JPS5833885A - Laser diode - Google Patents

Laser diode

Info

Publication number
JPS5833885A
JPS5833885A JP56131523A JP13152381A JPS5833885A JP S5833885 A JPS5833885 A JP S5833885A JP 56131523 A JP56131523 A JP 56131523A JP 13152381 A JP13152381 A JP 13152381A JP S5833885 A JPS5833885 A JP S5833885A
Authority
JP
Japan
Prior art keywords
laser diode
bonding
active layer
wire
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56131523A
Other languages
Japanese (ja)
Inventor
Masaaki Sawai
沢井 雅明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56131523A priority Critical patent/JPS5833885A/en
Priority to FR8211729A priority patent/FR2511810B1/en
Priority to GB08222520A priority patent/GB2105100B/en
Priority to IT22892/82A priority patent/IT1153715B/en
Priority to DE19823231443 priority patent/DE3231443A1/en
Publication of JPS5833885A publication Critical patent/JPS5833885A/en
Priority to HK457/86A priority patent/HK45786A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/0234Up-side down mountings, e.g. Flip-chip, epi-side down mountings or junction down mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the eliaility of connecting a wire by disposing the bonding position of a bonding wire from the position of an active layer, thereby increasing the load in case of bonding. CONSTITUTION:P type and N type GaAlAs buried layers 12, 11 are formed on an N type GaAs substrate 10. A GaAs active layer 13 of 2-3mum of width oscillating in laser, a P type GaAlAs layer 14 of a light guide layer and an N type GaAlAs layer 15 and further an N type GaAlAs layer 16, a Zn diffused part 17 are formed in a region which is isolated from other region via the layers 11, 12 to run in strip shape in one direction. Then, an Au wire 26 of 25mum in diameter is subjected to thermal-press-bonding except the active layer 13 running in the strip shape at the center of the chip.

Description

【発明の詳細な説明】 本発明はレーザーダイオードに関する。[Detailed description of the invention] The present invention relates to laser diodes.

例えkGiAs −Gss 、−、人jxAsダブルへ
テロ構造を有するレーザーダイオードは、第1図に示す
よ5ic、半導体基体の内l!にレーザー発振のための
GaAs活性層2を有し、基体表面圧−万の電極3を設
け、Auワイヤ4をボンディングして電極取出しを行な
っている。
For example, a laser diode with a double heterostructure of kGiAs -Gss, -, and jxAs is shown in FIG. It has a GaAs active layer 2 for laser oscillation, an electrode 3 with a substrate surface pressure of -10,000 is provided, and an Au wire 4 is bonded to take out the electrode.

上記活性層2は、同図に示すよ5<、基体表面のG a
 A j A s埋込層5に囲まれた基体中央の深さ約
2μmの位置に帯状に設けられるのが普通である。−万
、従来はAuワイヤ4のボンディングを基体表面の中央
部にて行なっていたため、活性層2の一部がボンディン
グエリアの直下に位装置するように、なってしまい、こ
のため直下のGaAs活性層2やGsi 1−xAjX
As層6及びこれらの界面に、ボンディングの応力によ
る機械的損傷を生じレーザーダイオードの寿命の劣化を
もたらすという間区がある。
As shown in the figure, the active layer 2 has 5<, Ga on the substrate surface.
It is usually provided in a strip shape at a depth of about 2 μm at the center of the substrate surrounded by the A j As buried layer 5 . - Conventionally, the bonding of the Au wire 4 was performed at the center of the substrate surface, so a part of the active layer 2 was placed directly under the bonding area. Layer 2 or Gsi 1-xAjX
There are gaps in the As layer 6 and their interfaces that cause mechanical damage due to bonding stress, resulting in a reduction in the life of the laser diode.

