JPH0377676B2 - - Google Patents

Info

Publication number
JPH0377676B2
JPH0377676B2 JP57057718A JP5771882A JPH0377676B2 JP H0377676 B2 JPH0377676 B2 JP H0377676B2 JP 57057718 A JP57057718 A JP 57057718A JP 5771882 A JP5771882 A JP 5771882A JP H0377676 B2 JPH0377676 B2 JP H0377676B2
Authority
JP
Japan
Prior art keywords
laser diode
diode chip
attaching
solder material
fragment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57057718A
Other languages
Japanese (ja)
Other versions
JPS58173880A (en
Inventor
Shigee Makiguchi
Ario Mita
Katsuhiko Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP57057718A priority Critical patent/JPS58173880A/en
Publication of JPS58173880A publication Critical patent/JPS58173880A/en
Publication of JPH0377676B2 publication Critical patent/JPH0377676B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明へはレーザーダイオード等のごとき発光
素子の取付け方法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of mounting light emitting devices such as laser diodes.

例えばレーザーダイオードチツプをヘツダ上の
放熱体に取付ける方法の1つとして、所謂サブマ
ウント法がある。このサブマウント法は例えばシ
リコンまたはモリブデン等による薄板状部材(所
謂サブマウント部材)を用意し、その両面に夫々
所要の半田材を蒸着して後、この部材を格子状に
ダイシングし、各断片に切断する。一方、例えば
銅の放熱体を取付けたヘツダ(即ち組立体)を用
意し、この放熱体に上記の断片の一方の面を半田
材を介して取付けて後、この断片の他方の面に対
して同様に半田材を介してレーザーダイオードチ
ツプを取付けるようになしている。この場合、レ
ーザーダイオードチツプの断片への取付けに際し
ては、レーザー光線が邪魔されぬように断片の上
縁とレーザーダイオードチツプのレーザー光線が
出る端面とが面一とるように正確に位置決めする
必要がある。しかし乍ら、上記の取付け方法にお
いては、最終工程でレーザーダイオードチツプを
取付けねばならないために、チツプに対するハン
ドリングが極めて困難であり且つ高精度に取付け
るのが困難であつた。また熱工程上、断片及びレ
ーザーダイオードチツプを取付ける際の半田材が
制限されていた。さらに一般のレーザーダイオー
ドチツプの取付け用の半田材として使用される
In、Sn、Au−Sn合金を考えると酸化を防止する
等の処理を必要とし作業性が悪いものであつた。
For example, one method for attaching a laser diode chip to a heat sink on a header is the so-called submount method. In this submount method, a thin plate-like member (so-called submount member) made of silicon or molybdenum, etc. is prepared, the required solder material is vapor-deposited on both sides of the member, and then this member is diced into a lattice pattern to separate each piece into pieces. disconnect. On the other hand, prepare a header (i.e., an assembly) to which a copper heat radiator is attached, attach one side of the above fragment to the heat radiator via solder material, and then attach the other side of the fragment to the heat radiator. Similarly, a laser diode chip is attached via solder material. In this case, when attaching the laser diode chip to the fragment, it is necessary to position it accurately so that the upper edge of the fragment and the end face of the laser diode chip from which the laser beam exits are flush so that the laser beam is not obstructed. However, in the above mounting method, since the laser diode chip must be mounted in the final step, it is extremely difficult to handle the chip and it is difficult to mount it with high precision. Furthermore, due to the thermal process, the solder material used to attach the fragments and laser diode chips is limited. Furthermore, it is used as a solder material for attaching general laser diode chips.
Considering In, Sn, and Au-Sn alloys, they require treatment to prevent oxidation and have poor workability.

本発明は上述した点に鑑み容易且つ高精度にレ
ーザーダイオード等の発光素子の取付けを行える
ようにした発光素子の取付け方法を提供するもの
である。
In view of the above-mentioned points, the present invention provides a method for attaching a light emitting element such as a laser diode easily and with high precision.

以下図面を参照して本発明による発光素子の取
付け方法の一例を説明する。なお本例ではレーザ
ーダイオードチツプの取付けに適用した場合であ
る。
An example of a method for attaching a light emitting element according to the present invention will be described below with reference to the drawings. In this example, the method is applied to attaching a laser diode chip.

