JPS6347358B2 - - Google Patents

Info

Publication number
JPS6347358B2
JPS6347358B2 JP57219273A JP21927382A JPS6347358B2 JP S6347358 B2 JPS6347358 B2 JP S6347358B2 JP 57219273 A JP57219273 A JP 57219273A JP 21927382 A JP21927382 A JP 21927382A JP S6347358 B2 JPS6347358 B2 JP S6347358B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
forming
film
laser device
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57219273A
Other languages
Japanese (ja)
Other versions
JPS59110185A (en
Inventor
Hideo Tamura
Seiji Iida
Katsuyoshi Yamamoto
Haruki Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP21927382A priority Critical patent/JPS59110185A/en
Publication of JPS59110185A publication Critical patent/JPS59110185A/en
Publication of JPS6347358B2 publication Critical patent/JPS6347358B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体発光装置、特に半導体レーザ
装置の端面保護膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming an end face protection film of a semiconductor light emitting device, particularly a semiconductor laser device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体発光装置、特にGaAlAsよりなる三元系
の半導体レーザ装置を第1図に示す。図例はn型
GaAs基板7の一側面に順次n型GaAlAs層6、
活性層5、p型GaAlAs層4、p型GaAs層3、
絶縁膜2、絶縁膜2を開孔して設けたアノード電
極1を、又他側面にカソードオーミツク電極8を
おいている。このような装置では、活性層の発光
領域が0.02〜0.1μm×3〜5μmと非常に微少であ
り、ここから数mW、時には数十mWに及ぶ光出
力を取り出すもので、単位面積当りの光出力は
106W/cm2にも達する。このため作動寿命が伸び
ている現在では、その寿命限界は半導体レーザ共
振器端の保護膜形成如何によると言つても過言で
ない。この半導体レーザ装置端面保護膜の形成
は、公知のスパツター、E−ガン、CVD法等の
手法によりSiO2、Al2O3、Si3N4等の誘電体膜を
半導体レーザ共振器両端面に半波長の厚さに付着
することにより行なわれている。このときアノー
ド電極1、カソード電極8の各電極面への誘電体
膜の付着は、ヒートシンクへのマウント及び電極
のワイヤーボンデイングを困難にするため、さけ
なければならない。従つて端面への保護膜付着工
程においては電極面をマスクする必要がある。し
かし半導体レーザチツプは通常極めて小さく、例
えば0.4×0.3×0.1mmであり、このようなチツプの
電極面をマスクすることは困難である。そこで第
2図または第3図に示すように半導体レーザチツ
プをマウントしてから端面保護膜を付着するか、
あるいは第4図に示すような半導体レーザチツプ
が連なつたバー状試料をたばねて端面保護膜を付
着するかしている。
FIG. 1 shows a semiconductor light emitting device, particularly a ternary semiconductor laser device made of GaAlAs. The example shown is n type.
On one side of the GaAs substrate 7, an n-type GaAlAs layer 6,
active layer 5, p-type GaAlAs layer 4, p-type GaAs layer 3,
An insulating film 2, an anode electrode 1 provided by opening a hole in the insulating film 2, and a cathode ohmic electrode 8 on the other side. In such devices, the active layer has a very small light-emitting area of 0.02 to 0.1 μm x 3 to 5 μm, from which light output of several mW, sometimes tens of mW, is extracted, and the light output per unit area is very small. The output is
It reaches as much as 10 6 W/cm 2 . For this reason, it is no exaggeration to say that the operating life is now increasing, and that the limit of the operating life depends on the formation of the protective film at the end of the semiconductor laser resonator. This semiconductor laser device end face protection film is formed by depositing a dielectric film of SiO 2 , Al 2 O 3 , Si 3 N 4 , etc. on both end faces of the semiconductor laser resonator using known methods such as sputtering, E-gun, and CVD. This is done by depositing half a wavelength thick. At this time, adhesion of the dielectric film to each electrode surface of the anode electrode 1 and the cathode electrode 8 must be avoided because it makes mounting on a heat sink and wire bonding of the electrodes difficult. Therefore, it is necessary to mask the electrode surface in the process of attaching a protective film to the end face. However, semiconductor laser chips are usually extremely small, for example 0.4 x 0.3 x 0.1 mm, and it is difficult to mask the electrode surfaces of such chips. Therefore, as shown in Fig. 2 or 3, the semiconductor laser chip is mounted and then an end face protection film is attached.
Alternatively, a bar-shaped sample in which semiconductor laser chips are connected as shown in FIG. 4 is folded up and an end face protection film is attached thereto.

