JPS62150767A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPS62150767A
JPS62150767A JP60291640A JP29164085A JPS62150767A JP S62150767 A JPS62150767 A JP S62150767A JP 60291640 A JP60291640 A JP 60291640A JP 29164085 A JP29164085 A JP 29164085A JP S62150767 A JPS62150767 A JP S62150767A
Authority
JP
Japan
Prior art keywords
conversion device
photoelectric conversion
group
photoconductive
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60291640A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hori
義和 堀
Akimoto Serizawa
芹沢 晧元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60291640A priority Critical patent/JPS62150767A/en
Publication of JPS62150767A publication Critical patent/JPS62150767A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain the high speed photoelectric conversion device of high sensitivity by a method wherein the device is constituted in such a manner that the light reflected from a manuscript against a photoconductive element through a lightguide system, and a photoconductive element group is mainly composed of a III-V compound semiconductor. CONSTITUTION:The light emitted from the light source 2 such as an LED and the like strikes against a manuscript 3, and the reflected light of which is made to irradiate on a photoconductive film 5 through the condensing system 4 such as bundling fiber array and the like. A pair of electrodes 6 and 7 are opposingly formed on the photoconductive film 5 of a transparent substrate 1, and bias voltage is applied between said electrodes. Electron carrier and a hole carrier are generated in the photoconductive film by the irradiation of light, these carriers move to the electrodes in the reverse direction with each other by the bias voltage, and as a result, they are detected as a photoelectric current. GaAs which is a III-V compound semiconductor is used as the photoconductive film. Also, GaxAlyInzAsvPw can be used as a III-V group compound semiconductor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ファクシミリ装置、インテリジェントコピア
や光ディスクなどの各種OA機器の画像入力部に用いら
れる光電変換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a photoelectric conversion device used in an image input section of various office automation equipment such as a facsimile machine, an intelligent copier, and an optical disk.

従来の技術 近年、ファクシミリ装置や各種OA機器の画像情報入力
装置の小型化や画像ひずみの改良を目指して、原稿と同
一寸法の密着型ラインセンサを開発し、これを組込んだ
画像読取装置が使用され始めている。密着型のラインセ
ンサの光導電素子については、CdS −CdSe固溶
体又は、アモルファスシリコンを用いたものが発表され
ている。
Conventional technology In recent years, with the aim of downsizing image information input devices for facsimile machines and various OA equipment and improving image distortion, a close-contact line sensor with the same dimensions as the document has been developed, and image reading devices incorporating this sensor have been developed. It is starting to be used. Regarding photoconductive elements for contact type line sensors, those using CdS-CdSe solid solution or amorphous silicon have been announced.

発明が解決しようとする問題点 ところが前者を用いたラインセンサでは光電変換効率は
優れているものの光導電素子の応答速度が遅く、情報伝
達の高速化の要求への対応が困難であった。また後者を
用いたものは、応答速度は速いが光電変換効率、即ち感
度が悪く、変換された信号を増幅するためのトランジス
タ等を各光導電素子の近傍に集積化する必要があり、製
造上困難であった。
Problems to be Solved by the Invention However, although line sensors using the former type have excellent photoelectric conversion efficiency, the response speed of the photoconductive element is slow, making it difficult to meet the demand for faster information transmission. In addition, although the latter method has a fast response speed, the photoelectric conversion efficiency, that is, the sensitivity, is poor, and it is necessary to integrate transistors etc. in the vicinity of each photoconductive element to amplify the converted signal, which makes it difficult to manufacture. It was difficult.

本発明はかかる問題を克服し、高感度でかつ高速の光電
変換装置を提供するものである。
The present invention overcomes these problems and provides a highly sensitive and high speed photoelectric conversion device.

