JPS634676A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPS634676A
JPS634676A JP61147202A JP14720286A JPS634676A JP S634676 A JPS634676 A JP S634676A JP 61147202 A JP61147202 A JP 61147202A JP 14720286 A JP14720286 A JP 14720286A JP S634676 A JPS634676 A JP S634676A
Authority
JP
Japan
Prior art keywords
photoconductive
photoelectric conversion
conversion device
compound semiconductor
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61147202A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hori
義和 堀
Akimoto Serizawa
芹沢 晧元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61147202A priority Critical patent/JPS634676A/en
Publication of JPS634676A publication Critical patent/JPS634676A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Abstract

PURPOSE:To give performance, in which working speed is increased remarkably and sensitivity is improved, by constituting a photoconductive cell group of a III-V compound semiconductor formed through a Ge thin-film or a compound semiconductor mainly comprising said semiconductor. CONSTITUTION:A photoconductive cell 8 is shaped onto a substrate 1 such as a glass substrate by utilizing a III-V compound semiconductor photoconductive film consisting of GaAs, etc. having excellent crystallizability. When these photoconductive cells 8 are irradiated with beams of illuminance of 100lx and a wavelength of 550 nm, currents acquired extend over approximately 100muA and the speed of response at that time approximately mus. Consequently, photocurrents larger than a photoconductive cell having the same constitution using a conventional CdS-CdSe solid solution are obtained, and the response time is shortened remarkable. Photocurrents IP are proportional to the product of the mobility mu of the photoconductive film and majority carrier life gamma, and represented by Ipinfinity mugamma. The gamma of the GaAs film is smaller than the CdS-CdSe solid solution by approximately three figures, the increase of working speed is realized, and mu is inversely larger than the solid solution by approximately three figures or four figures, and excellent performance results rrom the compensation of the small gamma of the GaAs film.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ファクシミリ装置、インテリジェントコピア
、光デイスク装置などの各種OA機器の画像入力部に用
いられる光電変換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a photoelectric conversion device used in an image input section of various office automation equipment such as a facsimile machine, an intelligent copier, and an optical disk device.

(従来の技術) 近年、ファクシミリ装置等の各種OA機器に用いられる
画像情報入力装置は、小型化と画像歪の改良を目的とし
て開発された原稿の幅と同一寸法の密着型ラインセンサ
を組み込んだ画像読取り装置が使われ始めている。密着
性ラインセンサに用いる光電変換装置は、光導電素子と
してCd5−CdSe固溶体又はアモルファスシリコン
を用いたものが発表されている。
(Prior art) In recent years, image information input devices used in various office automation equipment such as facsimile machines incorporate a close-contact line sensor with the same dimensions as the width of the document, which was developed for the purpose of miniaturization and improvement of image distortion. Image reading devices are beginning to be used. Photoelectric conversion devices used in adhesive line sensors have been announced that use Cd5-CdSe solid solution or amorphous silicon as a photoconductive element.

(発明が解決しようとする問題点) しかしながら、Cd5−Cd5a固溶体を光導電素子と
して使用した光電変換装置は、光電変換効率の点で優れ
ているが、応答速度が遅く、情報伝達の高速化の要求に
対応することが難しいという問題があった。
(Problems to be Solved by the Invention) However, although a photoelectric conversion device using a Cd5-Cd5a solid solution as a photoconductive element is excellent in terms of photoelectric conversion efficiency, the response speed is slow and it is difficult to speed up information transmission. The problem was that it was difficult to meet the demands.

また、アモルファスシリコンを光導電素子として使用し
たが光電変換装置は、応答速度が速いが、光電変換効率
が低く感度が悪いため、変換された信号を増幅するトラ
ンジスタ等を各光導電素子の近傍に集積化する必要があ
り、製造が難しいという問題があった。
In addition, although amorphous silicon is used as a photoconductive element, the photoelectric conversion device has a fast response speed, but has low photoelectric conversion efficiency and poor sensitivity, so a transistor or the like is placed near each photoconductive element to amplify the converted signal. There was a problem in that it required integration and was difficult to manufacture.