第2図例はpinダイオード10をとりつけたス
テム9にヒートシンク11、サブマウント12を
介して半導体レーザチツプ13をとりつけてい
る。この装置では半導体レーザチツプのヒートシ
ンクへのマウント及びワイヤボンデイングは端面
保護膜の付着の前に済まされるため、電極面への
誘電体膜の付着はもはや問題とならない。しかし
この例では一対のレーザ端面のうち、ステムに面
した側の端面はステムによつて膜の付着が邪魔さ
れるためスパツタ法あるいはE−ガンなどの様に
指向性のある膜付着手段には適さない。さらにス
テム本体を装置内に入れるためスペースを多くと
り量産向きでない。
In the example shown in FIG. 2, a semiconductor laser chip 13 is attached to a stem 9 to which a pin diode 10 is attached via a heat sink 11 and a submount 12. In this device, the mounting of the semiconductor laser chip on the heat sink and the wire bonding are completed before the end face protection film is attached, so that the attachment of the dielectric film to the electrode surface is no longer a problem. However, in this example, of the pair of laser end faces, the end face facing the stem is obstructed by the stem, so directional film adhesion methods such as sputtering or E-guns are not suitable. Not suitable. Furthermore, since the stem body is placed inside the device, it takes up a lot of space and is not suitable for mass production.

第3図例では、予じめサブマウント12上に電
極ポスト14を設け、サブマウントの上だけでレ
ーザチツプ13へのワイヤボンドを済ませる。す
なわちCu又はSiのサブマウント12上に半導体
レーザチツプ13及び電極ポスト14を半田付け
した後、この間をワイヤボンデイングし、これを
複数個固定治具に装着し、端面保護膜を付着す
る。しかる後に図例のようにヒートシンク11に
半田により固定したものである。しかしこの例で
は半導体レーザ装置が個々の素子に分割されてい
るため保護膜付着に際し配列に手間がかかり、電
極ポストをもうけるなど工程も多くする。従つて
前記例同様に量産に対し弱点を持つ。
In the example shown in FIG. 3, the electrode post 14 is provided on the submount 12 in advance, and wire bonding to the laser chip 13 is completed only on the submount. That is, after soldering the semiconductor laser chip 13 and the electrode post 14 onto the Cu or Si submount 12, wire bonding is performed between them, a plurality of these are mounted on a fixing jig, and an end face protection film is attached. Thereafter, it is fixed to the heat sink 11 by soldering as shown in the figure. However, in this example, since the semiconductor laser device is divided into individual elements, it takes time and effort to arrange them when attaching the protective film, and requires many steps such as providing electrode posts. Therefore, like the above example, it has a weakness in mass production.

第4図例はバー状に切り出した半導体レーザ装
置13を複数個固定治具16上に密に並べて端面
保護膜を形成するものである。配列された各試料
は止め治具15によつておさえられるが、ウエハ
ー表面に微小な凹凸がある場合、バーとバーの間
に若干のすき間を生じることにより、誘電体膜形
成時に膜がこの間隙に入り込み、後のマウント、
ボンデイング工程における歩留りを低下させる問
題がある。さらに同様な方法では端面保護膜は、
一度の施行により片面にしか付着できず、両面に
保護膜を形成するには素子を裏返して付着を繰返
さなければならず、二度手間であると同時に、片
側端面が治具等により汚染する恐れもある。
In the example shown in FIG. 4, a plurality of bar-shaped semiconductor laser devices 13 are closely arranged on a fixing jig 16 to form an end face protection film. Each arrayed sample is held down by the stop jig 15, but if there are minute irregularities on the wafer surface, a slight gap will be created between the bars, so that the dielectric film will not fit into this gap when forming the dielectric film. After entering the mount,
There is a problem in that the yield in the bonding process is reduced. Furthermore, in a similar method, the edge protection film is
It can only be attached to one side in one application, and in order to form a protective film on both sides, the device must be turned over and the attachment repeated, which is a two-time process and there is a risk that one end face may be contaminated by jigs, etc. There is also.