問題点を解決するための手段 本発明は、絶縁基板上に形成され、主走査方向に並ぶ複
数個の光導電素子群と、それら各光導電素子上に形成さ
れた対向電極群と、各電極を結ぶマトリクス結線部とを
備え、原稿からの反射光が導光系を通して光導電素子に
当たるように構成されるとともに光導電素子群が、■−
■族化合物半導体を主体として成る光電変換装置である
Means for Solving the Problems The present invention provides a plurality of photoconductive element groups formed on an insulating substrate and arranged in the main scanning direction, a counter electrode group formed on each of the photoconductive elements, and each electrode. and a matrix connection section connecting the
This is a photoelectric conversion device mainly composed of a group Ⅰ compound semiconductor.

作用 本発明は、■−v族化合物半導体の有する高い移動度と
、速いキャリア再結合時間を利用して、光照射により発
生したキャリアを短時間に有効に電気信号として取り出
し、かつ光照射が終了した後は光キャリアがすみやかに
消失し得る事に基づき高速でかつ高感度な光電変換装置
を実現するものである。
Function The present invention utilizes the high mobility and fast carrier recombination time of ■-V group compound semiconductors to effectively extract carriers generated by light irradiation as electrical signals in a short time, and to terminate the light irradiation. Based on the fact that the photocarriers can quickly disappear after this process, a high-speed and highly sensitive photoelectric conversion device can be realized.

実施例 本発明の構成と原理を実施例を用いて説明する。Example The configuration and principle of the present invention will be explained using examples.

第1図は、本実施例の密着型ラインセンサの基本構成を
示す。即ちLEDなどの光源2から出た光が原稿3に当
たり、その反射光が集束性ファイバアレイなどの集光系
4を光導電膜5に照射される。
FIG. 1 shows the basic configuration of the contact type line sensor of this embodiment. That is, light emitted from a light source 2 such as an LED hits the original 3, and the reflected light passes through a condensing system 4 such as a focusing fiber array and irradiates the photoconductive film 5.

ここで、1は透明な基板である。光導電膜上には向かい
合って一対の電極か6.7が形成されており、その電極
間にはバイアス電圧が印加されている。光照射により、
光導膜内に電子、正孔のキャリアが発生し、このキャリ
アが、バイアス電圧により、互いに逆方向の電極に向っ
て移動し、その結果光電流として検出される。
Here, 1 is a transparent substrate. A pair of electrodes 6.7 are formed facing each other on the photoconductive film, and a bias voltage is applied between the electrodes. By light irradiation,
Electron and hole carriers are generated within the photoconductive film, and the bias voltage causes these carriers to move toward the electrodes in opposite directions, and as a result, they are detected as a photocurrent.

また第2図には、本発明の光電変換装置の概略表面を示
す。1は透明な基板であり、この基板上に、16本/y
trysの密度で、複数の光導電膜6が電気的に分離さ
れて形成されている。この光導電膜の形成は通常のMO
CVIl法で約500OAのGaAs膜を形成し、その
後、フォトリソグラフィにより、幅2Qμmの微細パタ
ーンを形成する。
Further, FIG. 2 shows a schematic surface of the photoelectric conversion device of the present invention. 1 is a transparent substrate, and 16 lines/y are placed on this substrate.
A plurality of photoconductive films 6 are formed so as to be electrically separated at a density of trys. The formation of this photoconductive film is carried out using ordinary MO
A GaAs film of about 500 OA is formed using the CVII method, and then a fine pattern with a width of 2 Q μm is formed using photolithography.

この時のエツチングには塩酸を用いた。その後対向電極
群6と、マトリクス電甑7をAu−Goを用いて、フォ
トリソグラフィにより形成している。
Hydrochloric acid was used for etching at this time. Thereafter, a counter electrode group 6 and a matrix electrode 7 are formed using Au--Go by photolithography.

対向電極とマトリクス電糎の電極間隔は20μmである
The electrode spacing between the counter electrode and the matrix electrode was 20 μm.

導電膜として、■−■化合物半桿体であるGaAsを用
いている点にみる。
This is notable in that GaAs, which is a semi-rod compound of ■-■, is used as the conductive film.

