JPS6345740B2 - - Google Patents

Info

Publication number
JPS6345740B2
JPS6345740B2 JP57202084A JP20208482A JPS6345740B2 JP S6345740 B2 JPS6345740 B2 JP S6345740B2 JP 57202084 A JP57202084 A JP 57202084A JP 20208482 A JP20208482 A JP 20208482A JP S6345740 B2 JPS6345740 B2 JP S6345740B2
Authority
JP
Japan
Prior art keywords
copolymer
weight
maleic anhydride
parts
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57202084A
Other languages
Japanese (ja)
Other versions
JPS5993746A (en
Inventor
Keiji Nakagawa
Masayuki Tanaka
Akihiko Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP20208482A priority Critical patent/JPS5993746A/en
Publication of JPS5993746A publication Critical patent/JPS5993746A/en
Publication of JPS6345740B2 publication Critical patent/JPS6345740B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱変形温度および熱分解温度が高
く、かつ耐衝撃性のすぐれた熱可塑性樹脂組成物
に関するものである。 ビニル系重合体の耐熱性改善に関する検討は従
来から数多く行なわれており、例えばスチレンな
どのビニル系単量体にマレイミド系単量体を共重
合せしめた共重合体は、高い熱変形温度および熱
分解温度を有することが知られている(高分子論
文集、第36巻、第7号、第447頁、1979年発行)
が、耐衝撃性に代表される機械的性質が劣り(L.
E.Coleman et al,J.Polymer Sci.第38号、第
241頁、1959年発行)、かつN・フエニルマレイミ
ドなどのマレイミド系単量体は合成方法が簡便で
なく、安価に得られにくいという欠点がある。そ
こで、出発物質としてマレイミド系単量体を使用
せずにマレイミド系共重合体を得る方法として、
たとえばスチレンと無水マレイン酸からなる共重
合体をアンモニアまたは第一級アミンと反応せし
め、その無水マレイン酸単位をマレイミド単位に
変換させる方法(特公昭56−39651号公報)が提
案されているが、この方法によつて得られたマレ
イミド系共重合体も衝撃強度が低いという欠点が
ある。 そこで上記の欠点を改良するために無水マレイ
ン酸系共重合体をアンモニアまたは第一級アミン
と反応せしめて得られたマレイミド系共重合体に
ゴム状重合体をベースとするグラフト共重合体を
配合した組成物が提案されている(米国特許第
3642949号明細書および特開昭57−125241号公報
明細書)。しかし、マレイミド系共重合体とグラ
フト共重合体とからなる組成物は衝撃強度が十分
でなく、衝撃強度を改良するために他の熱可塑性
樹脂を配合すると熱変形温度が低下するという欠
点がある。 そこで本発明者らは熱変形温度および衝撃強度
が均衡してすぐれた熱可塑性成形材料の取得を目
的として鋭意検討した結果、特定の共重合組成を
有する無水マレイン酸系共重合体をイミド化して
得られたマレイミド系共重合体、特定のグラフト
共重合体および特定のビニル系(共)重合体を特
定割合で配合することにより、上記目的が効果的
に達成できることを見出し、本発明に到達した。 すなわち本発明は、(A)スチレンおよび/または
α―メチルスチレン45〜55モル%と無水マレイン
酸45〜55モル%を共重合せしめてなる無水マレイ
ン酸系共重合体をアンモニアまたは第一級アミン
と反応させて得られるマレイミド系共重合体20〜
90重量部、(B)ゴム状重合体20〜80重量%の存在下
にスチレンおよびこれを共重合可能な他のビニル
系単量体の少なくとも1種からなる単量体混合物
80〜20重量%をグラフト重合してなるグラフト共
重合体40〜5重量部および(C)芳香族ビニル系単量
体、シアン化ビニル系単量体および(メタ)アク
リル酸エステル系単量体から選ばれた少なくとも
1種を(共)重合してなるビニル系(共)重合体
40〜5重量部を(A)、(B)および(C)の合計が100重量
部となるように配合してなる熱可塑性樹脂組成物
を提供するものである。 本発明の組成物は特定の共重合組成物を有する
無水マレイン酸系共重合体をイミド化して得られ
たマレイミド系共重合体(A)、グラフト重合体およ
び特定の共重合体を特定割合で配合することに特