各例で端面保護膜形成をスパツタ法による場
合、半導体レーザの反射面、すなわち保護膜形成
面は、スパツタターゲツトに対して、平行に位置
される。一般にスパツタ法ではスパツタされた粒
子、すなわち誘電体保護膜を形成する粒子は、膜
形成時には数十eVのエネルギーをもつている。
このようなエネルギーをもつた粒子が半導体の反
射面に直接あたることは、保護膜形成時に半導体
反射面にダメージをもたらし、半導体面と膜の間
にストレスを生じさせ、電流を流した場合表面リ
ークにもつながる。
In each example, when the end face protection film is formed by sputtering, the reflecting surface of the semiconductor laser, that is, the surface on which the protection film is formed, is positioned parallel to the sputtering target. Generally, in the sputtering method, the sputtered particles, that is, the particles forming the dielectric protective film, have an energy of several tens of eV when the film is formed.
Particles with such energy that directly hit the reflective surface of the semiconductor cause damage to the reflective surface of the semiconductor during the formation of the protective film, create stress between the semiconductor surface and the film, and cause surface leakage when current is applied. It also leads to

〔発明の目的〕[Purpose of the invention]

この発明は、半導体レーザ装置の電極面をマス
クしながら、両端面に同時にストレスの少ない保
護膜を形成させる歩留り並びに能率に優れた端面
保護形成方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming end face protection with excellent yield and efficiency, in which a protective film with low stress is simultaneously formed on both end faces while masking the electrode faces of a semiconductor laser device.

〔発明の概要〕[Summary of the invention]

例えばスパツタ法により薄膜を形成する場合、
通常試料の膜形成面はスパツタターゲツトに対し
て平行な位置即ち向かい合う位置に置かれるが、
試料に厚味がある場合、試料のターゲツトに対し
て垂直な面にも上面からある程度の距離まで、均
一な厚さの膜が形成される。この現象はまわり込
み現象と呼ばれる。このまわり込み膜はスパツタ
時のスパツタ粒子エネルギーを直接受けることが
なく半導体の膜形成面のダメージが少なく従つて
ストレスが少ない膜の形成を可能にする。この発
明はこのまわり込みを利用したものである。即ち
第5図に示す様に試料ステージ18上に金属マス
ク21を表面において載置されている半導体レー
ザ装置13の両端面19をスパツタターゲツト1
7に対して垂直な位置に置くことにより、形成膜
のまわり込みにより両端面同時にストレスの少な
い保護膜を形成させるものである。また半導体レ
ーザ装置13のスパツタターゲツト17に対して
平行な面20は、ワイヤーボンデイングを施す面
であるため、膜の付着により絶縁されるのを防ぐ
目的でボンデイング可能な広さを前記の金属マス
ク21で覆つている。
For example, when forming a thin film using the sputtering method,
Normally, the film-forming surface of the sample is placed parallel to, or opposite to, the sputtering target.
If the sample is thick, a film of uniform thickness will be formed on the surface of the sample perpendicular to the target up to a certain distance from the top surface. This phenomenon is called the wrap-around phenomenon. This wrap-around film is not directly exposed to the energy of the sputter particles during sputtering, causing less damage to the semiconductor film-forming surface and making it possible to form a film with less stress. This invention utilizes this wraparound. That is, as shown in FIG. 5, both end faces 19 of the semiconductor laser device 13, which has a metal mask 21 placed on the sample stage 18, are placed as sputter targets 1.
By placing the protective film at a position perpendicular to 7, a protective film with less stress can be formed on both end faces at the same time by wrapping around the formed film. Furthermore, since the surface 20 of the semiconductor laser device 13 parallel to the sputter target 17 is the surface to which wire bonding is applied, the area that can be bonded is set using the metal mask in order to prevent insulation due to the adhesion of the film. It is covered with 21.