上述の機械的損傷を防止する一つの方法として、萬2図
に示すように、G a A s活性層2に近い表面側を
下にしてサブマウン)7に固着し、G a A tI活
性層2から遠い(約98μm)基板裏面側にAuワイヤ
4によるボンディングを行なう構造が提案されている。
As one method for preventing the above-mentioned mechanical damage, as shown in Fig. 2, the GaAs active layer 2 is fixed to the submount 7 with the surface side closer to the GaAs active layer 2 facing down. A structure has been proposed in which bonding is performed using Au wires 4 on the back side of the substrate far away (approximately 98 μm) from the substrate.

しかし、この方法によっても、熱抵抗がある程度改善さ
れることによりレーザーダイオードの寿命劣化がいく分
減少するものの、活性層2上KAuワイヤ4がボンディ
ングされることには変りなく、この活性層2に加わる機
械的損傷による寿命劣化は解消できなかった。
However, even with this method, although the thermal resistance is improved to some extent and the lifetime deterioration of the laser diode is somewhat reduced, the KAu wire 4 on the active layer 2 is still bonded. Life deterioration due to added mechanical damage could not be resolved.

本発明は上記した問題点を解消するためになされ食もの
であり、その目的はレーザーダイオードの寿命劣化を著
しく減少させるとともに高精度。
The present invention has been made to solve the above-mentioned problems, and its purpose is to significantly reduce the life deterioration of laser diodes and to achieve high accuracy.

高性能なレーザーダイオードを実現することKある。It is necessary to realize a high-performance laser diode.

上記目的を達底するためK、本発明によれば、活性層の
位置とボンディング位置とを相互にずらした構造とする
ことを特徴とする。
In order to achieve the above object, the present invention is characterized in that the active layer position and the bonding position are shifted from each other.

以下、いくつかの実施例にそって本発明の内容を異体的
に説明する。
Hereinafter, the contents of the present invention will be explained in a different manner with reference to some examples.

第3図は本発明によるレーザーダイオードの第1の実施
例を示す概略断面図であり、表面電極20へのワイヤボ
ンディング位置を基板中央部に設けられた活性層13の
位置から外した例である。
FIG. 3 is a schematic cross-sectional view showing the first embodiment of the laser diode according to the present invention, and is an example in which the wire bonding position to the surface electrode 20 is removed from the position of the active layer 13 provided in the center of the substrate. .

同図において、10はチップの主体をなすn型G a 
A s基板、11はnfiGaAjAs il込層、1
2はp!$1GiAJAS 埋込層である。この埋込層
11および12によって他の領域から分離されて一方向
に帯状に走る領域内に、レーザー発振する$2〜3μm
f)GaAs活性層13、光ガイド層であるpWIGm
AJAs層14およびnjlGaAJAs層15、さら
にはn[GaAjAs層16、Zn拡散s17を形成し
て論る。18はAu系金属複合膜からなる裏面電極、1
9は絶縁膜、20はAu系金属複合膜からなる表面電極
である。そして、このような構造のレーザーダイオード
チップ21を裏面*輝18を下にしてソルダ22によっ
てサブ1ウント23に固着している。−万、表面電極2
0上には、チップ中央111c帯状に走る活性層13を
避けてI4 径25μmのAuワイヤ2オを熱圧着ボンディングして
いる。ボンディング部分の占める輻W、は90μm程度
であり、−万、チップ21の幅Wlが400 μm 、
活性層13の幅W、が2〜3μmであるから、チップ中
央部の活性層13を外しても十分ボンディングが可能で
ある。
In the figure, 10 is an n-type Ga which forms the main body of the chip.
As substrate, 11 is nfiGaAjAs il-containing layer, 1
2 is p! $1GiAJAS This is a buried layer. Within a region separated from other regions by the buried layers 11 and 12 and running in a band shape in one direction, a laser beam of 2 to 3 μm is emitted.
f) GaAs active layer 13, pWIGm which is a light guide layer
A discussion will be made by forming the AJAs layer 14 and the njlGaAJAs layer 15, as well as the n[GaAjAs layer 16 and Zn diffusion s17. 18 is a back electrode made of an Au-based metal composite film, 1
9 is an insulating film, and 20 is a surface electrode made of an Au-based metal composite film. The laser diode chip 21 having such a structure is fixed to the sub-mount 23 with the solder 22 with the back surface 18 facing down. - 10,000, surface electrode 2
0, an Au wire 2o having an I4 diameter of 25 μm is thermocompression bonded to the chip center 111c, avoiding the active layer 13 running in a band shape. The radius W occupied by the bonding portion is about 90 μm, and the width Wl of the chip 21 is 400 μm.
Since the width W of the active layer 13 is 2 to 3 μm, sufficient bonding is possible even if the active layer 13 at the center of the chip is removed.