徴を有する。 すなわち、本発明においては無水マレイン酸系
共重合体における無水マレイン酸含有量を比較的
高く設定し、これを高度にイミド化することによ
り熱変形温度の極めて高いマレイミド系共重合体
(A)となし、これを他の二成分(B)および(C)と特定割
合、とくにビニル系(共)重合体の多い割合で配
合することにより、マレイミド系共重合体(A)とグ
ラフト共重合体(B)の親和性が著しく向上し、高い
熱変形温度を維持したまま衝撃強度および流動性
が極めて改良された組成物が得られるのである。 本発明で用いるマレイミド系共重合体(A)とは、
無水マレイン酸45〜55モル%とスチレンおよび/
またはα―メチルスチレン45〜55モル%を共重合
せしめて得られた無水マレイン酸系共重合体をア
ンモニアまたは第一級アミンと反応させて、無水
マレイン酸単位をマレイミド単位に変換せしめて
得られる共重合体をいう。ここで用いる無水マレ
イン酸系共重合体中の無水マレイン酸の含有率は
重要であり、45モル%未満ではイミド化して得ら
れマレイミド系共重合体の熱変形温度が十分でな
く、また55モル%を越えると交互共重合性を有す
る共重合体が得られにくいため好ましくない。こ
のマレイミド系共重合体(A)は、特公昭56−39651
号公報に記載されるように、無水マレイン酸系共
重合体を水性懸濁中でアンモニアまたはアミンと
反応させることによつても得られるし、溶液、炭
化水素中懸濁、塊状溶融等の非水状態でアンモニ
アまたは第一級アミンと反応させることによつて
も得られる。中でも有機溶媒中において、0〜75
℃でアンモニアまたは第一級アミンと反応させ、
溶媒を除去した後、加熱することによりイミド閉
環を行なう方法が好ましい。ここで用いる第一級
アミンとしては、メチルアミン、エチルアミン、
n―プロピルアミン、イソプロピルアミン、n―
ブチルアミン、t―ブチルアミン、アニリン、p
―クロルアニリン、ナフチルアミンなどが挙げら
れ、中でもイソプロピルアミン、アニリン、p―
クロルアニリンの使用が好ましい。 本発明で用いるグラフト共重合体(B)とはゴム状
重合体の存在下に、前記芳香族ビニル系単量体お
よびこれと共重合可能な他のビニル系単量体の少
なくとも1種からなる単量体混合物を重合してな
るものであり、ここでいう他のビニル系単量体と
は、アクリロニトリル、メタアクリロニトリル等
で代表されるシアン化ビニル系単量体、メタアク
リル酸メチル、アクリル酸エチル等に代表される
ような(メタ)アクリル酸エステル系単量体など
である。ここで、ゴム状重合体としては、ポリプ
タジエンゴム、アクリロニトリル―ブタジエン共
重合体ゴム(NBR)、スチレン―ブタジエン共重
合体ゴム(SBR)等のジエン系ゴム、ポリブチ
ルアクリレート、ポリプロピルアクリレート等の
アクリル系ゴムおよびエチレン―プロピレン―ジ
エン系ゴム(EPDM)等を用いることができる。 グラフト共重合体(B)におけるゴム状重合体と芳
香族ビニル系単量体およびこれと共重合可能な他
のビニル系単量体との単量体混合物の割合は、ゴ
ム状重合体20〜80重量%とくに30〜70重量%の存
在下に前記単量体混合物80〜20重量%とくに70〜
30重量%を重合することが必要である。ゴム状重
合体の割合が20重量%未満では得られる組成物の
耐衝撃性が十分でなく、また逆に80重量%を越え
ると得られる組成物の機械的強度が低下するばか
りか、光沢等の外観に好ましくない結果を与える
ため好ましくない。なお、これらのグラフト共重
合体(B)は乳化重合、塊状重合および塊状―懸濁重
合などの公知の重合方法により製造される。 本発明に用いるビニル系(共)重合体(C)とは、
前記グラフト共重合体(B)のグラフト成分であるビ
ニル系単量体の少なくとも1種を(共)重合して
なる(共)重合体であり、たとえばポリスチレ
ン、スチレン―アクリロニトリル共重合体、スチ
レン―メタクリル酸メチル共重合体、およびスチ
レン―アクリロニトリル―メタクリル酸メチル共
重合体などが挙げられる。これらのビニル系
(共)重合体(C)は、乳化重合、懸濁重合、塊状重
合、溶液重合などの公知の重合方法により製造さ
れる。 本発明の樹脂組成物は、上記マレイミド系共重
合体(A)、グラフト共重合体(B)およびビニル系
(共)重合体(C)の3者を配合することにより得ら
れるが、これらの配合比は(A)が20〜90重量部とく
に30〜80重量部、(B)が40〜5重量部とくに35〜10
重量部、(C)が40〜5重量部とくに35〜10重量部
(合計100重量部)なる範囲から選択される。ここ
でマレイミド系共重合体(A)の配合量が20重量部未
満では熱変形温度の極めて低い組成物しか得られ
ず、90重量部を越えると組成物の耐衝撃性が低下
するため好ましくない。またグラフト共重合体(B)
の配合量が5重量部未満では耐衝撃性が不十分で
あり、40重量部を越えると熱変形温度の低下が著
しい。さらにビニル系(共)重合体(C)の配合量が
5重量部未満では耐衝撃性が不十分であり、40重
量部を越えると熱変形温度が著しく低下するため
好ましくない。 上記マレイミド系共重合体(A)、グラフト共重合