各素子に1oo1x、波長560nmの光を照射した時
約10μ人の電流が得られ、またその時の応答速度は約
2μsであった。
When each element was irradiated with light of 101x and a wavelength of 560 nm, a current of about 10 microns was obtained, and the response speed at that time was about 2 microseconds.

本発明は、従来、Cd5−CdSe固溶体を用いて同様
の構成の光導電素子を用いた場合に比較して、はぼ同様
の光電流が得られており、しかも、応答時間が著しく改
良されそいるっこれは、光導電流IpがIpocμτ 
(μは光導電膜のモビリティ、τは、多数キャリア寿命
)で表わされ、GILAS膜のτがCdS −CdSe
固溶体に比較して、約3桁小さく高速化が実現されてい
るにもかかわらず、μが約3桁大きい事に起因している
ものであると考えられる。
The present invention provides a photocurrent that is almost the same as that of a conventional photoconductive element using a Cd5-CdSe solid solution and a similar configuration, and the response time is significantly improved. This means that the photoconductive current Ip is Ipocμτ
(μ is the mobility of the photoconductive film, τ is the majority carrier lifetime), and τ of the GILAS film is CdS-CdSe
This is thought to be due to the fact that μ is about 3 orders of magnitude larger than that of a solid solution, even though the speed has been increased by about 3 orders of magnitude.

本実施例では、ガラス基板上にMOCVD法で、GaA
s膜を形成した場合を示しだが、ガラス基板上にでも通
常のMOCVD法により、移動度が1000 tyj 
/ V −Sec  以上のものが得られているや、結
晶性の基板を用いる等の方法或は歪超格子を形成する方
法等より、更に大きな移動度を実現する事が可能である
。また、混晶の組成比を制御する事により、吸収端の波
長を変化させる事も可能となり、組成の異なる素子を交
互に配しリする事によりカラー化への応用も容易となる
In this example, GaA was deposited on a glass substrate using the MOCVD method.
This shows the case where a s film is formed, but even on a glass substrate, it is possible to achieve a mobility of 1000 tyj by the usual MOCVD method.
/V-Sec or higher, and it is possible to achieve even greater mobility than methods such as using a crystalline substrate or forming a strained superlattice. Furthermore, by controlling the composition ratio of the mixed crystal, it is possible to change the wavelength of the absorption edge, and by alternately arranging elements with different compositions, it is easy to apply it to coloring.

即ち、本実施例に適用できる■−■族化合物半導体とし
てはG2LxAeyInzASvPw  系が考えられ
る。特に、GaInAsやInP に近い組成の半導体
は、高い移動度の有するために、高感度な光電変換装置
への応用が可能になり、AeGaInPやAeGaAs
  に近い組成の半導体は、短波長光源を用いる光導変
換装置への応用が可能になる。
That is, the G2LxAeyInzASvPw system can be considered as the ■-■ group compound semiconductor applicable to this embodiment. In particular, semiconductors with compositions close to GaInAs and InP have high mobility, making it possible to apply them to highly sensitive photoelectric conversion devices;
Semiconductors with compositions close to , can be applied to light guide conversion devices that use short wavelength light sources.

一方、膜の結晶性を良くして、高感度な光電変換装置を
実現するためには、GaAeInAsP系の半導体で順
次又は交互に組成の異なる複数の薄膜を順次形成する事
により、基板との格子歪を緩和して、結晶性の優れた薄
膜結晶にすれば良い。またその時p−n接合を形成して
おけば、更に応答速度が改善されるとともに、光入力強
度と光電流のリニアリティーを向上させる事ができる。
On the other hand, in order to improve the crystallinity of the film and realize a highly sensitive photoelectric conversion device, it is possible to form a plurality of thin films of GaAeInAsP-based semiconductors with different compositions in sequence or alternately to form a lattice with the substrate. The strain can be relaxed to form a thin film crystal with excellent crystallinity. Furthermore, if a pn junction is formed at that time, the response speed can be further improved, and the optical input intensity and the linearity of the photocurrent can be improved.