本発明は上記の問題点を解決するもので、光電変換効率
が高く、しかも応答速度が速い光電変換装置を提供する
The present invention solves the above problems and provides a photoelectric conversion device with high photoelectric conversion efficiency and fast response speed.

(問題点を解決するための手段) 上記の問題点を解決するため1本発明は、絶縁基板上に
、主走査方向に並ぶように形成された複数個の光導電素
子群と、これらの光導電素子群上にそれぞれ形成された
対向電極群と、各種導電素子に形成されたマトリックス
電極群とから構成され、原稿からの反射光が上記の光導
電素子に照射される導光系を備えた光電変換装置で、光
導電素子は、絶縁基板上にGe薄膜を介して形成した、
■・−■族化合物半導体もしくはこれを主体としてなる
化合物半導体とするものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention comprises a plurality of photoconductive element groups formed on an insulating substrate so as to be lined up in the main scanning direction, and a group of these photoconductive elements. The photoconductor is composed of a group of counter electrodes each formed on a group of conductive elements and a group of matrix electrodes formed on various conductive elements, and includes a light guiding system in which light reflected from the original is irradiated onto the photoconductive element. In the photoelectric conversion device, the photoconductive element is formed on an insulating substrate with a Ge thin film interposed therebetween.
It is a compound semiconductor of the 2.--3 group or a compound semiconductor mainly composed of this.

(作 用) 上記の構成により、絶縁基板上にGe薄膜を介して形成
されたm−v族化合物半導体は、高いキャリアの移動度
と、速いキャリア再結合時間を有するので、これらの特
性を利用し、短時間に有効な電気信号を取り出し、且つ
光照射が終了した後はキャリアが速やかに消失するため
、高速で且つ高感度の光電変換装置が得られるものであ
る。
(Function) With the above configuration, the m-v group compound semiconductor formed on the insulating substrate via the Ge thin film has high carrier mobility and fast carrier recombination time, so these characteristics can be utilized. However, since an effective electrical signal can be extracted in a short time and carriers disappear quickly after light irradiation is finished, a high-speed and highly sensitive photoelectric conversion device can be obtained.

(実施例) 本発明の一実施例を第1図および第2図により説明する
(Example) An example of the present invention will be described with reference to FIGS. 1 and 2.

第1図は本発明による光電変換装置を用いた密着型ライ
ンセンサの基本構成を示す断面図である。
FIG. 1 is a sectional view showing the basic configuration of a contact type line sensor using a photoelectric conversion device according to the present invention.

同図において、密着型ラインセンサは、透明な基板1の
下面に、主走査方向に形成された断面が三角形の溝の中
にLED(発光ダイオード)等の光源2および原稿3か
らの反射光を集光する収束性ファイバアレイ等の導光系
4からなる集光系と、上記の透明な基板1の上面にGa
薄膜5を介して形成された光導電素子8の両端にそれぞ
れ対向電極6とマトリックス電極7が重ねて形成された
光電変換装置とから構成されている。
In the figure, the contact type line sensor emits reflected light from a light source 2 such as an LED (light emitting diode) and a document 3 into a groove with a triangular cross section formed in the main scanning direction on the lower surface of a transparent substrate 1. A light collection system consisting of a light guide system 4 such as a convergent fiber array that collects light, and a Ga
It consists of a photoelectric conversion device in which a counter electrode 6 and a matrix electrode 7 are stacked on both ends of a photoconductive element 8 formed with a thin film 5 interposed therebetween.

