JPH0221503B2 - - Google Patents

Info

Publication number
JPH0221503B2
JPH0221503B2 JP57181063A JP18106382A JPH0221503B2 JP H0221503 B2 JPH0221503 B2 JP H0221503B2 JP 57181063 A JP57181063 A JP 57181063A JP 18106382 A JP18106382 A JP 18106382A JP H0221503 B2 JPH0221503 B2 JP H0221503B2
Authority
JP
Japan
Prior art keywords
heated
engine
fluid
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57181063A
Other languages
Japanese (ja)
Other versions
JPS5969672A (en
Inventor
Tsugunori Hata
Katsuyuki Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP57181063A priority Critical patent/JPS5969672A/en
Publication of JPS5969672A publication Critical patent/JPS5969672A/en
Publication of JPH0221503B2 publication Critical patent/JPH0221503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Central Heating Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、給湯装置や冷暖房装置、或いは、温
室等の加熱熱源として用いられる装置で、詳しく
は、エンジンで駆動される冷媒圧縮機を備えた冷
媒回路に、圧縮冷媒との熱交換により被加熱流体
を加熱させる凝縮器を介装するとともに、前記エ
ンジンの排熱で被加熱流体を加熱させる排熱回収
装置を設けてあるエンジン駆動式ヒートポンプ利
用の熱源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device used as a hot water supply device, an air conditioning device, or a heating heat source for a greenhouse, etc. The present invention relates to a heat source device using an engine-driven heat pump, which is provided with a condenser that heats the fluid to be heated by heat exchange with the engine, and an exhaust heat recovery device that heats the fluid to be heated with the exhaust heat of the engine.

かかるエンジン駆動式ヒートポンプ利用の熱源
装置は、エンジンをヒートポンプの駆動装置に使
用するのみならず、エンジンによる圧縮機の駆動
をもつてエンジンに適度、かつ、十分な負荷を与
えることにより、エンジン自体の二次排熱を有効
利用し、もつて、被加熱流体の加熱効率の増大が
図れるように構成されたものであるが、従来のよ
うに、凝縮器に対して常に負荷装置(給湯装置、
冷暖房装置、温室等)からの低温被加熱流体を供
給すべく構成されたものでは、低温被加熱流体の
温度が設定温度又はそれに近い温度にまで上昇し
た後の定常運転時には、前述のようにエンジンに
適度、かつ、十分な負荷を与えて、排熱回収装置
による被加熱流体の加熱作用を保証できるもの
の、低温被加熱流体の温度が低く、かつ、凝縮温
度も低く、圧縮機の負荷が定常運転時における負
荷の1/2以下である運転初期のときは圧縮機駆動
によつてエンジンに与えられる負荷が未だ小さく
て、エンジンの発熱量が少なく、しかも、被加熱
流体の昇温が凝縮器での熱交換のみに依存してい
て、昇温速度自体が遅いから、エンジン負荷の上
昇も律速となり、故に運転開始後、被加熱流体を
設定温度にまで昇温させるのに要する時間が長
く、運転立上り性能が悪いといつた欠点があつ
た。
Such a heat source device using an engine-driven heat pump not only uses the engine as a drive device for the heat pump, but also uses the engine to drive a compressor to apply a moderate and sufficient load to the engine, thereby increasing the engine's own power consumption. This system is designed to make effective use of secondary waste heat and thereby increase the heating efficiency of the heated fluid.
In a device configured to supply low-temperature heated fluid from a heating/cooling system, greenhouse, etc., during steady operation after the temperature of the low-temperature heated fluid has risen to the set temperature or a temperature close to it, the engine Although it is possible to guarantee the heating effect of the heated fluid by the waste heat recovery device by applying a moderate and sufficient load to the At the beginning of operation, when the load is less than 1/2 of the load during operation, the load applied to the engine by the compressor drive is still small, and the amount of heat generated by the engine is small. Since the heating rate itself is slow and the increase in engine load is also rate limiting, the time required to raise the temperature of the heated fluid to the set temperature after the start of operation is long. The drawback was poor start-up performance.

本発明は、かかる従来欠点を解消しようとする
点に目的を有する。
The present invention has an object to overcome such conventional drawbacks.

本発明によるエンジン駆動式ヒートポンプ利用
の熱源装置は、前記凝縮器に負荷装置からの低温
被加熱流体を前記排熱回収装置を通すことなく供
給する第1状態と、前記排熱回収装置で加熱され
た後の高温被加熱流体を供給する第2状態とに切
替自在な被加熱流体供給制御機構を設けてある事
を特徴とする。
A heat source device using an engine-driven heat pump according to the present invention includes a first state in which low-temperature heated fluid from a load device is supplied to the condenser without passing through the exhaust heat recovery device; The present invention is characterized in that it is provided with a heated fluid supply control mechanism that can freely switch to a second state in which the high-temperature heated fluid is supplied after heating.