このように、ボンディングの位置をチップ中央からずら
した場合、基板の裏面電極18とサブマウント23との
間を接続するソルダ22としては、例えはPb5n系半
田のような比較的硬質のものを使用する必要が、ある。
In this way, when the bonding position is shifted from the center of the chip, a relatively hard solder such as Pb5n solder is used as the solder 22 that connects the back electrode 18 of the substrate and the submount 23. There is a need to.

これはボンディング時の加圧がチップに不均一に7)D
わることによってチップ21が傾き、この結果位置精度
や熱抵抗のバランスを欠かないようにするためである。
This is because the pressure applied during bonding is uneven on the chip7)D
This is to ensure that the chip 21 is tilted due to the rotation, and as a result, the positional accuracy and thermal resistance are balanced.

これによって高精度、高性能なレーザーダイオードが得
られる。
This results in a highly accurate and high-performance laser diode.

第4A図はレーザーダイオード装置の封止形態を示す概
略断面図であり、第4B図はその上面図である。同図に
おいて、21はレーザーダイオードチップ、23はレー
ザーチップを支えるサブマウント、26はAu ワイヤ
、25は絶縁物からなる円筒状枠体、27は7ノードと
なるリード、29はモニタファイバ、24はカソードと
なる導電性のケース、28は反射防止膜をコーティング
したガラス窓である。そしてレーザーダイオードを順方
向にバイアスするためK、導電性のケース圧 24をカソードとして負の電番をサブマウント23およ
びソルダ22を通じてチップ21の裏面電極18に印力
口する。−万、導電性のアノード端子(リード)27を
絶縁物25を介してケース24と電気的絶縁を保ちつつ
ケース24に固定し。
FIG. 4A is a schematic sectional view showing a sealed form of the laser diode device, and FIG. 4B is a top view thereof. In the figure, 21 is a laser diode chip, 23 is a submount that supports the laser chip, 26 is an Au wire, 25 is a cylindrical frame made of an insulator, 27 is a lead with 7 nodes, 29 is a monitor fiber, and 24 is a The conductive case 28 serving as a cathode is a glass window coated with an antireflection film. Then, in order to bias the laser diode in the forward direction, a negative voltage is applied to the back electrode 18 of the chip 21 through the submount 23 and the solder 22 using the conductive case pressure 24 as a cathode. - 10,000, a conductive anode terminal (lead) 27 is fixed to the case 24 via the insulator 25 while maintaining electrical insulation from the case 24.

このアノード27から正電圧なAuワイヤ26を通じて
チップ21の表面電極20に印加する。
A positive voltage is applied from this anode 27 to the surface electrode 20 of the chip 21 through the Au wire 26 .

このような構造によれば、活性層13からAuワイヤ2
6のボンディング位置が外れているから。
According to such a structure, the Au wire 2 is connected from the active layer 13.
Because the bonding position 6 is out of place.

ボンディング時の応力が活性層13に直接加わることは
ない。したがって活性層13.光ガイド雫14および1
5、又はこれらの界面にボンディング時の応力による機
械的損傷の発生を防止でき、寿命劣化を大きく減少させ
ることができる。
Stress during bonding is not directly applied to the active layer 13. Therefore, the active layer 13. Light guide drops 14 and 1
5 or these interfaces due to stress during bonding can be prevented, and life deterioration can be greatly reduced.