このように構成された密着型ラインセンサの動作につい
て説明すると、光源2の出射光が原稿3に照射され、そ
の反射光が導光系4で集光されて光導電素子8に照射さ
れる。対向電極6とマトリックス電極7の間にはバイア
ス電圧が印加されているので、光照射によって光導電素
子8に発生した電子正孔のキャリアは、上記のバイアス
電圧によって互いに逆方向の電極に向かって移動し、そ
の結果光電流として検出される。
The operation of the contact type line sensor configured in this way will be described. The emitted light from the light source 2 is irradiated onto the original 3, and the reflected light is collected by the light guiding system 4 and irradiated onto the photoconductive element 8. Since a bias voltage is applied between the counter electrode 6 and the matrix electrode 7, carriers of electrons and holes generated in the photoconductive element 8 due to light irradiation are directed toward the electrodes in opposite directions due to the bias voltage. as a result of which it is detected as a photocurrent.

第2図は本発明による光電変換装置の要部拡大平面図で
、光電変換装置は、透明な基板1の表面にGe薄膜5(
図示せず)を介して、複数本の短冊状の光導電素子8を
一群とする光導電素子群が、走査方向に並んで形成され
、上記の光導電素子群それぞれに対向電極6が、上記の
光導電素子8それぞれにマトリックス電極7が重なるよ
うに形成されている。
FIG. 2 is an enlarged plan view of the main parts of a photoelectric conversion device according to the present invention. The photoelectric conversion device has a Ge thin film 5 (
(not shown), a photoconductive element group including a plurality of strip-shaped photoconductive elements 8 is formed side by side in the scanning direction, and each of the above photoconductive element groups has a counter electrode 6 connected to the above-mentioned photoconductive element group. A matrix electrode 7 is formed so as to overlap each of the photoconductive elements 8 .

上記の光導電素子8は、1wus当たり16本の密度で
、相互に電気的に独立して形成されている。その形成法
を説明すると、まず、ガラスの基板1の表面に、電子ビ
ーム蒸着法を用い約100人のGa薄膜5を形成した後
、通常のMOCVD法を用い約5000人のGaAs膜
を形成する00次に、フォトリソグラフィー(写真製版
)法を用いて1幅20μm1の微細な短冊状の光導電素
子8を形成する。なお、本実施例では、この時のエツチ
ングに塩酸を使用した。
The photoconductive elements 8 described above are formed electrically independently of each other at a density of 16 elements per 1 wus. To explain the formation method, first, a Ga thin film 5 of about 100 layers is formed on the surface of a glass substrate 1 using an electron beam evaporation method, and then a GaAs film of about 5000 layers is formed using a normal MOCVD method. Next, photoconductive elements 8 in the form of fine strips each having a width of 20 μm 1 are formed using a photolithography (photoengraving) method. In this example, hydrochloric acid was used for etching.

上記の対向電極6とマトリックス電極7は、フォトリソ
グラフィー法によりAu −Geを用いて形成する。な
お、対向電極6とマトリックス電極7の電極間距離は2
0μmである。
The above-mentioned counter electrode 6 and matrix electrode 7 are formed using Au-Ge by photolithography. Note that the distance between the opposing electrode 6 and the matrix electrode 7 is 2.
It is 0 μm.

本発明の特徴は、ガラス基板等の基板1の上に結晶性の
秀れたGaAs等の■−■族化合物半導体光導電膜を利
用し光導電素子8を形成した点にある。
The feature of the present invention is that the photoconductive element 8 is formed on the substrate 1 such as a glass substrate by using a photoconductive film of a ■-■ group compound semiconductor such as GaAs having excellent crystallinity.

これらの光導電素子8では、照度100Nx、波長55
0n−の光が照射された時、得られる電流は約100μ
A、その時の応答速度は約1μsであった。
These photoconductive elements 8 have an illuminance of 100 Nx and a wavelength of 55
When irradiated with 0n- light, the current obtained is approximately 100μ
A: The response speed at that time was approximately 1 μs.