このような本発明の特徴構成によれば、制御機
構を、排熱回収装置からの高温被加熱流体を凝縮
器に供給させる第2状態に切替えることにより、 凝縮温度を急速に上昇させ、 この凝縮温度の上昇に比例して、圧縮機負荷
も急速に増加させ、 かつこの圧縮機負荷の増加により、エンジン
発熱量も十分なものにでき、 更にこのエンジン発熱量の増加により、凝縮
器に供給される高温被加熱流体の昇温速度を大
きくすることができる、 といつたように、凝縮温度の急速上昇をもつてエ
ンジン負荷の増大、凝縮温度の上昇速度の尚一層
の上昇とが図れる。
According to such a characteristic configuration of the present invention, the condensing temperature is rapidly increased by switching the control mechanism to the second state in which the high-temperature heated fluid from the exhaust heat recovery device is supplied to the condenser, and the condensation temperature is increased rapidly. The compressor load increases rapidly in proportion to the rise in temperature, and this increase in compressor load also makes it possible to generate enough engine heat, and furthermore, this increase in engine heat generation increases the amount of heat supplied to the condenser. As mentioned above, by rapidly increasing the condensing temperature, it is possible to increase the engine load and further increase the rate of increase in the condensing temperature.

従つて、本発明によれば、運転初期において
は、被加熱流体供給制御機構を第2状態に切替え
ることにより、運転開始後、短時間で圧縮機駆動
によつてエンジンに与えられる負荷、つまり、エ
ンジンの発熱量を増大させて、排熱回収装置で加
熱される被加熱流体を設定温度にまで急速に昇温
でき、運転の立上り性能を良好化でき、それでい
て、定常運転時には、被加熱流体供給制御機構を
第1状態に切替えることにより、圧縮機駆動によ
つてエンジンに適度な負荷を与えて排熱回収装置
で被加熱流体を加熱させつつ、凝縮器においても
被加熱流体を加熱させ、被加熱流体の加熱を最も
効率良く行なえる。
Therefore, according to the present invention, in the initial stage of operation, by switching the heated fluid supply control mechanism to the second state, the load applied to the engine by driving the compressor in a short time after the start of operation, that is, By increasing the amount of heat generated by the engine, it is possible to rapidly raise the temperature of the heated fluid heated by the exhaust heat recovery device to the set temperature, improving the start-up performance of the operation, and at the same time supplying the heated fluid during steady operation. By switching the control mechanism to the first state, an appropriate load is applied to the engine by driving the compressor to heat the fluid to be heated in the exhaust heat recovery device, and the fluid to be heated is also heated in the condenser. The heating fluid can be heated most efficiently.

以下、本発明の実施例を第1図に基づいて説明
する。
Embodiments of the present invention will be described below with reference to FIG.

負荷装置A(給湯装置、冷暖房装置、温室等)
に対する循環式の被加熱流体供給路aの被加熱流
体(一般に水である。)を加熱させるエンジン駆
動式ヒートポンプBと、エンジン1の排熱で前詰
被加熱流体を加熱させる排熱回収装置Cとを併設
して、熱源装置を構成する。
Load equipment A (water heater, air conditioning equipment, greenhouse, etc.)
an engine-driven heat pump B that heats the fluid to be heated (generally water) in the circulating fluid to be heated supply path a; and an exhaust heat recovery device C that heats the prepacked fluid to be heated with the exhaust heat of the engine 1. Together, they form a heat source device.

前記ヒートポンプBは、前記エンジン1で駆動
される冷媒圧縮機2を備えた冷媒回路bに、圧縮
冷媒との熱交換により前記被加熱流体を加熱させ
る凝縮器3と、膨張弁4及び、大気熱交型の蒸発
器5とを介装して、構成されている。
The heat pump B includes a refrigerant circuit b including a refrigerant compressor 2 driven by the engine 1, a condenser 3 that heats the fluid to be heated by heat exchange with compressed refrigerant, an expansion valve 4, and atmospheric heat. It is constructed by interposing an alternating-shaped evaporator 5.

前記凝縮器3と排熱回収装置Cとは、前記被加
熱流体供給路aに並列接続状態に介装されてい
る。
The condenser 3 and the exhaust heat recovery device C are connected in parallel to the heated fluid supply path a.