また、基板として、ABO4型(ただし、AはPb、 
(d、 Ca、 Sr、 Baの群より選択された1つ
、BはTi、 Ta、 Zr、 Fe、 Sn、 Ge
  の群より選択された1つ)、又は、ABO3ペロブ
スカイト型(ただし、AはLi、 K、 Ba、 Sr
、 Pb  の群より選択された1つ、BはNb、 T
i、 Ta、 Zr、 Fe。
In addition, the substrate is ABO4 type (A is Pb,
(One selected from the group of d, Ca, Sr, Ba, B is Ti, Ta, Zr, Fe, Sn, Ge
) or ABO3 perovskite type (where A is Li, K, Ba, Sr
, Pb, B is Nb, T
i, Ta, Zr, Fe.

Sn、Geの群より選択された1つ)の結晶基板を用い
る事により、格子整合が可能となり前記、GaxAey
In2AsvPw  系の半導体をエピタキンヤル成長
させる事が可能となり、高感度な光電変換装置が実現で
きる。
By using a crystal substrate of one selected from the group of Sn and Ge, lattice matching becomes possible.
It becomes possible to epitaxially grow an In2AsvPw-based semiconductor, and a highly sensitive photoelectric conversion device can be realized.

また実施例では■−■化合物薄膜の作製にMOCVD法
を用いたが、MBE法を用いる事も可能である。
Further, in the examples, the MOCVD method was used to prepare the compound thin film, but it is also possible to use the MBE method.

発明の効果 以上のように、本発明によれば、従来のラインセンサの
欠点を克服した高速、高感度な光電変換装置が実現でき
、大きな効果を発揮できる。
Effects of the Invention As described above, according to the present invention, a high-speed, high-sensitivity photoelectric conversion device that overcomes the drawbacks of conventional line sensors can be realized, and great effects can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における光電変換装置の基本
構成を示す断面図、第2図は本実施例装置の要部平面図
である。 1・・・・透明基板、2・・・・・・光源、3・・・・
・・原稿、5・・・・・光導電膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 、u’4tL 原楠 7マトソ7入電コt
FIG. 1 is a sectional view showing the basic configuration of a photoelectric conversion device according to an embodiment of the present invention, and FIG. 2 is a plan view of a main part of the device of this embodiment. 1...Transparent substrate, 2...Light source, 3...
...Manuscript, 5...Photoconductive film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure, u'4tL Harakusu 7 Matoso 7 Incoming power t

Claims (7)