このように従来のCd5−CdSe固溶体を用いた同様
の構成を有する光導電素子に比べ、大きな光電流が得ら
れ、しかも応答時間が著しく改善されている。これは、
光導電流工、が、光導電膜のモビリティμと、多数キャ
リア寿命τの積に比例する、すなわち、■Pccpτで
表わされる。 GaAs膜のτがCd5−CdSe固溶
体に比べ約3桁小さく、高速化が実現し、しかもμが逆
に約3桁ないし4桁大きく、これを補っていることに起
因すると考えられる。
As described above, compared to a conventional photoconductive element using a Cd5-CdSe solid solution having a similar structure, a larger photocurrent can be obtained and the response time is significantly improved. this is,
The photoconductive current is proportional to the product of the mobility .mu. of the photoconductive film and the majority carrier lifetime .tau., that is, it is expressed as .Pccp.tau.. This is thought to be due to the fact that τ of the GaAs film is about 3 orders of magnitude smaller than that of the Cd5-CdSe solid solution, achieving higher speed, and conversely, μ is about 3 to 4 orders of magnitude larger, which compensates for this.

なお、本実施例では、m−v族化合物半導体として、G
aAsを用いたが、混晶を用いてその組成比を調整し、
吸収端の波長を変化させることも可能である。従って、
組成の異なる光導電素子8を交互に配列することにより
、カラー化に応用することも容易である。
In this example, G is used as the m-v group compound semiconductor.
Although aAs was used, the composition ratio was adjusted using a mixed crystal,
It is also possible to change the wavelength of the absorption edge. Therefore,
By alternately arranging photoconductive elements 8 having different compositions, it is easy to apply the invention to coloring.

また、■−■族化合物半導体として、Ga、i。In addition, as the ■-■ group compound semiconductor, Ga, i.

In、AsvPv系が考えられ、特に、 GaInAs
やInPに近い組成の半導体は、高い移動度を有するの
で、高感度の光電変換装置として、また、AIIGaI
nPやAlGaAsに近い半導体は、短波長光源を用い
る光電変換装置として使用することができる。
In, AsvPv systems are considered, especially GaInAs
Semiconductors with compositions close to InP and InP have high mobility, so they are used as highly sensitive photoelectric conversion devices and as AIIGaI.
Semiconductors similar to nP and AlGaAs can be used as photoelectric conversion devices using short wavelength light sources.

なお、本実施例では、■−■族化合物薄膜の形成にMO
CVD法を用いたが、MBE法を用いることも可能であ
る。
In addition, in this example, MO was used to form the ■-■ group compound thin film.
Although the CVD method was used, it is also possible to use the MBE method.

