第1項せたは第2
項記載のエンジン駆動給湯装置。(3) The flow of the heat medium is switched by a rotary motor-operated valve provided downstream of the cylinder head and capable of switching in two directions and four directions.Claim 1 or 2
The engine-driven hot water supply device described in Section 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58102075A JPS59226257A (en) | 1983-06-07 | 1983-06-07 | Engine-driven hot-water supplying apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58102075A JPS59226257A (en) | 1983-06-07 | 1983-06-07 | Engine-driven hot-water supplying apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59226257A true JPS59226257A (en) | 1984-12-19 |
Family
ID=14317648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58102075A Pending JPS59226257A (en) | 1983-06-07 | 1983-06-07 | Engine-driven hot-water supplying apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59226257A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63147549U (en) * | 1987-03-20 | 1988-09-28 | ||
JP2012140921A (en) * | 2011-01-05 | 2012-07-26 | Osaka Gas Co Ltd | Exhaust heat recovery device of engine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867949A (en) * | 1981-10-16 | 1983-04-22 | Kubota Ltd | Water warming device utilizing waste heat of engine |
-
1983
- 1983-06-07 JP JP58102075A patent/JPS59226257A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5867949A (en) * | 1981-10-16 | 1983-04-22 | Kubota Ltd | Water warming device utilizing waste heat of engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63147549U (en) * | 1987-03-20 | 1988-09-28 | ||
JP2012140921A (en) * | 2011-01-05 | 2012-07-26 | Osaka Gas Co Ltd | Exhaust heat recovery device of engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000304375A (en) | Latent heat recovery type absorption water cooler heater | |
JPS59226257A (en) | Engine-driven hot-water supplying apparatus | |
JP2001248489A (en) | Method for controlling engine heat pump | |
JPH06257770A (en) | Hot water supplier and heater | |
JPH07218016A (en) | Absorption type chilled and warm water machine | |
JP2006162104A (en) | Triple effect type absorption cooling and heating machine control method having exhaust heat regenerator and triple effect type absorption cooling and heating machine | |
JPS60236A (en) | Room cooling, heating and hot-water supplying device utilizing internal-combustion engine | |
JPH0157269B2 (en) | ||
JPH0893553A (en) | Control method and device for heat supply using cogeneration system | |
JPH09310933A (en) | Waste heat recovering device for engine | |
JPH10325640A (en) | Driven by engine | |
JPS5810938Y2 (en) | Ray Danbouki Yutousouchi | |
JPS6284271A (en) | Engine drive type air-conditioning hot-water supply device | |
JPS6144211A (en) | Blast furnace gas separation type heater | |
JPS6256428B2 (en) | ||
JP2894601B2 (en) | Absorption chiller / heater and operating method thereof | |
JP2002106996A (en) | Air conditioner | |
JPS624847Y2 (en) | ||
JPH0738674Y2 (en) | Excess heat medium utilization device | |
JPS6356223A (en) | Temperature control system for hydroponic greenhouse | |
JP2000074525A (en) | Flow rate regulating type heat pump high efficiency | |
JP2002188868A (en) | Air conditioner | |
JPH0148469B2 (en) | ||
JPH0221503B2 (en) | ||
JPH10176873A (en) | Heat pump device and control method therefor |