前記エンジン1は、水冷エンジンである。 The engine 1 is a water-cooled engine.

前記排熱回収装置Cは、エンジン1の冷却水で
被加熱流体を加熱させる第1熱交換器6と、これ
よりも被加熱流体供給下流側においてエンジン1
の排気で被加熱流体を加熱させる第2熱交換器7
とから構成されている。
The exhaust heat recovery device C includes a first heat exchanger 6 that heats the fluid to be heated with the cooling water of the engine 1, and a first heat exchanger 6 that heats the fluid to be heated with the cooling water of the engine 1, and a first heat exchanger 6 that heats the fluid to be heated with the cooling water of the engine 1, and
A second heat exchanger 7 that heats the fluid to be heated with the exhaust gas of the
It is composed of.

8は、被加熱流体供給ポンプである。 8 is a heated fluid supply pump.

次に、前記負荷装置Aからの低温被加熱流体を
排熱回収装置Cと凝縮器3に並列的に供給する第
1状態と、前記排熱回収装置Cと凝縮器3とを直
列的に接続して循環供給する第2状態とに自動切
替自在な被加熱流体供給制御機構9とその作用に
ついて説明する。この制御機構9は三つの開閉弁
V1,V2,V3と、前記凝縮器3入口での被加熱流
体の温度を検出するセンサー9C、凝縮器3入口
での温度検出結果に基づいて前記開閉弁V1,V2
V3の開閉状態を切替える制御器9Bを備えてい
る。
Next, a first state in which the low-temperature heated fluid from the load device A is supplied to the waste heat recovery device C and the condenser 3 in parallel, and a first state in which the waste heat recovery device C and the condenser 3 are connected in series. The heated fluid supply control mechanism 9, which can automatically switch to the second state where the heated fluid is circulated and supplied, and its operation will be described. This control mechanism 9 has three on-off valves.
V 1 , V 2 , V 3 , a sensor 9C that detects the temperature of the heated fluid at the inlet of the condenser 3 , and a sensor 9C that detects the temperature of the heated fluid at the inlet of the condenser 3 ;
It is equipped with a controller 9B that switches the open/close state of V3 .

イ 第1状態(第1図参照) 前記センサー9Cの検出温度が設定値以上の
ときには、制御器9Bの働きによつて前記開閉
弁V1とV2が開き、開閉弁V3が閉じて図面上の
矢印のように循環する。すなわち、供給ポンプ
8から吐出された被加熱流体は開閉弁V1の手
前で排熱回収装置Cと凝縮器3側とに分流さ
れ、両者に並列的に供給されて夫々の箇所で熱
交換された後に合流されて負荷装置Aへと送り
出される。
A first state (see Fig. 1) When the temperature detected by the sensor 9C is higher than the set value, the on-off valves V1 and V2 are opened by the action of the controller 9B, and the on-off valve V3 is closed. Cycle like the arrow above. That is, the fluid to be heated discharged from the supply pump 8 is divided into the exhaust heat recovery device C and the condenser 3 side before the on-off valve V1 , and is supplied to both in parallel and heat exchanged at each location. After that, they are combined and sent to load device A.

ロ 第2状態(第2図参照) 前記センサー9Cの検出温度が設定値以下に
なると、制御器9Bの働きによつて開閉弁V1
とV2が閉じ、開閉弁V3が開いて図面上の破線
矢印のように循環する。すなわち、供給ポンプ
8から吐出された被加熱流体の全量が先ず排熱
回収装置Cを通過して熱交換され、排熱回収装
置Cの流体出口と凝縮器3の入口とを接続する
流路9Aを介して凝縮器3に至り、排熱回収装
置Cで加熱された後の被加熱流体を凝縮器3で
更に熱交換してから負荷装置Aへと送り出され
る。
(b) Second state (see Figure 2) When the temperature detected by the sensor 9C falls below the set value, the on-off valve V 1 is activated by the action of the controller 9B.
V 2 closes, on-off valve V 3 opens, and the circuit circulates as shown by the dashed arrow on the drawing. That is, the entire amount of the heated fluid discharged from the supply pump 8 first passes through the exhaust heat recovery device C to undergo heat exchange, and the flow path 9A connects the fluid outlet of the exhaust heat recovery device C and the inlet of the condenser 3. The heated fluid is heated in the exhaust heat recovery device C and then further heat exchanged in the condenser 3 before being sent to the load device A.