(発明の効果) 以上説明したように、本発明によれば、従来より著しく
高速、高感度の優れた性能を有する光電変換装置が可能
となる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to provide a photoelectric conversion device that has excellent performance, which is significantly faster and has higher sensitivity than the conventional photoelectric conversion device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光電変換装置を備えた密着型ライ
ンセンサの基本構成を示す断面図、第2図は第1図の光
電変換装置の要部拡大平面図である。 1・・・透明基板、 2・・・光源、 3・・・原稿、
 4・・・導光系、 5・・・Ge薄膜、6・・・対向
電極、 7 ・・・マトリックス電極、 8・・・光導
電素子。 第1図 第2図
FIG. 1 is a cross-sectional view showing the basic structure of a contact type line sensor equipped with a photoelectric conversion device according to the present invention, and FIG. 2 is an enlarged plan view of a main part of the photoelectric conversion device shown in FIG. 1. 1... Transparent substrate, 2... Light source, 3... Original document,
4... Light guide system, 5... Ge thin film, 6... Counter electrode, 7... Matrix electrode, 8... Photoconductive element. Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)絶縁基板上に、主走査方向に並ぶように形成され
た複数個の光導電素子群と、これらの光導電素子群ごと
にその上に形成された対向電極群と、上記の各光導電素
子上に形成されたマトリックス電極群とからなり、原稿
からの反射光が導光系を通して上記の光導電素子に照射
されるように構成された光電変換装置において、上記の
光導電素子群がGe薄膜を介して形成されたIII−V族
化合物半導体もしくはそれを主体としてなる化合物半導
体であることを特徴とする光電変換装置。
(1) A plurality of photoconductive element groups formed on an insulating substrate so as to be lined up in the main scanning direction, a counter electrode group formed on each of these photoconductive element groups, and each of the above-mentioned light A photoelectric conversion device comprising a matrix electrode group formed on a conductive element, and configured such that reflected light from an original is irradiated onto the photoconductive element through a light guide system, wherein the photoconductive element group is A photoelectric conversion device characterized in that it is a III-V group compound semiconductor formed through a Ge thin film or a compound semiconductor mainly composed of the III-V compound semiconductor.
(2)III−V族化合物半導体が、Ga_xAl_yI
n_zAs_vP_w系の半導体であることを特徴とす
る特許請求の範囲第(1)項記載の光電変換装置。
(2) The III-V compound semiconductor is Ga_xAl_yI
The photoelectric conversion device according to claim (1), wherein the photoelectric conversion device is an n_zAs_vP_w semiconductor.
(3)Ga_xAl_yIn_zAs_vP_w系の半
導体で、p−n接合を有する光導電素子群が形成されて
いることを特徴とする特許請求の範囲第(2)項記載の
光電変換装置。
(3) The photoelectric conversion device according to claim (2), wherein the photoconductive element group having a pn junction is formed of a Ga_xAl_yIn_zAs_vP_w semiconductor.
(4)絶縁基板がガラス基板であることを特徴とする特
許請求の範囲第(1)項記載の光電変換装置。
(4) The photoelectric conversion device according to claim (1), wherein the insulating substrate is a glass substrate.
JP61147202A 1986-06-25 1986-06-25 Photoelectric conversion device Pending JPS634676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61147202A JPS634676A (en) 1986-06-25 1986-06-25 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61147202A JPS634676A (en) 1986-06-25 1986-06-25 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPS634676A true JPS634676A (en) 1988-01-09

Family

ID=15424867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61147202A Pending JPS634676A (en) 1986-06-25 1986-06-25 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS634676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669145A1 (en) * 1990-11-09 1992-05-15 Thomson Tubes Electroniques ELECTRON CANON MODULE BY OPTOELECTRONIC SWITCHING.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669145A1 (en) * 1990-11-09 1992-05-15 Thomson Tubes Electroniques ELECTRON CANON MODULE BY OPTOELECTRONIC SWITCHING.
US5313138A (en) * 1990-11-09 1994-05-17 Thomson Tubes Electroniques Electron gun modulated by optoelectronic switching

Similar Documents

Publication Publication Date Title
US5034794A (en) Infrared imaging device
US4213138A (en) Demultiplexing photodetector
EP0199852B1 (en) Monolithic integration of light-emitting elements and driver electronics
JPH06511356A (en) Multispectral photovoltaic components
US10312390B2 (en) Light receiving device and method of producing light receiving device
JPH10223874A (en) Electromagnetic wave detector
US5026148A (en) High efficiency multiple quantum well structure and operating method
US4323911A (en) Demultiplexing photodetectors
US5061977A (en) Semiconductor photodetector device
JPH0736449B2 (en) Manufacturing method of light emitting diode printed array
US4707716A (en) High resolution, high efficiency I.R. LED printing array and fabrication method
JPS634676A (en) Photoelectric conversion device
JPH0656900B2 (en) Semiconductor optical device
JP3716401B2 (en) Quantum well optical sensor
US5459333A (en) Semiconductor photodetector with potential barrier regions
JP2742358B2 (en) Semiconductor photodetector and method of manufacturing the same
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
JP2709008B2 (en) Method for manufacturing semiconductor photodetector
JP2995359B2 (en) Semiconductor photodetector and method of manufacturing the same
JPS62150767A (en) Photoelectric conversion device
JP3286034B2 (en) Semiconductor light receiving element
JPS5893267A (en) Photocoupling integrated circuit
JP2712208B2 (en) Light receiving element
JPS6146071B2 (en)
JP2766761B2 (en) Semiconductor photodetector and method of manufacturing the same