また、ソルダ22として比較的硬質のものな使用し′C
込るので、ボンディングがチップ21の中央liK行な
われないことによって生じた加圧のアンバランスでチッ
プ21が傾むき、その結果、位置精度および熱抵抗を欠
いてしまうというようなことを防止できる。
Also, use a relatively hard solder 22.
Therefore, it is possible to prevent the chip 21 from tilting due to unbalanced pressure caused by bonding not being performed at the center of the chip 21, resulting in a loss of positional accuracy and thermal resistance.

次に1本発明によるレーザーダイオード装置の第2の実
施例を第5図〜第6C図によって説明する。この実施例
におい℃、その封止形態は第4A図、第4B図に示す第
1の実施例と同一であるので省略する。
Next, a second embodiment of the laser diode device according to the present invention will be described with reference to FIGS. 5 to 6C. In this embodiment, the temperature and the sealing form are the same as those of the first embodiment shown in FIGS. 4A and 4B, so the description thereof will be omitted.

第5図は、第1の実施例の第3図に対応する図であって
、レーザーダイオードの概略断面図である。同図におい
て、第3図と同一の部分には同一の符号を付しその説明
を省略する。
FIG. 5 is a diagram corresponding to FIG. 3 of the first embodiment, and is a schematic cross-sectional view of the laser diode. In this figure, the same parts as in FIG. 3 are given the same reference numerals, and the explanation thereof will be omitted.

本実施例によれば、活性層13をチップ21の中央部か
ら外れた位置に設け、Auワイヤ26のボンディング位
置を上記活性層】3から外した側、例えばチップ21の
中央部とすることが特徴である。この例によれば、ワイ
ヤボンディングの際の応力はチップ21の中央部に対し
て与えられる。
According to this embodiment, the active layer 13 is provided at a position away from the center of the chip 21, and the bonding position of the Au wire 26 can be set at a side away from the active layer 3, for example, at the center of the chip 21. It is a characteristic. According to this example, stress during wire bonding is applied to the center of the chip 21.

この結果、活性層13は中央部から外れた位置にあるた
め、上記応力による先述した機械的損傷は生じることが
なく、レーザーダイオードの寿命劣化を著しく減少させ
ることができる。
As a result, since the active layer 13 is located away from the center, the aforementioned mechanical damage due to the stress does not occur, and the deterioration of the life of the laser diode can be significantly reduced.

なお、チップの大きさは幅W1は400μm、奥行きは
300μm、高さは100μmであるのに対して、活性
層130幅W、はわずか2μml!度であり、活性層1
3−の位置をAuワイヤ26のボンディング位置である
チップの中央部から100μm程度ずらしてもレーザー
ダイオードの特性は変化しない。
Note that while the chip size is 400 μm in width W1, 300 μm in depth, and 100 μm in height, the width W of the active layer 130 is only 2 μm! active layer 1
Even if the position of 3- is shifted by about 100 μm from the center of the chip where the Au wire 26 is bonded, the characteristics of the laser diode do not change.

第6A図〜第60図は第2の実施例のレーザーダイオー
ドの製造プロセスの一部を示すものである。
6A to 60 show a part of the manufacturing process of the laser diode of the second embodiment.

まず、従来の埋込みへテロ構造のレーザーダイオードの
製造工程を変えることな(、例えば、(1)n型GaA
s基板(ウェハ)上に4層のエピタキシャル層16,1
5,13.14を順次形成し、(2)埋込み層11.1
2を形成すべき領域を選択的にケミカルエッチにより除
去し、(3)m込7911.12を成長させ、(41Z
nアンプル拡散後、(5)表面および裏面の電極を形成
してレーザーダイオードを完成する。第6人図で斜線で
ノ・ツチングした部分31は活性層13の位置を示す。
First, without changing the manufacturing process of conventional buried heterostructure laser diodes (for example, (1) n-type GaA
Four epitaxial layers 16, 1 on the s substrate (wafer)
5, 13.14 are sequentially formed, and (2) buried layer 11.1 is formed.
The region where 2 is to be formed is selectively removed by chemical etching, and (3) m-containing 7911.12 is grown.
After n ampoule diffusion, (5) front and back electrodes are formed to complete the laser diode. A hatched portion 31 in the sixth figure indicates the position of the active layer 13.