【特許請求の範囲】[Claims] (1)絶縁基板上に形成され、主走査方向に並ぶ複数個
の光導電素子群と、それら各光導電素子上に形成された
対向電極と、各電極を結ぶマトリクス結線部とを備え、
原稿からの反射光が導光系を通して前記光導電素子に当
たるように構成されるとともに、前記光導電素子群がI
II−V族化合物半導体を主体として成る光電変換装置。
(1) comprising a plurality of photoconductive element groups formed on an insulating substrate and lined up in the main scanning direction, counter electrodes formed on each of the photoconductive elements, and a matrix connection part connecting each electrode;
The configuration is such that reflected light from the document hits the photoconductive element through the light guide system, and the photoconductive element group is configured to
A photoelectric conversion device mainly composed of II-V group compound semiconductors.
(2)III−V族化合物半導体が、Ga_xAl_yI
n_zAs_vP_w系の半導体である特許請求の範囲
第1項記載の光導変換装置。
(2) The III-V compound semiconductor is Ga_xAl_yI
The light guide conversion device according to claim 1, which is an n_zAs_vP_w semiconductor.
(3)Ga_xAl_yIn_zAs_vP_w系の半
導体で、順次又は交互に組成の異なる複数の薄膜が順次
形成されてなる特許請求の範囲第2項記載の光電変換装
置。
(3) The photoelectric conversion device according to claim 2, wherein a plurality of thin films of Ga_xAl_yIn_zAs_vP_w-based semiconductors having different compositions are successively or alternately formed.
(4)Ga_xAl_yIn_zAs_vP_w系の半
導体で、p−n接合が形成されて、光導電素子群が形成
されている特許請求の範囲第2項記載の光電変換装置。
(4) The photoelectric conversion device according to claim 2, wherein the photoconductive element group is formed by forming a pn junction using a Ga_xAl_yIn_zAs_vP_w semiconductor.
(5)絶縁基板がガラス基板である特許請求の範囲第1
項記載の光電変換装置。
(5) Claim 1 in which the insulating substrate is a glass substrate
The photoelectric conversion device described in .
(6)絶縁基板がABO_4型(ただし、AはPb、C
d、Ca、Sr、Baの群より選択された1つ、BはM
o、Wの群より選択された1つ)の誘電体基板である特
許請求の範囲第1項記載の光電変換装置。
(6) The insulating substrate is ABO_4 type (A is Pb, C
d, one selected from the group of Ca, Sr, Ba, B is M
2. The photoelectric conversion device according to claim 1, wherein the photoelectric conversion device is a dielectric substrate selected from the group consisting of: O and W.
(7)絶縁基板が、ABO_3ペロブスカイト型(ただ
し、AはLi、K、Ba、Sr、Pbの群より選択され
た1つ、BはNb、Ti、Ta、Zr、Fe、Sn、C
eの群より選択された1つ)である特許請求の範囲第1
項に記載の光電変換装置。
(7) The insulating substrate is an ABO_3 perovskite type (where A is one selected from the group of Li, K, Ba, Sr, and Pb, and B is Nb, Ti, Ta, Zr, Fe, Sn, and C
Claim 1 which is one selected from the group e)
The photoelectric conversion device described in .
JP60291640A 1985-12-24 1985-12-24 Photoelectric conversion device Pending JPS62150767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291640A JPS62150767A (en) 1985-12-24 1985-12-24 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291640A JPS62150767A (en) 1985-12-24 1985-12-24 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPS62150767A true JPS62150767A (en) 1987-07-04

Family

ID=17771565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291640A Pending JPS62150767A (en) 1985-12-24 1985-12-24 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS62150767A (en)

Similar Documents

Publication Publication Date Title
US10784394B2 (en) Electromagnetic wave detector and electromagnetic wave detector array
DE69721112T2 (en) Three or four band multispectral structures with two simultaneous output signals
US5034794A (en) Infrared imaging device
US5200634A (en) Thin film phototransistor and photosensor array using the same
JP6642769B1 (en) Manufacturing method of electronic device using graphene
US4213138A (en) Demultiplexing photodetector
JPH06511356A (en) Multispectral photovoltaic components
JPS60161664A (en) Tightly adhered two-dimensional image readout device
DE102014003068B4 (en) PROCESS FOR PREPARING AN IMAGEER AND IMAGING APPARATUS
EP0361515B1 (en) Thin film phototransistor and photosensor array using the same
JPH0120592B2 (en)
CN112242455A (en) Infrared detector with van der waals asymmetric potential barrier structure and preparation method
JPS63128677A (en) Mamufacture of semiconductor photodetector
US5026148A (en) High efficiency multiple quantum well structure and operating method
CN214336728U (en) Infrared detector with van der waals asymmetric potential barrier structure
JPS6154756A (en) Contact type image sensor
CN114784125B (en) Asymmetric induction room temperature high-sensitivity photoelectric detection device and preparation method thereof
US5859464A (en) Optoelectronic diode and component containing same
JPS62150767A (en) Photoelectric conversion device
JPH10144900A (en) Fabrication on photodetector
JPH0656900B2 (en) Semiconductor optical device
JP3716401B2 (en) Quantum well optical sensor
CN110310972B (en) Photoelectric detector and preparation method
JP4894672B2 (en) Infrared detector manufacturing method
JPS634676A (en) Photoelectric conversion device