〔発明の実施例〕[Embodiments of the invention]

第6図にこの発明の実施例方法で使用した治具
配置を示す。モリブデン製の試料支持治具22に
は両側テーパ状の溝23が形成されていてこの溝
におかれるレーザ装置の反射面に端面保護膜のま
わり込みが起り易すい様にさせると同時に、試料
のセツト位置を決定する役割りを果している。こ
の溝に半導体レーザ装置が短冊状に連ねられたバ
ー状試料13′を置く。バー状試料内における半
導体レーザ装置の個数、すなわちバー状試料の長
さは、溝の長さ内で自由である。バー状試料の上
面はワイヤーボンデイングを施す面であるため、
形成膜の付着を防ぐ目的でモンブデン製の金属マ
スク21′によりワイヤーボンデイング可能な広
さ100μm以上を覆う。金属マスク21′の位置は
くさび状のピン24によつて決定され、この金属
マスク21′によつて試料13′が固定される。以
上の治具を高周波13.56MHzスパツタ装置のスパ
ツタターゲツトに対し、半導体レーザ装置の両端
面が垂直になる様にセツトすることにより、半導
体レーザ装置の両端面に同時に保護膜が形成され
る。この実施例ではAl2O3膜を用いてある。端面
保護膜の成長速度はスパツタターゲツトに対して
平行な面に付着する膜の成長速度の40〜50%、
110〜120Å/minで半導体レーザ装置の厚さ約
80μmにおいて均一な厚さで形成される。
FIG. 6 shows the jig arrangement used in the embodiment method of this invention. The sample support jig 22 made of molybdenum has a groove 23 tapered on both sides, which makes it easier for the end face protection film to wrap around the reflective surface of the laser device placed in this groove. It plays a role in determining the set position. A bar-shaped sample 13' in which semiconductor laser devices are arranged in a strip-like manner is placed in this groove. The number of semiconductor laser devices in the bar-shaped sample, ie, the length of the bar-shaped sample, is free within the length of the groove. Since the top surface of the bar-shaped sample is the surface to which wire bonding is applied,
In order to prevent the formed film from adhering, a metal mask 21' made of Monbuden is used to cover an area of 100 μm or more that can be wire bonded. The position of the metal mask 21' is determined by a wedge-shaped pin 24, and the sample 13' is fixed by this metal mask 21'. By setting the above-mentioned jig so that both end faces of the semiconductor laser device are perpendicular to the sputter target of the high frequency 13.56 MHz sputtering device, a protective film is simultaneously formed on both end faces of the semiconductor laser device. In this example, an Al 2 O 3 film is used. The growth rate of the edge protection film is 40 to 50% of the growth rate of the film attached to the plane parallel to the sputter target.
At 110-120Å/min, the thickness of the semiconductor laser device is approx.
It is formed with a uniform thickness of 80 μm.

第7図に他の実施例方法で使用した治具配置を
示す。バー状試料の長さ、すなわち短冊状に連ね
られた半導体レーザの個数が、一定の場合、試料
支持治具22に試料13′を固定する定格の溝を
形成することにより試料の位置出しを行なう。こ
の試料の上面は金属マスク21′によつて覆われ、
同マスクの位置はくさび状のピン24によつて決
定される。
FIG. 7 shows the jig arrangement used in another example method. When the length of the bar-shaped sample, that is, the number of semiconductor lasers arranged in a strip shape, is constant, the sample is positioned by forming a rated groove in the sample support jig 22 to fix the sample 13'. . The upper surface of this sample is covered with a metal mask 21',
The position of the mask is determined by wedge-shaped pins 24.

前述の実施例では短冊状に連ねられた半導体レ
ーザ装置は、試料支持治具の溝に一本ずつ配置さ
せてあるが、さらにその上に同様な試料を重ねる
ことが可能であり、一時に多数の半導体レーザ装
置の端面保護膜形成が可能である。またこの方法
はスパツタ法のみならずE−ガン、CVD法など
の薄膜形成方法で採用してよい。形成膜材として
はSiO2、Si3N4等がある。
In the above-mentioned embodiment, the semiconductor laser devices connected in a strip shape are placed one by one in the groove of the sample support jig, but it is also possible to stack a similar sample on top of the strips, so that a large number of semiconductor laser devices can be stacked at once. It is possible to form an end face protection film for a semiconductor laser device. Further, this method may be employed not only in the sputtering method but also in other thin film forming methods such as E-gun and CVD methods. Examples of the film forming material include SiO 2 and Si 3 N 4 .