体(B)およびビニル系(共)重合体(C)の配合方法は
特に制限はなく、たとえば粉粒状の重合体を予め
混合しまたは混合せず所望の量比で押出機に供給
し溶融混合する方法などが採用される。 なお、本発明の熱可塑性樹脂組成物には通常の
ヒンダードフエノール系酸化防止剤、リン系酸化
防止剤およびイオウ系酸化防止剤等の酸化防止剤
を添加して熱安定性を向上させたり、滑剤を添加
して流動性をさらに良くすることもできる。また
目的に合わせてガラス繊維等の繊維補強剤、無機
充填剤、着色剤、顔料、導電性材料等を配合する
こともできる。また本発明の樹脂組成物にテトラ
ブロモビスフエノールA、デカブロモフエニルエ
ーテル、臭素化ポリカーボネート等の一般ハロゲ
ン化有機化合物系難燃剤を酸化アンチモンととも
に混合することによつて難燃化が可能である。 以上説明したように本発明の熱可塑性樹脂組成
物は、熱変形温度に代表される耐熱性および衝撃
強度に代表される機械的性質が均衡してすぐれて
おり、これらの特性を生かした種々の用途に適用
が期待される。 以下、参考例および実施例によつて本発明をさ
らに説明する。なお、参考例、実施例中の熱変形
温度はASTM D648―56、ビカツト軟化温度は
JIS K6870、アイゾツト衝撃値はASTM D256―
56Method Aにしたがつて測定した。また部数
は重量部、%は重量%を表わす。 参考例1 〔マレイミド系共重合体(A―1)の
調製〕 還流コンデンサーおよび撹拌機を備えた内容積
20の重合槽にスチレン3.2Kg、無水マレイン酸
2.8Kg、メチルエチルケトン(溶媒)9Kgおよび
過酸化ベンゾイル(開始剤)18gを仕込み、十分
溶解させた。 そして、撹拌を行ないながら重合槽内温度を75
℃に上げ、5時間重合した。その後、重合槽内温
度を30℃まで下げ重合率をガスクロマトグラフイ
ーによつて測定したところ、99.5%であり、未反
応の無水マレイン酸は検出されず、共重合体中の
無水マレイン酸含有率は48.4モル%であつた。 次に反応系ヘアニリン2.7Kgを添加し、30℃に
保持して30分間撹拌をつづけた。その後反応液を
トルエン中に滴下し、メチルエチルケトンおよび
未反応のスチレンを除去後、乾燥することにより
淡かつ色の共重合体を得た。 この共重合体をベント付押出機を用いて270℃
で15分間混練し、脱水イミド閉環反応を行なつた
結果、N―フエニルマレイミドを61%含有するマ
レイミド系共重合体(A―1)が8.5Kg得られ、
そのビカツト軟化温度は200℃であつた。 参考例2 〔マレイミド系共重合体(A―2)の
調製〕 参考例1と同様の重合槽にスチレン3.1Kg、無
水マレイン酸2.9Kg、メチルエチルケトン(溶媒)
9Kgおよび過酸化ベンゾイル(開始剤)18gを仕
込み、十分溶解させた。 そして、撹拌を行ないながら、重合槽内温度を
75℃に上げ5時間重合した。その後、重合槽内温
度を30℃まで下げ重合率をガスクロマトグラフイ
ーによつて測定したところ、99.2%であり、未反
応の無水マレイン酸は検出されず、共重合体中の
無水マレイン酸含有率は49.8モル%であつた。 次に反応系ヘアニリン2.8Kgを添加し、30℃に
保持して30分間撹拌をつづけた。その後、反応液
をトレーに抜出し、風乾後、真空乾燥してメチル
エチルケトンおよび未反応のスチレンを除去して
淡かつ色の共重合体を得た。 この共重合体をベント付押出機を用いて270℃
で10分間混練し、脱水イミド閉環反応を行なつた
結果、N―フエニルマレイミドを62%含有するマ
レイミド系共重合体(A―2)8.8Kg得られ、そ
のビカツト軟化温度は、210℃であつた。 参考例3 〔マレイミド系共重合体(A′)の調
製〕 還流コンデンサー、撹拌機および滴下ロートを
備えた内容積20の重合槽にスチレン5Kg、メチ
ルエチルケトン(溶媒)2.5Kgおよび過酸化ベン
ゾイル(開始剤)35gを仕込んで十分溶解させ
た。 一方別に無水マレイン酸40%のメチルエチルケ
トン溶液を調製し、滴下ロートに仕込んだ。次に
重合槽内温度を75℃に保ち撹拌を行ないながら、
滴下ロートから無水マレイン酸―メチルエチルケ
トン溶液を833g/hrの速度で3時間添加し、添
加終了後、2時間保持した。その後重合槽内温度
を30℃まで冷却し、重合率をガスクロマトグラフ
イーによつて測定したところ94%であり、未反応
の無水マレイン酸は検出されず、共重合体中の無
水マレイン酸含有率は18.6モル%であつた。 次に反応系ヘアニリン950gを添加し、30℃に
保持して30分間撹拌をつづけた。その後、反応液
をトレーに抜出し風乾後、真空乾燥してメチルエ
チルケトンおよび未反応のスチレンを除去して淡
かつ色の共重合体を得た。 この共重合体をベント付押出機を用いて270℃
で15分間混練し、脱水イミド閉環反応を行なつた
結果、N―フエニルマレイミドを28%含有するマ
レイミド系共重合体(A′)が6.4Kg得られ、その
ビカツト軟化温度は160℃であつた。 参考例4 [マレイミド系共重合体(A―3)の
調製] 還流コンデンサーおよび撹拌機を備えた内容積
20の重合槽にスチレン0.5Kg、α―メチルスチ