この状態で柔軟性シート32上にウェハ33を接着し、
ウニ八側面よりヘキ開を行ない、活性層の走行方向を直
角に横切るヘキ開面34をつ(る。第6人図は上記レー
ザーダイオードが形成されているウェハにヘキ開を行な
った状態を示す。
In this state, the wafer 33 is glued onto the flexible sheet 32,
Cleavage is performed from the side of the wafer to form a cleavage plane 34 that crosses the running direction of the active layer at right angles.The sixth figure shows the state in which the wafer on which the laser diode described above is formed is cleaved. .

次に、活性層31の走行方向にそって、第6B図に一点
韻1135で示すように、スクライブを行なう。このと
き、活性層13がスクライプ9135間の中央から外れ
た位置に来るようにすることが特徴である。第60図は
第6B図のA−A断面を示す概略断面図である。
Next, scribing is performed along the running direction of the active layer 31 as shown by dotted lines 1135 in FIG. 6B. At this time, the feature is that the active layer 13 is positioned away from the center between the scribes 9135. FIG. 60 is a schematic sectional view taken along the line AA in FIG. 6B.

この後、チップ21をシート32から剥離して相互に分
離し、チップ21の前記ヘキ開面にSin。
Thereafter, the chip 21 is peeled off from the sheet 32 and separated from each other, and the cleavage surface of the chip 21 is coated with a Sin.

等ノバッシベイシ璽ンをスパッタリング等により行なっ
てレーザーダイオード素子を完成する。
The laser diode element is completed by performing a similar process using sputtering or the like.

このように本発明によれば、従来のレーザーダイオード
のプロセスを全く変更することなく、スクライプの位置
をずらせるだけで第5図に示したレーザーダイオードチ
ップを得ることができる。
As described above, according to the present invention, the laser diode chip shown in FIG. 5 can be obtained by simply shifting the position of the scribe without changing the conventional laser diode process at all.

本実施例によれは、レーザーダイオードの寿命劣化を著
しく減少させることができる。
According to this embodiment, the deterioration of the life of the laser diode can be significantly reduced.

第7図は本実施例によるレーザーダイオード装置の寿命
試験結果を示す。ボンディング後に各レーザーダイオー
ド装置についてスクリーニングテスト(20時間の高温
連続動作試験)を行なった場合、従来は図中−li!B
のように機械的損傷により光出力が急速劣化するものが
数チあったのに対し、本発明によったレーザーダイオー
ド装置はほとんどのものが図中−ImAのような光出力
を示し、急速劣化するものがな(なった。これは、活性
層の位置とワイヤボンディングの位置をずらしたことに
よって、ボンディングの応力による機械的損傷が活性層
等に生ずることを防止できるからである。
FIG. 7 shows the life test results of the laser diode device according to this example. When a screening test (20 hours of continuous high temperature operation test) was performed on each laser diode device after bonding, the conventional results were -li! B
While there were several devices whose optical output rapidly deteriorated due to mechanical damage, most of the laser diode devices according to the present invention exhibited an optical output such as -ImA in the figure, and did not rapidly deteriorate. This is because by shifting the position of the active layer and the position of the wire bonding, it is possible to prevent mechanical damage from occurring in the active layer etc. due to bonding stress.

また、ボンディングの際には、ボンディング位置がチッ
プ中心であるから、チップ全体に平均して力がかかるこ
とになる。したがってチップ21が傾くことを防止でき
熱抵抗1位置精度の不良が生ずることを無くすことがで
きる。なお、この実施例においてはソルダ22としてI
n、AuSn等を用いても同様の効果が得られる。
Furthermore, during bonding, since the bonding position is at the center of the chip, an average force is applied to the entire chip. Therefore, it is possible to prevent the chip 21 from tilting and to eliminate the occurrence of defects in the accuracy of the position of the thermal resistor. In this embodiment, I as the solder 22 is used.
Similar effects can be obtained by using n, AuSn, or the like.