本発明においては、第1図に示すように薄板状
部材(所謂サブマウント部材)1を用意する。こ
の薄板状部材1としては、シリコンウエーハ或い
はモリブデンウエーハを使用することができる。
本例では厚さ0.15〜0.2mmのシリコンウエーハ1
を使用する。また取付けるべきレーザーダイオー
ドチツプは0.1mm厚×0.2mm幅×0.3mm長のもので、
そのチツプの取付け側の面(基板又は活性層の
側)にAuを3000Å程度被着する。なお部材1と
して、シリコンウエーハを使うときは平滑な取付
け面が得られるので取扱い易く、またモリブデン
の場合はレーザーダイオードチツプと熱膨張係数
が近い。次に、第2図に示すようにこのシリコン
ウエーハ1の第1の主面1aにダイシングにより
格子状の溝2を形成する。この場合の各格子状の
溝2に囲まれた領域3の寸法は0.5mm×0.5mm角で
あり、また溝2の深さはシリコンウエーハ1の厚
みの1/2程度とするを可とする。次に第3図に示
すようにシリコンウエーハ1のレーザーダイオー
ドチツプを取付ける第1の主面1a上に、即ちそ
の溝2で囲まれた各領域3上にIn、Sn等のよう
な低融点半田材4を蒸着する。次に第4図に示す
ように、溝2に囲まれた夫々の領域3上にその溝
2の辺部3aに臨んで光方向5が溝2にほぼ直角
となるようにレーザーダイオードチツプ6を配置
する。そして半田材4を酸化させないように窒素
雰囲気中で加熱してレーザーダイオードチツプ6
を各領域3上に取付ける。レーザーダイオードチ
ツプはGaAs基板にX方向にスクライブした後に
Y方向にへき開して分割するが、予めGaAs基板
の取付け面Au電極上にメタル・マスクを介して
へき開線上を除いたY方向のストライプ状、又は
スクライブ線とへき開線の上を除いたモザイク状
に半田材を約10μの厚さに蒸着形成し、分割する
ことができる。このときウエーハ1上の半田材4
は薄くてよい。
In the present invention, a thin plate member (so-called submount member) 1 is prepared as shown in FIG. As this thin plate member 1, a silicon wafer or a molybdenum wafer can be used.
In this example, a silicon wafer 1 with a thickness of 0.15 to 0.2 mm is used.
use. The laser diode chip to be installed is 0.1mm thick x 0.2mm wide x 0.3mm long.
Approximately 3000 Å of Au is deposited on the mounting side (substrate or active layer side) of the chip. Note that when a silicon wafer is used as the member 1, it is easy to handle since a smooth mounting surface is obtained, and when molybdenum is used, the coefficient of thermal expansion is similar to that of a laser diode chip. Next, as shown in FIG. 2, lattice-shaped grooves 2 are formed in the first main surface 1a of this silicon wafer 1 by dicing. In this case, the dimensions of the region 3 surrounded by each grid-like groove 2 are 0.5 mm x 0.5 mm square, and the depth of the groove 2 can be about 1/2 of the thickness of the silicon wafer 1. . Next, as shown in FIG. 3, a low melting point solder such as In, Sn, etc. is applied to the first main surface 1a of the silicon wafer 1 on which the laser diode chip is to be mounted, that is, on each region 3 surrounded by the groove 2. Material 4 is deposited. Next, as shown in FIG. 4, a laser diode chip 6 is placed on each area 3 surrounded by the groove 2 so that the light direction 5 is approximately perpendicular to the groove 2, facing the side 3a of the groove 2. Deploy. Then, the solder material 4 is heated in a nitrogen atmosphere so as not to oxidize, and the laser diode chip 6 is soldered.
Attach on each area 3. The laser diode chip is divided by scribing the GaAs substrate in the X direction and then cleaving it in the Y direction. Alternatively, a solder material can be vapor-deposited to a thickness of about 10 μm in a mosaic shape, excluding the areas above the scribe lines and cleavage lines, and then divided. At this time, the solder material 4 on the wafer 1
should be thin.