レン2.7Kg、無水マレイン酸2.8Kg、メチルエチル
ケトン(溶媒)9Kgおよび過酸化ベンゾイル(開
始剤)18gを仕込み、十分溶解させた。 そして、撹拌を行ないながら重合槽内温度を75
℃に上げ、8時間重合した。その後、重合槽内温
度を30℃まで下げ重合率をガスクロマトグラフイ
ーによつて測定したところ、99.3%であり、未反
応の無水マレイン酸は検出されず、共重合体の無
水マレイン酸含有率は50.9モル%であつた。 次に反応系ヘアニリン2.7Kgを添加し、30℃に
保持して30分間撹拌をつづけた。その後反応液を
トルエン中に滴下し、メチルエチルケトンおよび
未反応のスチレンを除去後、乾燥することにより
淡かつ色の共重合体を得た。 この共重合体をベント付押出機を用いて270℃
で15分間混練し、脱水イミド閉環反応を行なつた
結果、N―フエニルマレイミドを63%含有するマ
レイミド系共重合体(A―4)が8.2Kg得られ、
そのビカツト軟化温度は212℃であつた。 実施例 参考例1〜4で調製したマレイミド系共重合体
(A―1、A―2、A′、A―3)をゴム含有率60
%のスチレン―アクリロニトリル―ブタジエング
ラフト共重合体(ABS)およびアクリロニトリ
ル28%含有スチレン―アクリロニトリル共重合体
(SAN)と表―1の割合で配合し、押出機で溶融
押出後、射出成形して得られた試験片の物性を測
定した。熱変形温度およびアイゾツト衝撃強度の
測定結果を表―1に配合比とともに示した。
The present invention relates to a thermoplastic resin composition that has a high heat distortion temperature and a high thermal decomposition temperature, and has excellent impact resistance. Many studies have been conducted to improve the heat resistance of vinyl polymers. For example, copolymers made by copolymerizing maleimide monomers with vinyl monomers such as styrene have high heat distortion temperatures and heat resistance. It is known to have a decomposition temperature (Kobunshi Saishu, Vol. 36, No. 7, p. 447, published in 1979)
However, mechanical properties such as impact resistance are inferior (L.
E. Coleman et al, J. Polymer Sci. No. 38, No.
(p. 241, published in 1959), and maleimide monomers such as N-phenylmaleimide have disadvantages in that the synthesis method is not simple and it is difficult to obtain them at low cost. Therefore, as a method for obtaining a maleimide copolymer without using a maleimide monomer as a starting material,
For example, a method has been proposed in which a copolymer of styrene and maleic anhydride is reacted with ammonia or a primary amine to convert the maleic anhydride units into maleimide units (Japanese Patent Publication No. 39651/1983). Maleimide copolymers obtained by this method also have the disadvantage of low impact strength. Therefore, in order to improve the above drawbacks, a graft copolymer based on a rubbery polymer is blended with a maleimide copolymer obtained by reacting a maleic anhydride copolymer with ammonia or a primary amine. compositions have been proposed (U.S. Patent No.