さらK、機械的損傷を与え九り、チップが傾いたりする
ことがないので、ボンディングの際の荷重を太き(する
ことが可能となるので、Auワイヤの接続が確実になり
信頼性を向上でき、またボンディング作業時間の短縮が
できて作業性を向上できる。
In addition, since there is no mechanical damage or tilting of the chip, it is possible to apply a thicker load during bonding, which makes the connection of the Au wire more reliable and improves reliability. Furthermore, bonding work time can be shortened and work efficiency can be improved.

本発明は上記実施例〈限定されることなく、種々の変形
が可能である。
The present invention is not limited to the embodiments described above, and various modifications can be made.

第8図は塩込みへテロ構造で第2の実施例でレーザーダ
イオードチップが上下反対にサブマウントに固着された
構造のレーザーダイオードの例である。この場合も特性
の許す範囲で活性層13の位置をチップ21の中央部か
らずらし、チップ21の中央WIKはAuワイヤ26を
ボンディングするものであり、前記の実施例2の場合と
同一の効果が得られる。
FIG. 8 is an example of a laser diode having a salt-filled heterostructure according to the second embodiment, in which a laser diode chip is fixed to a submount upside down. In this case as well, the position of the active layer 13 is shifted from the center of the chip 21 within the range allowed by the characteristics, and the central WIK of the chip 21 is bonded with the Au wire 26, so that the same effect as in Example 2 can be obtained. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来のレーザーダイオードの例を示
す断面図、第3図は本発明の第1の実施例のレーザーダ
イオードの構造を示す断面図、第4A図はレーザーダイ
オードを封止した状態を示す断面図、第4B図はその上
面図、第5図は本発明の第2の実施例のレーザーダイオ
ードの構造を示す断面図、第6A図〜第60図は本発明
によるレーザーダイオードの製造プロセスにおいてウェ
ハ状態の工程の一部を示す図、第7図はレーザーダイオ
ードの寿命試験による光出力の変化を示す曲線図、第8
図は本発明による他の実施例を示す断面図である。 10 ・・・n −GaAs基板、13 ・・・GaA
s活性場、18・・・Au系金属電極、20・・・Au
系金属電極、21・・・レーザーダイオードチップ、2
2・・・ソルダ、23・・・サブマウント、24・・・
導電性ケース、25・・・絶縁物枠体、26・・・Au
ワイヤ、27・・・リード、31・・・活性層、32・
・・シート、33・・・ウェハ、34・・・ヘキ開面、
35・・・スクライブ線。 第  1  図 第  2  図 第4A図   第4B図 第5図 第6A図 第6B図 第  7 図 bノ疫椅間を 第  8 1
Figures 1 and 2 are cross-sectional views showing an example of a conventional laser diode, Figure 3 is a cross-sectional view showing the structure of a laser diode according to the first embodiment of the present invention, and Figure 4A is a sealed laser diode. 4B is a top view thereof, FIG. 5 is a sectional view showing the structure of the laser diode according to the second embodiment of the present invention, and FIGS. 6A to 60 are the laser diode according to the present invention. Figure 7 is a curve diagram showing changes in light output due to a laser diode life test;
The figure is a sectional view showing another embodiment according to the present invention. 10...n-GaAs substrate, 13...GaA
s active field, 18...Au-based metal electrode, 20...Au
system metal electrode, 21... laser diode chip, 2
2...Solder, 23...Submount, 24...
Conductive case, 25... Insulator frame, 26... Au
wire, 27... lead, 31... active layer, 32...
... sheet, 33... wafer, 34... hexagonal surface,
35...Scribe line. Figure 1 Figure 2 Figure 4A Figure 4B Figure 5 Figure 6A Figure 6B Figure 7

Claims (1)