〔発明の効果〕〔Effect of the invention〕

このようなこの発明によつても半導体レーザ装
置にストレスの少ない保護膜を両端面同時に形成
することを可能とし、その製造歩留りと能率を向
上させている。
According to the present invention, it is possible to simultaneously form a protective film with less stress on both end faces of a semiconductor laser device, thereby improving manufacturing yield and efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はDH半導体レーザ装置断面図、第2図
及び第3図は何れも半導体レーザ装置実装図、第
4図は端面保護膜形成用治具、第5図はこの発明
の方法を説明するためのスパツタターゲツト配置
図、第6図及び第7図は何れも実施例方法で使用
した保護膜形成用治具である。 各図で、1……アノードオーミツク電極、2…
…絶縁膜、3……p−GaAs層、4……p−
GaAlAs層、5……活性層、6……n−GaAlAs
層、7……n−GaAs基板、8……カソードオー
ミツク電極、9……ステム、10……pinダイオ
ード、11……ヒートシンク、12……サブマウ
ント、13,13′……半導体レーザ装置、14
……電極ポスト、15……試料固定治具、16…
…試料止め治具、17……スパツタターゲツト、
18……試料ステージ、19……共振器端面、2
0……ワイヤーボンデイング面、21,21′…
…金属マスク、22……支持治具、23……配置
溝、24……くさびピン。
Figure 1 is a sectional view of a DH semiconductor laser device, Figures 2 and 3 are mounting diagrams of the semiconductor laser device, Figure 4 is a jig for forming an end face protective film, and Figure 5 explains the method of the present invention. The sputter target arrangement diagrams shown in FIGS. 6 and 7 are all of the protective film forming jig used in the embodiment method. In each figure, 1... anode ohmic electrode, 2...
...Insulating film, 3...p-GaAs layer, 4...p-
GaAlAs layer, 5... active layer, 6... n-GaAlAs
layer, 7... n-GaAs substrate, 8... cathode ohmic electrode, 9... stem, 10... pin diode, 11... heat sink, 12... submount, 13, 13'... semiconductor laser device, 14
...Electrode post, 15...Sample fixing jig, 16...
...Sample holding jig, 17...Spatter target,
18...Sample stage, 19...Resonator end face, 2
0...Wire bonding surface, 21, 21'...
...Metal mask, 22... Support jig, 23... Placement groove, 24... Wedge pin.

Claims (1)