3642949 and JP-A-57-125241). However, compositions made of maleimide copolymers and graft copolymers do not have sufficient impact strength, and when other thermoplastic resins are added to improve impact strength, the heat distortion temperature decreases. . Therefore, the present inventors conducted extensive studies with the aim of obtaining a thermoplastic molding material with excellent thermal deformation temperature and impact strength, and as a result, they imidized a maleic anhydride copolymer with a specific copolymer composition. We have discovered that the above object can be effectively achieved by blending the obtained maleimide copolymer, a specific graft copolymer, and a specific vinyl (co)polymer in a specific ratio, and have arrived at the present invention. . That is, the present invention provides (A) a maleic anhydride copolymer obtained by copolymerizing 45 to 55 mol% of styrene and/or α-methylstyrene and 45 to 55 mol% of maleic anhydride to ammonia or a primary amine. Maleimide copolymer obtained by reacting with 20~
A monomer mixture consisting of styrene and at least one other vinyl monomer capable of copolymerizing styrene in the presence of 90 parts by weight and 20 to 80% by weight of (B) a rubbery polymer.
40 to 5 parts by weight of a graft copolymer obtained by graft polymerization of 80 to 20% by weight, and (C) an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth)acrylic acid ester monomer A vinyl (co)polymer obtained by (co)polymerizing at least one selected from
A thermoplastic resin composition is provided in which 40 to 5 parts by weight of (A), (B) and (C) are blended so that the total amount is 100 parts by weight. The composition of the present invention contains a maleimide copolymer (A) obtained by imidizing a maleic anhydride copolymer having a specific copolymer composition, a graft polymer, and a specific copolymer in a specific ratio. It is characterized by its combination. That is, in the present invention, the maleic anhydride content in the maleic anhydride copolymer is set relatively high, and this is highly imidized to produce a maleimide copolymer with an extremely high heat distortion temperature.
By blending (A) with the other two components (B) and (C) in a specific proportion, especially in a high proportion of the vinyl (co)polymer, grafting with the maleimide copolymer (A) can be achieved. The affinity of the copolymer (B) is significantly improved, and a composition with extremely improved impact strength and fluidity can be obtained while maintaining a high heat distortion temperature. The maleimide copolymer (A) used in the present invention is
45-55 mol% maleic anhydride and styrene and/or
Alternatively, a maleic anhydride copolymer obtained by copolymerizing 45 to 55 mol% of α-methylstyrene is reacted with ammonia or a primary amine to convert maleic anhydride units into maleimide units. A copolymer. The content of maleic anhydride in the maleic anhydride copolymer used here is important; if it is less than 45 mol%, the heat distortion temperature of the maleimide copolymer obtained by imidization will not be sufficient; %, it is not preferable because it is difficult to obtain a copolymer having alternating copolymerizability. This maleimide copolymer (A) is
As described in the publication, it can also be obtained by reacting a maleic anhydride-based copolymer with ammonia or amine in an aqueous suspension, or it can be obtained by non-containing methods such as a solution, suspension in a hydrocarbon, or bulk melting. It can also be obtained by reaction with ammonia or primary amines in the aqueous state. Among them, in organic solvents, 0 to 75
React with ammonia or primary amine at °C,
A preferred method is to perform imide ring closure by heating after removing the solvent. The primary amines used here include methylamine, ethylamine,
n-propylamine, isopropylamine, n-
Butylamine, t-butylamine, aniline, p
-Chloraniline, naphthylamine, etc., among them isopropylamine, aniline, p-
Preference is given to using chloraniline. The graft copolymer (B) used in the present invention is composed of at least one of the above-mentioned aromatic vinyl monomer and another vinyl monomer copolymerizable therewith in the presence of a rubbery polymer. It is formed by polymerizing a monomer mixture, and other vinyl monomers here include vinyl cyanide monomers represented by acrylonitrile, methacrylonitrile, etc., methyl methacrylate, acrylic acid, etc. These include (meth)acrylic acid ester monomers such as ethyl. Here, examples of the rubbery polymer include diene rubbers such as polyptadiene rubber, acrylonitrile-butadiene copolymer rubber (NBR), styrene-butadiene copolymer rubber (SBR), polybutyl acrylate, polypropyl acrylate, etc. Acrylic rubber and ethylene-propylene-diene rubber (EPDM) can be used. In the graft copolymer (B), the ratio of the monomer mixture of the rubbery polymer, the aromatic vinyl monomer, and other vinyl monomers that can be copolymerized with the rubbery polymer is 20 to 20%. 80% by weight, especially 30-70% by weight of said monomer mixture 80-20% by weight, especially 70-70% by weight
It is necessary to polymerize 30% by weight. If the proportion of the rubbery polymer is less than 20% by weight, the resulting composition will not have sufficient impact resistance, and if it exceeds 80% by weight, not only will the mechanical strength of the resulting composition decrease, but the gloss etc. It is undesirable because it gives an unfavorable result to the appearance of the product. Note that these graft copolymers (B) are produced by known polymerization methods such as emulsion polymerization, bulk polymerization, and bulk-suspension polymerization. The vinyl (co)polymer (C) used in the present invention is
It is a (co)polymer formed by (co)polymerizing at least one vinyl monomer that is the graft component of the graft copolymer (B), such as polystyrene, styrene-acrylonitrile copolymer, styrene- Examples include methyl methacrylate copolymer and styrene-acrylonitrile-methyl methacrylate copolymer. These vinyl (co)polymers (C) are produced by known polymerization methods such as emulsion polymerization, suspension polymerization, bulk polymerization, and solution polymerization. The resin composition of the present invention is obtained by blending the maleimide copolymer (A), the graft copolymer (B), and the vinyl (co)polymer (C). The blending ratio is 20 to 90 parts by weight of (A), especially 30 to 80 parts by weight, and 40 to 5 parts by weight of (B), especially 35 to 10 parts by weight.