上記実施例構成によれば、被加熱流体温度が設
定値以下の運転初期には、制御機構9が第2状態
に切替わつており、被加熱流体温度が設定値より
も高い定常運転時には、制御機構9が第1状態に
切替わつていて、運転初期においては、 排熱回収装置Cで加熱された被加熱流体が凝
縮器3に供給されることにより、凝縮温度が上
昇し、 これにより、圧縮機2の駆動によつてエンジ
ン1に付与される負荷が増大、つまり、エンジ
ン1の発熱量が増大し、 これにより、排熱回収装置Cで加熱されて前
記凝縮器3に供給される被加熱流体の温度が上
昇し、 これによつて、凝縮温度が上昇する といつたように、凝縮温度の上昇が被加熱流体の
昇温を助長し、かつ、被加熱流体の昇温が凝縮温
度の上昇を助長して、運転開始後、短時間で、被
加熱流体温度が設定値にまで上昇する。他方、定
常運転時には、圧縮機2の駆動によつてエンジン
1に適度な負荷を与えて、排熱回収装置Cにおい
て被加熱流体を加熱させつつ、凝縮器3において
も被加熱流体を加熱させて、被加熱流体の加熱が
効率良く行なわれる。
According to the configuration of the above embodiment, the control mechanism 9 is switched to the second state at the beginning of operation when the heated fluid temperature is below the set value, and during steady operation when the heated fluid temperature is higher than the set value, the control mechanism 9 is switched to the second state. When the mechanism 9 is switched to the first state and in the initial stage of operation, the heated fluid heated by the exhaust heat recovery device C is supplied to the condenser 3, so that the condensation temperature rises. The load applied to the engine 1 by driving the compressor 2 increases, that is, the amount of heat generated by the engine 1 increases. As mentioned above, when the temperature of the heated fluid increases and the condensing temperature rises, the increase in the condensing temperature promotes the increase in the temperature of the heated fluid, and the increase in the temperature of the heated fluid increases the condensing temperature. As a result, the heated fluid temperature rises to the set value in a short time after the start of operation. On the other hand, during steady operation, a moderate load is applied to the engine 1 by driving the compressor 2, and while the fluid to be heated is heated in the exhaust heat recovery device C, the fluid to be heated is also heated in the condenser 3. , the fluid to be heated can be heated efficiently.

上記の実施例では、凝縮器3の入口での被加熱
流体の温度を検出して第1状態と第2状態の切替
えを行つたが、別の実施例として、ヒートポンプ
Bの冷媒圧力または冷媒温度の検出センサーを設
けて第1状態と第2状態とを切替えるように構成
してもよい。
In the above embodiment, the temperature of the fluid to be heated at the inlet of the condenser 3 is detected to switch between the first state and the second state. The configuration may be such that a detection sensor is provided to switch between the first state and the second state.

又、実施例では、凝縮器3で加熱された被加熱
流体と排熱回収装置Cで加熱された被加熱流体と
を共通の負荷装置Aに供給させて、1つの熱源を
構成したが、本発明は、前記両被加熱流体を別々
の負荷装置に供給させて、2つの熱源を構成して
も良い。
Furthermore, in the embodiment, the heated fluid heated by the condenser 3 and the heated fluid heated by the exhaust heat recovery device C are supplied to the common load device A to constitute one heat source. In the invention, the two heated fluids may be supplied to separate load devices to constitute two heat sources.

尚、特許請求の範囲の項に図面との対照を便利
にする為に符号を記すが、該記入により本発明は
添付図面の構造に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1状態の流れを示す配管系
統図、第2図は第2状態の流れを示す配管系統図
である。 1……エンジン、2……冷媒圧縮機、b……冷
媒回路、3……凝縮器、C……排熱回収装置、A
……負荷装置、9……被加熱流体供給制御機構。
FIG. 1 is a piping system diagram showing the flow in the first state of the present invention, and FIG. 2 is a piping system diagram showing the flow in the second state. 1...Engine, 2...Refrigerant compressor, b...Refrigerant circuit, 3...Condenser, C...Exhaust heat recovery device, A
... Load device, 9 ... Heated fluid supply control mechanism.