次にこのシリコンウエーハ1の第2の主面1b
即ち裏面にIn、Sn等の半田材(図示せず)を蒸
着して後、このシリコンウエーハ1をその溝2に
沿つて分割し夫々レーザーダイオードチツプ6が
取付けられた各ペレツト即ち断片7を得る(第5
図参照)。次いで、各断片7に対する良、不良の
検査を行う。一方、第6図に示すようにヘツダ8
上に銅の放熱体9を取付けた組立体10を用意す
る。この組立体10の放熱体9の一側面に、上記
のレーザーダイオードチツプ6を取付けた断片7
の裏面をその半田材を介して取付けてレーザーダ
イオードチツプ6の取付体10への取付けを完了
する。
Next, the second main surface 1b of this silicon wafer 1
That is, after depositing a solder material (not shown) such as In or Sn on the back surface, the silicon wafer 1 is divided along the groove 2 to obtain pellets or pieces 7 each having a laser diode chip 6 attached thereto. (5th
(see figure). Next, each fragment 7 is inspected for good or bad. On the other hand, as shown in Fig. 6, the header 8
An assembly 10 having a copper heat sink 9 attached thereon is prepared. A fragment 7 with the laser diode chip 6 attached to one side of the heat sink 9 of this assembly 10
The back side of the laser diode chip 6 is attached via the solder material to complete the attachment of the laser diode chip 6 to the attachment body 10.

なお、シリコンウエーハ1の表面即ち第1の主
面1aにはAuを蒸着してAu−Si合金による半田
材を形成するようにしてもよい。何れにせよシリ
コンウエーハ1の裏面には表面より融点のあまり
高くない半田材を用いる。
Note that Au may be deposited on the surface of the silicon wafer 1, that is, the first main surface 1a, to form a solder material made of an Au-Si alloy. In any case, a solder material whose melting point is not much higher than that of the front surface is used for the back surface of the silicon wafer 1.

また薄板状部材1としてモリブデンウエーハを
使用するときには厚みの殆んどをダイシングし、
その後割つて断片を得るようになす。蒸着金属
(半田材)はAuを除けばシリコンのときと全く同
様である。
Furthermore, when using a molybdenum wafer as the thin plate member 1, most of the thickness is diced,
Then split it to get the pieces. The vapor-deposited metal (solder material) is exactly the same as silicon, except for Au.

上述の本発明による取付け方法によれば、まず
各断片7に分割する前の格子状の溝2を形成した
状態の薄板状部材1に対して夫々レーザーダイオ
ードチツプ6を平面的に取付けているので、レー
ザーダイオードチツプ6と各領域3従つて断片7
との位置合わせが極めて高精度に行え、レーザー
ダイオードチツプ6の断片7への取付けが正確且
つ容易に行える。同時に薄板状部材1へのレーザ
ーダイオードチツプ6の取付けが、平面的且つ周
期的に行えるので自動化が容易となる。また、各
レーザーダイオードチツプ6に薄板状部材1の各
対応する領域3上に配した状態で一括熱処理で同
時に取付けるので作業性が極めて良い。
According to the above-described mounting method according to the present invention, the laser diode chips 6 are first mounted planarly on the thin plate-like member 1 in which the grid-like grooves 2 are formed before being divided into the respective pieces 7. , a laser diode chip 6 and each region 3 and thus a fragment 7
The alignment with the laser diode chip 6 can be performed with extremely high precision, and the attachment of the laser diode chip 6 to the fragment 7 can be performed accurately and easily. At the same time, the attachment of the laser diode chips 6 to the thin plate-shaped member 1 can be carried out planarly and periodically, making automation easy. Further, since the laser diode chips 6 are mounted on the respective corresponding regions 3 of the thin plate member 1 at the same time by batch heat treatment, the workability is extremely good.

次で、薄板状部材を各断片7に分割したのち、
直接レーザーダイオードチツプ6をハンドリング
することなく、レーザーダイオードチツプ6より
大きな断片7をハンドリングして放熱体9の側面
に取付けるので、最終的なレーザーダイオードチ
ツプ6の取付体10への取付けが容易となる。
Next, after dividing the thin plate member into each piece 7,
Since the fragment 7 larger than the laser diode chip 6 is handled and attached to the side of the heat sink 9 without directly handling the laser diode chip 6, the final attachment of the laser diode chip 6 to the attachment body 10 is facilitated. .

また、レーザーダイオードチツプ6を薄板状部
材1に取付けた後に、薄板状部材1の裏面1bに
半田材を蒸着するので、このときの半田材の選択
の自由度が大きくなる。さらに、レーザーダイオ
ードチツプ6を断片7に取付けた状態でその良、
不良の検査を行うので、その時点で良、不良の判
別が出来、爾後の製品の歩留りも向上する。
Furthermore, since the solder material is deposited on the back surface 1b of the thin plate member 1 after the laser diode chip 6 is attached to the thin plate member 1, the degree of freedom in selecting the solder material at this time is increased. Furthermore, with the laser diode chip 6 attached to the fragment 7,
Since defects are inspected, it is possible to determine whether the product is good or defective at that point, and the yield of subsequent products is also improved.