Parts by weight, (C) is selected from a range of 40 to 5 parts by weight, particularly 35 to 10 parts by weight (total 100 parts by weight). If the amount of the maleimide copolymer (A) is less than 20 parts by weight, only a composition with an extremely low heat distortion temperature will be obtained, and if it exceeds 90 parts by weight, the impact resistance of the composition will decrease, which is not preferable. . Also, graft copolymer (B)
If the amount is less than 5 parts by weight, the impact resistance will be insufficient, and if it exceeds 40 parts by weight, the heat distortion temperature will drop significantly. Furthermore, if the amount of the vinyl (co)polymer (C) is less than 5 parts by weight, the impact resistance will be insufficient, and if it exceeds 40 parts by weight, the heat distortion temperature will drop significantly, which is not preferable. There are no particular restrictions on the method of blending the maleimide copolymer (A), graft copolymer (B), and vinyl (co)polymer (C). A method is adopted in which the components are first supplied to an extruder in a desired ratio and melt-mixed. In addition, an antioxidant such as a normal hindered phenol antioxidant, a phosphorus antioxidant, and a sulfur antioxidant may be added to the thermoplastic resin composition of the present invention to improve thermal stability. A lubricant can also be added to further improve fluidity. Further, fiber reinforcing agents such as glass fibers, inorganic fillers, colorants, pigments, conductive materials, etc. can also be blended depending on the purpose. Furthermore, flame retardation can be achieved by mixing general halogenated organic compound flame retardants such as tetrabromobisphenol A, decabromophenyl ether, and brominated polycarbonate with antimony oxide into the resin composition of the present invention. . As explained above, the thermoplastic resin composition of the present invention has well-balanced and excellent heat resistance, represented by heat distortion temperature, and mechanical properties, represented by impact strength. It is expected to be applied to various uses. The present invention will be further explained below using reference examples and examples. In addition, the heat distortion temperature in the reference examples and examples is ASTM D648-56, and the Vikatsu softening temperature is
JIS K6870, Izot impact value is ASTM D256-
56Method A. In addition, the number of parts means parts by weight, and the number of parts means percent by weight. Reference Example 1 [Preparation of maleimide copolymer (A-1)] Internal volume equipped with a reflux condenser and a stirrer
3.2Kg of styrene and maleic anhydride in 20 polymerization tanks
2.8 kg, methyl ethyl ketone (solvent) 9 kg, and benzoyl peroxide (initiator) 18 g were charged and sufficiently dissolved. Then, while stirring, the temperature inside the polymerization tank was raised to 75%.
℃ and polymerized for 5 hours. After that, the temperature inside the polymerization tank was lowered to 30℃, and the polymerization rate was measured by gas chromatography, and it was 99.5%, and no unreacted maleic anhydride was detected, indicating that the maleic anhydride content in the copolymer was 48.4 mol%. Next, 2.7 kg of reaction hair aniline was added, and stirring was continued for 30 minutes while maintaining the temperature at 30°C. Thereafter, the reaction solution was dropped into toluene to remove methyl ethyl ketone and unreacted styrene, and then dried to obtain a pale and colored copolymer. This copolymer was extruded at 270°C using a vented extruder.
As a result of kneading for 15 minutes and carrying out a dehydrated imide ring-closing reaction, 8.5 kg of maleimide copolymer (A-1) containing 61% N-phenylmaleimide was obtained.
Its Vikatsu softening temperature was 200°C. Reference Example 2 [Preparation of maleimide copolymer (A-2)] In the same polymerization tank as in Reference Example 1, 3.1 kg of styrene, 2.9 kg of maleic anhydride, and methyl ethyl ketone (solvent) were added.