Claims (1)

【特許請求の範囲】 1 エンジン1で駆動される冷媒圧縮機2を備え
た冷媒回路bに、圧縮冷媒との熱交換により被加
熱流体を加熱させる凝縮器3を介装するととも
に、前記エンジン1の排熱で被加熱流体を加熱さ
せる排熱回収装置Cを設けてあるエンジン駆動式
ヒートポンプ利用の熱源装置において、前記凝縮
器3に負荷装置Aからの低温被加熱流体を前記排
熱回収装置Cを通すことなく供給する第1状態
と、前記排熱回収装置Cで加熱された後の高温被
加熱流体を供給する第2状態とに切替自在な被加
熱流体供給制御機構9を設けてある事を特徴とす
るエンジン駆動式ヒートポンプ利用の熱源装置。 2 前記被加熱流体供給制御機構9が、冷媒圧力
又は冷媒温度若しくは前記凝縮器3への供給被加
熱流体温度が設定値以下になつたとき、自動的、
かつ、可逆的に第2状態に切替わるものである特
許請求の範囲第1項に記載のエンジン駆動式ヒー
トポンプ利用の熱源装置。 3 前記凝縮器3と排熱回収装置Cとが、負荷装
置Aに対する被加熱流体供給路aに並列接続状態
に介装されたものである特許請求の範囲第1項又
は第2項に記載のエンジン駆動式ヒートポンプ利
用の熱源装置。
[Scope of Claims] 1. A refrigerant circuit b equipped with a refrigerant compressor 2 driven by the engine 1 is provided with a condenser 3 that heats the fluid to be heated by heat exchange with the compressed refrigerant. In a heat source device using an engine-driven heat pump, which is equipped with an exhaust heat recovery device C that heats a fluid to be heated with the exhaust heat of A heated fluid supply control mechanism 9 is provided that can switch freely between a first state in which the heated fluid is supplied without passing through the fluid and a second state in which the high temperature heated fluid is supplied after being heated by the exhaust heat recovery device C. A heat source device that uses an engine-driven heat pump. 2. When the refrigerant pressure, the refrigerant temperature, or the temperature of the heated fluid supplied to the condenser 3 falls below a set value, the heated fluid supply control mechanism 9 automatically controls the
The heat source device using an engine-driven heat pump according to claim 1, wherein the heat source device is reversibly switched to the second state. 3. The method according to claim 1 or 2, wherein the condenser 3 and the exhaust heat recovery device C are connected in parallel to the heated fluid supply path a to the load device A. A heat source device that uses an engine-driven heat pump.
JP57181063A 1982-10-14 1982-10-14 Heat source device utilizing engine driving type heat pump Granted JPS5969672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57181063A JPS5969672A (en) 1982-10-14 1982-10-14 Heat source device utilizing engine driving type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57181063A JPS5969672A (en) 1982-10-14 1982-10-14 Heat source device utilizing engine driving type heat pump

Publications (2)

Publication Number Publication Date
JPS5969672A JPS5969672A (en) 1984-04-19
JPH0221503B2 true JPH0221503B2 (en) 1990-05-15

Family

ID=16094135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57181063A Granted JPS5969672A (en) 1982-10-14 1982-10-14 Heat source device utilizing engine driving type heat pump

Country Status (1)

Country Link
JP (1) JPS5969672A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676807U (en) * 1992-02-17 1994-10-28 阪和電子工業株式会社 A device that detects the presence or absence of a board that engages with the upper and lower pedestals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161436A (en) * 1981-03-31 1982-10-05 Komatsu Zenoa Kk Cooling and heating equipment by heat pump system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161436A (en) * 1981-03-31 1982-10-05 Komatsu Zenoa Kk Cooling and heating equipment by heat pump system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676807U (en) * 1992-02-17 1994-10-28 阪和電子工業株式会社 A device that detects the presence or absence of a board that engages with the upper and lower pedestals

Also Published As

Publication number Publication date
JPS5969672A (en) 1984-04-19

Similar Documents

Publication Publication Date Title
US4070870A (en) Heat pump assisted solar powered absorption system
JP4827307B2 (en) Air conditioner
US5003788A (en) Gas engine driven heat pump system
US5099651A (en) Gas engine driven heat pump method
JPS6310349B2 (en)
JPH0221503B2 (en)
JPH07218016A (en) Absorption type chilled and warm water machine
JPS5848824B2 (en) Air conditioning/heating water heater
JP3583792B2 (en) Hot water supply / air conditioning system
JPH026424B2 (en)
JP3182682B2 (en) Cold / hot water generator and temperature control method for the cold / hot water
JPS5810938Y2 (en) Ray Danbouki Yutousouchi
JPS6255063B2 (en)
JPS60236A (en) Room cooling, heating and hot-water supplying device utilizing internal-combustion engine
JPH033902Y2 (en)
JP3667921B2 (en) Refrigerant heating type air conditioner
JPH0332712B2 (en)
JPH0218454Y2 (en)
JP2675619B2 (en) Heat pump type air conditioner
JPS6112515Y2 (en)
JPS6235025B2 (en)
JPH0446344B2 (en)
JPS6325268B2 (en)
JPS6151217B2 (en)
JPH0125980B2 (en)