【特許請求の範囲】 1、半導体基体の−wK設けられたレーザー発振のため
の活性層と、上記基体上に設けられた電極にワイヤボン
ディングされたボンディングワイヤとを有するレーザー
ダイオードであって、上記ボンディングワイヤのボンデ
ィング位置を上記活性層部位から外した位置としたこと
を特徴とするレーザーダイオード。 2、上記活性層を基体の中央から外れた位置に設け、上
記ワイヤボンディング位置を上記活性層を外した側とし
たことを特徴とする401!F−請求の範囲第1項に記
載のレーザーダイオード。 3、上記ワイヤボンディング位置を基体の中央部又はそ
の近傍としたことを特徴とする特許請求の範囲第2項に
記載のレーザーダイオード。 4、上記ワイヤボンディングは熱圧着ボンディングであ
る特許請求の範囲第1項に記載のレーザーダイオード。
[Scope of Claims] 1. A laser diode having an active layer for laser oscillation provided with -wK of a semiconductor substrate, and a bonding wire wire-bonded to an electrode provided on the substrate, which comprises: A laser diode characterized in that the bonding position of the bonding wire is located away from the active layer region. 2. 401! characterized in that the active layer is provided at a position off the center of the base body, and the wire bonding position is on the side where the active layer is removed. F - Laser diode according to claim 1. 3. The laser diode according to claim 2, wherein the wire bonding position is at or near the center of the base. 4. The laser diode according to claim 1, wherein the wire bonding is thermocompression bonding.
JP56131523A 1981-08-24 1981-08-24 Laser diode Pending JPS5833885A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56131523A JPS5833885A (en) 1981-08-24 1981-08-24 Laser diode
FR8211729A FR2511810B1 (en) 1981-08-24 1982-07-05 LASER EFFECT DIODE
GB08222520A GB2105100B (en) 1981-08-24 1982-08-04 Laser diode
IT22892/82A IT1153715B (en) 1981-08-24 1982-08-18 LASER DIODE WITH ACTIVE LAYER
DE19823231443 DE3231443A1 (en) 1981-08-24 1982-08-24 LASER DIODE
HK457/86A HK45786A (en) 1981-08-24 1986-06-19 Laser diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56131523A JPS5833885A (en) 1981-08-24 1981-08-24 Laser diode

Publications (1)

Publication Number Publication Date
JPS5833885A true JPS5833885A (en) 1983-02-28

Family

ID=15060043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56131523A Pending JPS5833885A (en) 1981-08-24 1981-08-24 Laser diode

Country Status (6)