9 kg and 18 g of benzoyl peroxide (initiator) were charged and sufficiently dissolved. Then, while stirring, the temperature inside the polymerization tank was
The temperature was raised to 75°C and polymerization was carried out for 5 hours. After that, the temperature inside the polymerization tank was lowered to 30℃, and the polymerization rate was measured by gas chromatography, and it was 99.2%, and no unreacted maleic anhydride was detected, indicating the maleic anhydride content in the copolymer. was 49.8 mol%. Next, 2.8 kg of reaction hair aniline was added, and stirring was continued for 30 minutes while maintaining the temperature at 30°C. Thereafter, the reaction solution was taken out into a tray, air-dried, and then vacuum-dried to remove methyl ethyl ketone and unreacted styrene to obtain a pale and colored copolymer. This copolymer was extruded at 270°C using a vented extruder.
As a result, 8.8 kg of maleimide copolymer (A-2) containing 62% N-phenylmaleimide was obtained, and its Vikato softening temperature was 210°C. It was hot. Reference Example 3 [Preparation of maleimide copolymer (A')] 5 kg of styrene, 2.5 kg of methyl ethyl ketone (solvent), and benzoyl peroxide (initiator) were placed in a polymerization tank with an internal volume of 20 equipped with a reflux condenser, a stirrer, and a dropping funnel. ) 35g was charged and sufficiently dissolved. Separately, a solution of 40% maleic anhydride in methyl ethyl ketone was prepared and charged into the dropping funnel. Next, while keeping the temperature inside the polymerization tank at 75℃ and stirring,
A maleic anhydride-methyl ethyl ketone solution was added from the dropping funnel at a rate of 833 g/hr for 3 hours, and after the addition was completed, it was maintained for 2 hours. After that, the temperature inside the polymerization tank was cooled to 30°C, and the polymerization rate was measured by gas chromatography, and it was 94%, and no unreacted maleic anhydride was detected, indicating the maleic anhydride content in the copolymer. was 18.6 mol%. Next, 950 g of reactive hair aniline was added, and stirring was continued for 30 minutes while maintaining the temperature at 30°C. Thereafter, the reaction solution was taken out into a tray, air-dried, and then vacuum-dried to remove methyl ethyl ketone and unreacted styrene to obtain a pale and colored copolymer. This copolymer was extruded at 270°C using a vented extruder.
As a result of kneading for 15 minutes and carrying out a dehydrated imide ring-closing reaction, 6.4 kg of a maleimide copolymer (A') containing 28% N-phenylmaleimide was obtained, and its Vikato softening temperature was 160°C. Ta. Reference Example 4 [Preparation of maleimide copolymer (A-3)] Internal volume equipped with a reflux condenser and a stirrer
0.5 kg of styrene, 2.7 kg of α-methylstyrene, 2.8 kg of maleic anhydride, 9 kg of methyl ethyl ketone (solvent), and 18 g of benzoyl peroxide (initiator) were charged into a polymerization tank No. 20 and sufficiently dissolved. Then, while stirring, the temperature inside the polymerization tank was raised to 75%.
℃ and polymerized for 8 hours. After that, the temperature inside the polymerization tank was lowered to 30℃, and the polymerization rate was measured by gas chromatography, and it was 99.3%, and no unreacted maleic anhydride was detected, so the maleic anhydride content of the copolymer was It was 50.9 mol%. Next, 2.7 kg of reaction hair aniline was added, and stirring was continued for 30 minutes while maintaining the temperature at 30°C. Thereafter, the reaction solution was dropped into toluene to remove methyl ethyl ketone and unreacted styrene, and then dried to obtain a pale and colored copolymer. This copolymer was extruded at 270°C using a vented extruder.
As a result of kneading for 15 minutes and carrying out a dehydrated imide ring-closing reaction, 8.2 kg of maleimide copolymer (A-4) containing 63% N-phenylmaleimide was obtained.
Its Vikatsu softening temperature was 212°C. Example Maleimide copolymers (A-1, A-2, A', A-3) prepared in Reference Examples 1 to 4 were mixed with a rubber content of 60
% styrene-acrylonitrile-butadiene graft copolymer (ABS) and styrene-acrylonitrile copolymer (SAN) containing 28% acrylonitrile in the proportions shown in Table 1, and after melt extrusion using an extruder, injection molding was performed. The physical properties of the test pieces were measured. The measurement results of heat distortion temperature and Izot impact strength are shown in Table 1 along with the blending ratio.