尚、上例ではレーザーダイオードチツプの取付
けに適用したが、その他の発光素子の取付けにも
適用できる。
Although the above example was applied to attaching a laser diode chip, it can also be applied to attaching other light emitting elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明による発光素子の取
付方法の一例を示す工程図である。 1は薄板状部材、2は格子状の溝、6は発光素
子、7は断片、9は放熱体、10は取付体であ
る。
1 to 6 are process diagrams showing an example of a method for attaching a light emitting element according to the present invention. 1 is a thin plate member, 2 is a grid-like groove, 6 is a light emitting element, 7 is a fragment, 9 is a heat sink, and 10 is a mounting body.

Claims (1)

【特許請求の範囲】[Claims] 1 薄板状部材の第1の主面に格子状の溝を形成
する工程、前記溝に囲まれた部材の夫々の領域の
所定辺部に臨んで光方向が前記溝にほぼ直角とな
るように発光素子を取付ける工程、前記部材を前
記溝に沿つて分割する工程、分割された部材の断
片の第2の主面を組立体に取付ける工程を有する
発光素子の取付け方法。
1. Forming lattice-like grooves on the first main surface of the thin plate-shaped member, such that the light direction is approximately perpendicular to the grooves when facing a predetermined side of each region of the member surrounded by the grooves. A method for attaching a light-emitting element, comprising the steps of attaching a light-emitting element, dividing the member along the groove, and attaching a second main surface of a fragment of the divided member to an assembly.
JP57057718A 1982-04-07 1982-04-07 Installing method for light-emitting element Granted JPS58173880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57057718A JPS58173880A (en) 1982-04-07 1982-04-07 Installing method for light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57057718A JPS58173880A (en) 1982-04-07 1982-04-07 Installing method for light-emitting element

Publications (2)

Publication Number Publication Date
JPS58173880A JPS58173880A (en) 1983-10-12
JPH0377676B2 true JPH0377676B2 (en) 1991-12-11

Family

ID=13063721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57057718A Granted JPS58173880A (en) 1982-04-07 1982-04-07 Installing method for light-emitting element

Country Status (1)

Country Link
JP (1) JPS58173880A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188588A (en) * 1984-10-08 1986-05-06 Sony Corp Manufacture of semiconductor laser
JPH073657Y2 (en) * 1985-03-11 1995-01-30 ソニー株式会社 Semiconductor substrate for semiconductor laser manufacturing
US5631918A (en) * 1993-11-22 1997-05-20 Xerox Corporation Laser diode arrays with close beam offsets

Also Published As

Publication number Publication date
JPS58173880A (en) 1983-10-12

Similar Documents

Publication Publication Date Title
JP3386963B2 (en) Manufacturing method of laser diode device
US7078730B2 (en) Semiconductor light-emitting device and method of manufacturing the same and mounting plate
EP1562237A2 (en) Nitride-based semiconductor light emitting device and method of manufacturing the same
CA2466141A1 (en) Nitride semiconductor device having support substrate and its manufacturing method
KR20010013085A (en) Method for producing a light-emitting component
US9608401B2 (en) Method for producing semiconductor laser elements and semi-conductor laser element
CN1194409C (en) Circuit board and its manufacturing method and high output module
JPS6159886A (en) Manufacture of photosemiconductor device
WO2015077612A1 (en) Method of stress induced cleaving of semiconductor devices
US10411155B2 (en) Method of producing optoelectronic semiconductor chips
US8153507B2 (en) Method of manufacturing high power array type semiconductor laser device
US5422905A (en) Closely spaced dual diode lasers
KR20050000836A (en) Method for manufacturing GaN LED
JPH0377676B2 (en)
JP4904150B2 (en) Method for manufacturing light emitting device
JP2002124729A (en) Manufacturing method for semiconductor laser element
JPH04315486A (en) Photoelectric device and manufacture thereof
US5198069A (en) Method for fabricating buttable epitaxial infrared detector arrays by dimensionally controlled cleaving of single crystal substrates
JP2768852B2 (en) Semiconductor optical device and method of assembling the same
JPH06334275A (en) Manufacture of multi-beam semiconductor laser
WO2023223868A1 (en) Bonding method, semiconductor device manufacturing method, and semiconductor device
JPS59110185A (en) Formation of protection film for semiconductor laser device end surface
JPS6254938A (en) Semiconductor device
WO2001026153A1 (en) Method of bonding a plurality of thermally conductive elements to a substrate
JP2002231731A (en) Method for fabricating compound semiconductor device