Country Link
JP (1) JPS5833885A (en)
DE (1) DE3231443A1 (en)
FR (1) FR2511810B1 (en)
GB (1) GB2105100B (en)
HK (1) HK45786A (en)
IT (1) IT1153715B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310814A (en) * 1993-04-27 1994-11-04 Nec Kansai Ltd Semiconductor laser diode
JP2009004760A (en) * 2007-05-24 2009-01-08 Sanyo Electric Co Ltd Semiconductor laser device
US7869480B2 (en) 2007-05-24 2011-01-11 Sanyo Electric Co., Ltd. Semiconductor laser device
US7907652B2 (en) 2007-04-25 2011-03-15 Sanyo Electric Co., Ltd. Semiconductor laser device
US8121163B2 (en) 2007-03-16 2012-02-21 Sanyo Electric Co., Ltd. Semiconductor laser diode apparatus and method of fabricating the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3329107A1 (en) 1983-08-11 1985-02-21 Siemens AG, 1000 Berlin und 8000 München LASER DIODE WITH HOMOGENIZED MECHANICAL VOLTAGE AND / OR HEAT EXTRACTION
GB2154059B (en) * 1984-01-25 1987-10-28 Hitachi Ltd Light emitting chip and communication apparatus using the same
JPS60154689A (en) * 1984-01-25 1985-08-14 Hitachi Ltd Light emitting element and lighr communication equipment using the same
GB2156585B (en) * 1984-03-16 1987-10-21 Hitachi Ltd Light-emitting device electrode
US4686678A (en) * 1984-03-27 1987-08-11 Nec Corporation Semiconductor laser apparatus with isolator
DE3714523A1 (en) * 1987-04-30 1988-11-10 Siemens Ag Laser diode having a buried active layer and lateral current limiting, and a method for its production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1273698B (en) * 1964-01-08 1968-07-25 Telefunken Patent Semiconductor device
US3763550A (en) * 1970-12-03 1973-10-09 Gen Motors Corp Geometry for a pnp silicon transistor with overlay contacts
DE2409312C3 (en) * 1974-02-27 1981-01-08 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Semiconductor arrangement with a metal layer arranged on the semiconductor surface and method for its production
US4169997A (en) * 1977-05-06 1979-10-02 Bell Telephone Laboratories, Incorporated Lateral current confinement in junction lasers
DE2816269C3 (en) * 1978-04-14 1981-11-26 Mitsubishi Denki K.K., Tokyo Injection laser diode
DE2942540A1 (en) * 1978-10-25 1980-04-30 Int Standard Electric Corp Semiconductor chip for channel-type laser - has lower substrate with raised section to limit current flow to narrow strip, extending in direction of emitted light
DE2856507A1 (en) * 1978-12-28 1980-07-17 Amann Markus Christian Dipl In SEMICONDUCTOR LASER DIODE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310814A (en) * 1993-04-27 1994-11-04 Nec Kansai Ltd Semiconductor laser diode
US8121163B2 (en) 2007-03-16 2012-02-21 Sanyo Electric Co., Ltd. Semiconductor laser diode apparatus and method of fabricating the same
US7907652B2 (en) 2007-04-25 2011-03-15 Sanyo Electric Co., Ltd. Semiconductor laser device
JP2009004760A (en) * 2007-05-24 2009-01-08 Sanyo Electric Co Ltd Semiconductor laser device
US7869480B2 (en) 2007-05-24 2011-01-11 Sanyo Electric Co., Ltd. Semiconductor laser device

Also Published As

Publication number Publication date
FR2511810A1 (en) 1983-02-25
DE3231443A1 (en) 1983-03-24
GB2105100A (en) 1983-03-16
FR2511810B1 (en) 1986-01-24
IT8222892A0 (en) 1982-08-18
HK45786A (en) 1986-06-27
GB2105100B (en) 1985-06-12
IT1153715B (en) 1987-01-14

Similar Documents

Publication Publication Date Title
US6474531B2 (en) Semiconductor light-emitting device and method of manufacturing the same and mounting plate
JP4126749B2 (en) Manufacturing method of semiconductor device
JPH1074978A (en) Semiconductor light-emitting element, semiconductor light-emitting device using it and manufacture of semiconductor light-emitting element
JP2006066518A (en) Semiconductor light-emitting element and method of manufacturing the same
JPS5833885A (en) Laser diode
US5852624A (en) Semiconductor laser element, method of manufacturing semiconductor laser element, and laser diode module
JPH10223930A (en) Semiconductor light emitting element
JPS6159886A (en) Manufacture of photosemiconductor device
US4692927A (en) Light emitting device with improved electrode structure to minimize short circuiting
JPH06232510A (en) Semiconductor laser element
JPH10335699A (en) Compound semiconductor light emitting element and manufacture thereof
JPH07202323A (en) Multi-beam semiconductor laser
JPH09129922A (en) Light emitting element and its manufacture
JP3421520B2 (en) Light emitting device and method of manufacturing the same
JPS61234588A (en) Submount for optical semiconductor element
JPH05110140A (en) Compound semiconductor optical device
JPS61184889A (en) Semiconductor light emitting device
JPH0846289A (en) Manufacturing method of semiconductor laser
JPS63119282A (en) Semiconductor light emitting device structure
JP6265306B1 (en) Light emitting device
JPH04266073A (en) Semiconductor light-emitting device
USRE34378E (en) Light emitting device with improved electrode structure to minimize short circuiting
JPS62196874A (en) Semiconductor light emitting element and manufacture thereof
JPS6293986A (en) Manufacture of light emitting device
JPH03145784A (en) Semiconductor laser device