【特許請求の範囲】 1 劈開面からなる一対の相対向する反射面と、
ヒートシンクに融着される面と、これに対向する
ワイヤーボンデイングされる面とを少なくとも備
える半導体レーザ素子の前記反射面に誘電体から
なる保護膜を形成する方法であつて、スパツタ法
を用い、半導体レーザ素子の反射面となる誘電体
保護膜形成面を誘電体材料からなるスパツタータ
ーゲツトに対し垂直に位置させてスパツタするこ
とにより、反射面に誘電体膜を形成することを特
徴とする半導体レーザ装置端面保護膜の形成方
法。 2 ワイヤボンデイング面を金属マスク下方にお
いてスパツタすることを特徴とする特許請求の範
囲第1項記載の半導体レーザ装置端面保護膜の形
成方法。 3 複数個の半導体レーザ素子が反射面を連続さ
せるように連ねられ、ヒートシンクに融着される
面は全面にわたつて支持治具面に密着され、ワイ
ヤーボンデイングさせる面は少なくともワイヤボ
ンデイングに必要とされる面積をマスク下に密着
させた状態で保持されてスパツタされるものであ
ることを特徴とする特許請求の範囲第2項に記載
の半導体レーザ装置端面保護膜の形成方法。
[Claims] 1. A pair of opposing reflecting surfaces each consisting of a cleavage plane;
A method for forming a protective film made of a dielectric material on the reflective surface of a semiconductor laser device, which comprises at least a surface to be fused to a heat sink and a surface to be wire-bonded to the semiconductor laser device, the method comprising: A semiconductor laser characterized in that a dielectric film is formed on the reflective surface by sputtering the dielectric protective film forming surface, which serves as the reflective surface of the laser element, positioned perpendicularly to a sputter target made of a dielectric material. Method for forming a device end face protective film. 2. A method for forming a semiconductor laser device end face protection film according to claim 1, characterized in that the wire bonding surface is sputtered below a metal mask. 3 A plurality of semiconductor laser elements are arranged in a row so that the reflective surfaces are continuous, the surface to be fused to the heat sink is in close contact with the support jig surface over the entire surface, and the surface to be wire bonded is at least as long as necessary for wire bonding. 3. The method of forming a semiconductor laser device end face protection film according to claim 2, wherein the area is held in close contact under a mask and sputtered.
JP21927382A 1982-12-16 1982-12-16 Formation of protection film for semiconductor laser device end surface Granted JPS59110185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21927382A JPS59110185A (en) 1982-12-16 1982-12-16 Formation of protection film for semiconductor laser device end surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21927382A JPS59110185A (en) 1982-12-16 1982-12-16 Formation of protection film for semiconductor laser device end surface

Publications (2)

Publication Number Publication Date
JPS59110185A JPS59110185A (en) 1984-06-26
JPS6347358B2 true JPS6347358B2 (en) 1988-09-21

Family

ID=16732936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21927382A Granted JPS59110185A (en) 1982-12-16 1982-12-16 Formation of protection film for semiconductor laser device end surface

Country Status (1)

Country Link
JP (1) JPS59110185A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712099B2 (en) * 1984-12-24 1995-02-08 株式会社日立製作所 Method for manufacturing semiconductor laser device
JP4617636B2 (en) * 2003-03-19 2011-01-26 住友電気工業株式会社 Optical module
JP2012164737A (en) * 2011-02-04 2012-08-30 Sony Corp Sub-mount, sub-mount assembly and sub-mount assembly method
DE112019007051B4 (en) 2019-03-18 2024-04-18 Mitsubishi Electric Corporation Method for manufacturing a semiconductor laser device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS=1977 *

Also Published As

Publication number Publication date
JPS59110185A (en) 1984-06-26

Similar Documents

Publication Publication Date Title
US7276742B2 (en) Compound semiconductor light emitting device and its manufacturing method
US6474531B2 (en) Semiconductor light-emitting device and method of manufacturing the same and mounting plate
US6281032B1 (en) Manufacturing method for nitride III-V compound semiconductor device using bonding
US6245596B1 (en) Method of producing semiconductor device with heat dissipation metal layer and metal projections
JPS6159886A (en) Manufacture of photosemiconductor device
JPH0738208A (en) Semiconductor laser device
JPS6347358B2 (en)
JPS5833885A (en) Laser diode
JP3257219B2 (en) Multi-beam semiconductor laser
US4380862A (en) Method for supplying a low resistivity electrical contact to a semiconductor laser device
JPH11238870A (en) Semiconductor device and manufacture thereof
JP2000077726A (en) Semiconductor element and manufacture thereof
JPS63153876A (en) Method of treating semiconductor laser end face and jig therefor
JP3634538B2 (en) Semiconductor laser device manufacturing method and semiconductor laser device
JPH0897496A (en) Semiconductor laser and its manufacture
US5612258A (en) Method of producing a semiconductor laser device
JPS61187288A (en) Manufacture of striped type semiconductor laser
JP2002246679A (en) Semiconductor laser element and manufacturing method therefor
JPH05211374A (en) Manufacture of optical semiconductor device
KR940006785B1 (en) Submount and manufacturing method thereof
US5915163A (en) Method of manufacturing a semiconductor diode laser
JPH02253642A (en) Semiconductor device and manufacture thereof
KR940008578B1 (en) Surface protection film building method of semiconductor laser diode
JPH0377676B2 (en)
JPS63141385A (en) Multibeam semiconductor laser device