【表】 表―1から明らかなように、本発明の樹脂組成
物(No.1〜4)は、熱変形温度とアイゾツト衝撃
強度が均衡してすぐれている。それに対して、共
重合体(C)を配合しなかつた場合(No.5)、配合比
が外れる場合(No.6)および無水マレイン酸含有
率が外れる共重合体をイミド化して得られたマレ
イミド系共重合体(A′)を用いた場合(No.7、
8)は、熱変形温度とアイゾツト衝撃強度のいず
れかが不十分な組成物しか得られない。
[Table] As is clear from Table 1, the resin compositions of the present invention (Nos. 1 to 4) have excellent thermal deformation temperature and Izot impact strength that are well balanced. On the other hand, when the copolymer (C) was not blended (No. 5), when the blending ratio was off (No. 6), and when the copolymer with the maleic anhydride content was off, the results were obtained by imidizing the copolymer. When using maleimide copolymer (A') (No. 7,
In case 8), only a composition can be obtained which is insufficient in either the heat distortion temperature or the Izod impact strength.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)スチレンおよび/またはα―メチルスチレ
ン45〜55モル%と無水マレイン酸45〜55モル%を
共重合せしめてなる無水マレイン酸系共重合体を
アンモニアまたは第一級アミンと反応させて得ら
れるマレイミド系共重合体20〜90重量部、(B)ゴム
状重合体20〜80重量%の存在下に芳香族ビニル系
単量体およびこれと共重合可能な他のビニル系単
量体の少なくとも1種からなる単量体混合物80〜
20重量%をグラフト重合してなるグラフト共重合
体40〜5重量部および(C)芳香族ビニル系単量体、
シアン化ビニル系単量体および(メタ)アクリル
酸エステル系単量体から選ばれた少なくとも1種
を(共)重合してなるビニル系(共)重合体40〜
5重量部を(A)、(B)および(C)の合計が100重量部と
なるように配合してなる熱可塑性樹脂組成物。
1 (A) A maleic anhydride copolymer prepared by copolymerizing 45 to 55 mol% of styrene and/or α-methylstyrene and 45 to 55 mol% of maleic anhydride is reacted with ammonia or a primary amine. An aromatic vinyl monomer and other vinyl monomers copolymerizable with it in the presence of 20 to 90 parts by weight of the resulting maleimide copolymer and 20 to 80 weight % of the (B) rubbery polymer. A monomer mixture consisting of at least one of: 80~
40 to 5 parts by weight of a graft copolymer obtained by graft polymerizing 20% by weight, and (C) an aromatic vinyl monomer,
Vinyl (co)polymer 40-40 formed by (co)polymerizing at least one selected from vinyl cyanide monomers and (meth)acrylic acid ester monomers
A thermoplastic resin composition containing 5 parts by weight of (A), (B) and (C) such that the total is 100 parts by weight.
JP20208482A 1982-11-19 1982-11-19 Thermoplastic resin composition Granted JPS5993746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20208482A JPS5993746A (en) 1982-11-19 1982-11-19 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20208482A JPS5993746A (en) 1982-11-19 1982-11-19 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS5993746A JPS5993746A (en) 1984-05-30
JPS6345740B2 true JPS6345740B2 (en) 1988-09-12

Family

ID=16451693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20208482A Granted JPS5993746A (en) 1982-11-19 1982-11-19 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS5993746A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764963B2 (en) * 1983-08-24 1995-07-12 電気化学工業株式会社 Thermoplastic resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125241A (en) * 1981-01-28 1982-08-04 Denki Kagaku Kogyo Kk Heat-resistant resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125241A (en) * 1981-01-28 1982-08-04 Denki Kagaku Kogyo Kk Heat-resistant resin composition

Also Published As

Publication number Publication date
JPS5993746A (en) 1984-05-30

Similar Documents

Publication Publication Date Title
KR100275972B1 (en) Process for producing a maleimide-modified heat-resistant abs resin
JPS6126936B2 (en)
JPS6314740B2 (en)
US4504625A (en) Thermoplastic resin composition containing iminated copolymer
US4588774A (en) Thermodynamically miscible polymer compositions
JP3471830B2 (en) Glass fiber reinforced thermoplastic resin composition
US4451617A (en) Miscible polyblend and molded article produced therefrom
EP3960814B1 (en) Thermoplastic resin composition and molded article thereof
JPS6345740B2 (en)
JPS6313453B2 (en)
JPH07718B2 (en) Polymer composition
JPS6046122B2 (en) Method for producing thermoplastic polymer
JPS6225700B2 (en)
JP2582608B2 (en) Polymer alloy containing alkyl vinyl ether / N-arylmaleimide copolymer
JPS6238380B2 (en)
JPH0129222B2 (en)
CA2037978A1 (en) Styrenic polyamide alloy
KR100217790B1 (en) Rubber-reinforced styrene resin composition
JP3386532B2 (en) Thermoplastic resin composition
JPS6220549A (en) Discoloration-resistant resin composition
JPH0262585B2 (en)
JPS59196355A (en) Thermoplastic resin composition
JPH0368043B2 (en)
JPS63125562A (en) Heat-resistant and impact-resistant resin composition
JPH0610218B2 (en) Method for producing thermoplastic resin